Pub Date : 2024-02-01DOI: 10.5423/PPJ.FT.01.2024.0007
Yun-Seon Choi, Da-Woon Kim, Sung-Hwan Yun
Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in cereal crops, employs the production of sexual fruiting bodies (perithecia) on plant debris as a strategy for overwintering and dissemination. In an artificial condition (e.g., carrot agar medium), the F. graminearum Z3643 strain was capable of producing perithecia predominantly in the central region of the fungal culture where aerial hyphae naturally collapsed. To unravel the intricate relationship between natural aerial hyphae collapse and sexual development in this fungus, we focused on 699 genes differentially expressed during aerial hyphae collapse, with 26 selected for further analysis. Targeted gene deletion and quantitative real-time PCR analyses elucidated the functions of specific genes during natural aerial hyphae collapse and perithecium formation. Furthermore, comparative gene expression analyses between natural collapse and artificial removal conditions reveal distinct temporal profiles, with the latter inducing a more rapid and pronounced response, particularly in MAT gene expression. Notably, FGSG_09210 and FGSG_09896 play crucial roles in sexual development and aerial hyphae growth, respectively. Taken together, it is plausible that if aerial hyphae collapse occurs on plant debris, it may serve as a physical cue for inducing perithecium formation in crop fields, representing a survival strategy for F. graminearum during winter. Insights into the molecular mechanisms underlying aerial hyphae collapse provides offer potential strategies for disease control against FHB caused by F. graminearum.
{"title":"Functional Analysis of Genes Specifically Expressed during Aerial Hyphae Collapse as a Potential Signal for Perithecium Formation Induction in Fusarium graminearum.","authors":"Yun-Seon Choi, Da-Woon Kim, Sung-Hwan Yun","doi":"10.5423/PPJ.FT.01.2024.0007","DOIUrl":"10.5423/PPJ.FT.01.2024.0007","url":null,"abstract":"<p><p>Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in cereal crops, employs the production of sexual fruiting bodies (perithecia) on plant debris as a strategy for overwintering and dissemination. In an artificial condition (e.g., carrot agar medium), the F. graminearum Z3643 strain was capable of producing perithecia predominantly in the central region of the fungal culture where aerial hyphae naturally collapsed. To unravel the intricate relationship between natural aerial hyphae collapse and sexual development in this fungus, we focused on 699 genes differentially expressed during aerial hyphae collapse, with 26 selected for further analysis. Targeted gene deletion and quantitative real-time PCR analyses elucidated the functions of specific genes during natural aerial hyphae collapse and perithecium formation. Furthermore, comparative gene expression analyses between natural collapse and artificial removal conditions reveal distinct temporal profiles, with the latter inducing a more rapid and pronounced response, particularly in MAT gene expression. Notably, FGSG_09210 and FGSG_09896 play crucial roles in sexual development and aerial hyphae growth, respectively. Taken together, it is plausible that if aerial hyphae collapse occurs on plant debris, it may serve as a physical cue for inducing perithecium formation in crop fields, representing a survival strategy for F. graminearum during winter. Insights into the molecular mechanisms underlying aerial hyphae collapse provides offer potential strategies for disease control against FHB caused by F. graminearum.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"83-97"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.5423/PPJ.OA.07.2023.0107
Fengying Luo, Hang Chen, Wenjian Wei, Han Liu, Youzhong Chen, Shujiang Li
The aim of this study was to isolate biocontrol bacteria that could antagonize brown rot of Dendrocalamus latiflorus, optimize the culture conditions, and develop an effective biocontrol preparation for brown rot of D. latiflorus. This study isolated a bacterium with an antagonistic effect on bamboo brown rot from healthy D. latiflorus rhizosphere soil. Morphology, molecular biology, and physiological biochemistry methods identified it as Bacillus siamensis. The following culturing media and conditions improved the inhibition effect of B. siamensis: the best culturing media were 2% sucrose, 1.5% yeast extract, and 0.7% potassium chloride; the optimal culturing time, temperature, pH, and inoculation amount were 48 h, 30℃, 6, and 20%. The optimum formula of the applying bacterial suspension was 14% sodium dodecyl benzene sulfonate emulsifier, 4% Na2HPO4·2H2O, 0.3% hydroxypropyl methylcellulose thickener, and 20% B. siamensis. The pot experiment results showed the control effect of applying bacterial suspension, diluted 1,000 times is still better than that of 24% fenbuconazole suspension. The applying bacterial suspension enables reliable control of brown rot in D. latiflorus.
{"title":"Screening of Antagonistic Bacillus against Brown Rot in Dendrocalamus latiflorus and Preparation of Applying Bacterial Suspension.","authors":"Fengying Luo, Hang Chen, Wenjian Wei, Han Liu, Youzhong Chen, Shujiang Li","doi":"10.5423/PPJ.OA.07.2023.0107","DOIUrl":"10.5423/PPJ.OA.07.2023.0107","url":null,"abstract":"<p><p>The aim of this study was to isolate biocontrol bacteria that could antagonize brown rot of Dendrocalamus latiflorus, optimize the culture conditions, and develop an effective biocontrol preparation for brown rot of D. latiflorus. This study isolated a bacterium with an antagonistic effect on bamboo brown rot from healthy D. latiflorus rhizosphere soil. Morphology, molecular biology, and physiological biochemistry methods identified it as Bacillus siamensis. The following culturing media and conditions improved the inhibition effect of B. siamensis: the best culturing media were 2% sucrose, 1.5% yeast extract, and 0.7% potassium chloride; the optimal culturing time, temperature, pH, and inoculation amount were 48 h, 30℃, 6, and 20%. The optimum formula of the applying bacterial suspension was 14% sodium dodecyl benzene sulfonate emulsifier, 4% Na2HPO4·2H2O, 0.3% hydroxypropyl methylcellulose thickener, and 20% B. siamensis. The pot experiment results showed the control effect of applying bacterial suspension, diluted 1,000 times is still better than that of 24% fenbuconazole suspension. The applying bacterial suspension enables reliable control of brown rot in D. latiflorus.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"1-15"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMV-gardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.
栀子(Gardenia jasminoides)是一种广受欢迎的重要经济植物,因其观赏和药用价值而闻名。尽管栀子被广泛种植,但目前还没有关于栀子上植物病毒的文献记载。本研究对出现植物病毒病症状的栀子叶片进行了取样,并通过元转录组和小 RNA 测序进行了测序。结果首次在栀子中发现了豆类常见花叶病毒(BCMV),并将其命名为 BCMV-栀子。BCMV-栀子的全基因组序列长度为10 054个核苷酸(不包括3'末端的聚(A)),编码3 222个氨基酸的大型多聚蛋白。序列分析表明,与其他 BCMV 分离物相比,BCMV-栀子编码的多聚蛋白的 N 端保守性较低,而 C 端保守性最高。最大似然系统进化分析表明,BCMV-gardenia 与豆科植物以外的其他 BCMV 分离物密切相关。我们的研究结果表明,BCMV-栀子病毒衍生的小干扰 RNA(vsiRNA)大多为 21 nt 和 22 nt,其中 21 nt 的含量更高。来自BCMV-栀子病毒的vsiRNA的5'末端的第一个核苷酸首选U和A,来自有义链(51.1%)和反义链(48.9%)的vsiRNA的比例接近,vsiRNA沿病毒基因组的分布总体上比较均匀,但在局部区域形成了一些热点。我们的研究结果可为BCMV的多样性、进化和宿主扩展提供新的见解,并有助于该病毒的预防和治疗。
{"title":"Molecular Characterization of an Isolate of Bean Common Mosaic Virus First Identified in Gardenia Using Metatranscriptome and Small RNA Sequencing.","authors":"Zhong-Tian Xu, Hai-Tao Weng, Jian-Ping Chen, Chuan-Xi Zhang, Jun-Min Li, Yi-Yuan Li","doi":"10.5423/PPJ.OA.11.2023.0163","DOIUrl":"10.5423/PPJ.OA.11.2023.0163","url":null,"abstract":"<p><p>Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMV-gardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"73-82"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.5423/PPJ.OA.09.2023.0133
Le Dinh Thao, Hyorim Choi, Yunhee Choi, Anbazhagan Mageswari, Daseul Lee, Dong-Hyun Kim, Hyeon-Dong Shin, Hyowon Choi, Ho-Jong Ju, Seung-Beom Hong
The Colletotrichum gloeosporioides species complex includes many phytopathogenic species, causing anthracnose disease on a wide range of host plants and appearing to be globally distributed. Seventy-one Colletotrichum isolates in the complex from different plants and geographic regions in Korea were preserved in the Korean Agricultural Culture Collection (KACC). Most of them had been identified based on hosts and morphological features, this could lead to inaccurate species names. Therefore, the KACC isolates were re-identified using DNA sequence analyses of six loci, comprising internal transcribed spacer, gapdh, chs-1, his3, act, and tub2 in this study. Based on the combined phylogenetic analysis, KACC strains were assigned to 12 known species and three new species candidates. The detected species are C. siamense (n = 20), C. fructicola (n = 19), C. gloeosporioides (n = 9), C. aenigma (n = 5), C. camelliae (n = 3), C. temperatum (n = 3), C. musae (n = 2), C. theobromicola (n = 2), C. viniferum (n = 2), C. alatae (n = 1), C. jiangxiense (n = 1), and C. yulongense (n = 1). Of these, C. jiangxiense, C. temperatum, C. theobromicola and C. yulongense are unrecorded species in Korea. Host plant comparisons showed that 27 fungus-host associations are newly reported in the country. However, plant-fungus interactions need to be investigated by pathogenicity tests.
{"title":"Re-identification of Colletotrichum gloeosporioides Species Complex Isolates in Korea and Their Host Plants.","authors":"Le Dinh Thao, Hyorim Choi, Yunhee Choi, Anbazhagan Mageswari, Daseul Lee, Dong-Hyun Kim, Hyeon-Dong Shin, Hyowon Choi, Ho-Jong Ju, Seung-Beom Hong","doi":"10.5423/PPJ.OA.09.2023.0133","DOIUrl":"10.5423/PPJ.OA.09.2023.0133","url":null,"abstract":"<p><p>The Colletotrichum gloeosporioides species complex includes many phytopathogenic species, causing anthracnose disease on a wide range of host plants and appearing to be globally distributed. Seventy-one Colletotrichum isolates in the complex from different plants and geographic regions in Korea were preserved in the Korean Agricultural Culture Collection (KACC). Most of them had been identified based on hosts and morphological features, this could lead to inaccurate species names. Therefore, the KACC isolates were re-identified using DNA sequence analyses of six loci, comprising internal transcribed spacer, gapdh, chs-1, his3, act, and tub2 in this study. Based on the combined phylogenetic analysis, KACC strains were assigned to 12 known species and three new species candidates. The detected species are C. siamense (n = 20), C. fructicola (n = 19), C. gloeosporioides (n = 9), C. aenigma (n = 5), C. camelliae (n = 3), C. temperatum (n = 3), C. musae (n = 2), C. theobromicola (n = 2), C. viniferum (n = 2), C. alatae (n = 1), C. jiangxiense (n = 1), and C. yulongense (n = 1). Of these, C. jiangxiense, C. temperatum, C. theobromicola and C. yulongense are unrecorded species in Korea. Host plant comparisons showed that 27 fungus-host associations are newly reported in the country. However, plant-fungus interactions need to be investigated by pathogenicity tests.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"16-29"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.5423/PPJ.FT.11.2023.0146
Kazuyoshi Furuta, Shusuke Kawakubo, Jun Sasaki, Chikara Masuta
Garlic can be infected by a variety of viruses, but mixed infections with leek yellow stripe virus, onion yellow dwarf virus, and allexiviruses are the most damaging, so an easy, inexpensive on-site method to simultaneously detect at least these three viruses with a certain degree of accuracy is needed to produce virus-free plants. The most common laboratory method for diagnosis is multiplex reverse transcription polymerase chain reaction (RT-PCR). However, allexiviruses are highly diverse even within the same species, making it difficult to design universal PCR primers for all garlic-growing regions in the world. To solve this problem, we developed an inexpensive on-site detection system for the three garlic viruses that uses a commercial mobile PCR device and a compact electrophoresis system with a blue light. In this system, virus-specific bands generated by electrophoresis can be identified by eye in real time because the PCR products are labeled with a fluorescent dye, FITC. Because the electrophoresis step might eventually be replaced with a lateral flow assay (LFA), we also demonstrated that a uniplex LFA can be used for virus detection; however, multiplexing and a significant cost reduction are needed before it can be used for on-site detection.
{"title":"An Inexpensive System for Rapid and Accurate On-site Detection of Garlic-Infected Viruses by Agarose Gel Electrophoresis Followed by Array Assay.","authors":"Kazuyoshi Furuta, Shusuke Kawakubo, Jun Sasaki, Chikara Masuta","doi":"10.5423/PPJ.FT.11.2023.0146","DOIUrl":"10.5423/PPJ.FT.11.2023.0146","url":null,"abstract":"<p><p>Garlic can be infected by a variety of viruses, but mixed infections with leek yellow stripe virus, onion yellow dwarf virus, and allexiviruses are the most damaging, so an easy, inexpensive on-site method to simultaneously detect at least these three viruses with a certain degree of accuracy is needed to produce virus-free plants. The most common laboratory method for diagnosis is multiplex reverse transcription polymerase chain reaction (RT-PCR). However, allexiviruses are highly diverse even within the same species, making it difficult to design universal PCR primers for all garlic-growing regions in the world. To solve this problem, we developed an inexpensive on-site detection system for the three garlic viruses that uses a commercial mobile PCR device and a compact electrophoresis system with a blue light. In this system, virus-specific bands generated by electrophoresis can be identified by eye in real time because the PCR products are labeled with a fluorescent dye, FITC. Because the electrophoresis step might eventually be replaced with a lateral flow assay (LFA), we also demonstrated that a uniplex LFA can be used for virus detection; however, multiplexing and a significant cost reduction are needed before it can be used for on-site detection.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"40-47"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.5423/PPJ.OA.03.2023.0048
Hira Abbas, Nazia Nahid, Muhammad Shah Nawaz Ul Rehman, Tayyaba Shaheen, Sadia Liaquat
A comprehensive survey of mungbean-growing areas was conducted to observe leaf spot disease caused by Alternaria alternata. Alternaria leaf spot symptoms were observed on the leaves. Diversity of 50 genotypes of mungbean was assessed against A. alternata and data on pathological traits was subjected to cluster analysis. The results showed that genotypes of mungbean were grouped into four clusters based on resistance parameters under the influence of disease. The principal component biplot demonstrated that all the disease-related parameters (% disease incidence, % disease intensity, lesion area, and % of infection) were strongly correlated with each other. Alt a 1 gene that is precisely found in Alternaria species and is responsible for virulence and pathogenicity. Alt a 1 gene was amplified using gene specific primers. The isolated pathogen produced similar symptoms when inoculated on mungbean and tobacco. The sequence analysis of the internal transcribed spacer (ITS) region, a 600 bp fragment amplified using specific primers, ITS1 and ITS2 showed 100% identity with A. alternata. Potato virus X (PVX) -based silencing vector expressing Alt a 1 gene was constructed to control this pathogen through RNA interference in tobacco. Out of 50 inoculated plants, 9 showed delayed onset of disease. Furthermore, to confirm our findings at molecular level semi-quantitative reverse transcriptase polymerase chain reaction was used. Both phenotypic and molecular investigation indicated that RNAi induced through the VIGS vector was efficacious in resisting the pathogen in the model host, Tobacco (Nicotiana tabacum). To the best of our knowledge, this study has been reported for the first time.
对绿豆种植区进行了一次全面调查,以观察由交替丝核菌(Alternaria alternata)引起的叶斑病。在叶片上观察到了交替孢霉叶斑病的症状。评估了 50 种绿豆基因型对交替孢霉的多样性,并对病理特征数据进行了聚类分析。结果表明,在病害影响下,绿豆基因型根据抗性参数被分为四个群组。主成分双平面图表明,所有与病害相关的参数(病害发生率、病害强度、病害面积和感染率)之间都有很强的相关性。Alt a 1 基因恰恰存在于 Alternaria 物种中,是毒力和致病性的决定因素。Alt a 1 基因是利用基因特异性引物扩增的。分离出的病原体接种到绿豆和烟草上会产生相似的症状。使用特异引物 ITS1 和 ITS2 扩增的内部转录间隔区(ITS)600 bp 片段的序列分析表明,该病原体与交替马铃薯病毒(A. alternata)100% 相同。构建了表达 Alt a 1 基因的基于马铃薯病毒 X(PVX)的沉默载体,通过 RNA 干扰烟草来控制这种病原体。在 50 株接种植株中,有 9 株表现出延迟发病。此外,为了在分子水平上证实我们的发现,我们使用了半定量逆转录酶聚合酶链反应。表型和分子研究都表明,通过 VIGS 载体诱导的 RNAi 能有效抵抗模式宿主烟草(Nicotiana tabacum)中的病原体。据我们所知,这项研究尚属首次报道。
{"title":"Assessment of Resistance Induction in Mungbean against Alternaria alternata through RNA Interference.","authors":"Hira Abbas, Nazia Nahid, Muhammad Shah Nawaz Ul Rehman, Tayyaba Shaheen, Sadia Liaquat","doi":"10.5423/PPJ.OA.03.2023.0048","DOIUrl":"10.5423/PPJ.OA.03.2023.0048","url":null,"abstract":"<p><p>A comprehensive survey of mungbean-growing areas was conducted to observe leaf spot disease caused by Alternaria alternata. Alternaria leaf spot symptoms were observed on the leaves. Diversity of 50 genotypes of mungbean was assessed against A. alternata and data on pathological traits was subjected to cluster analysis. The results showed that genotypes of mungbean were grouped into four clusters based on resistance parameters under the influence of disease. The principal component biplot demonstrated that all the disease-related parameters (% disease incidence, % disease intensity, lesion area, and % of infection) were strongly correlated with each other. Alt a 1 gene that is precisely found in Alternaria species and is responsible for virulence and pathogenicity. Alt a 1 gene was amplified using gene specific primers. The isolated pathogen produced similar symptoms when inoculated on mungbean and tobacco. The sequence analysis of the internal transcribed spacer (ITS) region, a 600 bp fragment amplified using specific primers, ITS1 and ITS2 showed 100% identity with A. alternata. Potato virus X (PVX) -based silencing vector expressing Alt a 1 gene was constructed to control this pathogen through RNA interference in tobacco. Out of 50 inoculated plants, 9 showed delayed onset of disease. Furthermore, to confirm our findings at molecular level semi-quantitative reverse transcriptase polymerase chain reaction was used. Both phenotypic and molecular investigation indicated that RNAi induced through the VIGS vector was efficacious in resisting the pathogen in the model host, Tobacco (Nicotiana tabacum). To the best of our knowledge, this study has been reported for the first time.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"59-72"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.5423/PPJ.FT.11.2023.0161
Jungwook Park, Mohamed Mannaa, Gil Han, Hyejung Jung, Hyo Seong Jeon, Jin-Cheol Kim, Ae Ran Park, Young-Su Seo
The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.
{"title":"Transcriptomic Insights into Abies koreana Drought Tolerance Conferred by Aureobasidium pullulans AK10.","authors":"Jungwook Park, Mohamed Mannaa, Gil Han, Hyejung Jung, Hyo Seong Jeon, Jin-Cheol Kim, Ae Ran Park, Young-Su Seo","doi":"10.5423/PPJ.FT.11.2023.0161","DOIUrl":"10.5423/PPJ.FT.11.2023.0161","url":null,"abstract":"<p><p>The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"30-39"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The oldest and most extensively cultivated form of millet, known as pearl millet (Pennisetum glaucum (L.) R. Br. Syn. Pennisetum americanum (L.) Leeke), is raised over 312.00 lakh hectares in Asian and African countries. India is regarded as the significant hotspot for pearl millet diversity. In the Indian state of Haryana, where pearl millet is grown, a new and catastrophic bacterial disease known as stem rot of pearl millet spurred by the bacterium Klebsiella aerogenes (formerly Enterobacter) was first observed during fall 2018. The disease appears in form of small to long streaks on leaves, lesions on stem, and slimy rot appearance of stem. The associated bacterium showed close resemblance to Klebsiella aerogenes that was confirmed by a molecular evaluation based on 16S rDNA and gyrA gene nucleotide sequences. The isolates were also identified to be Klebsiella aerogenes based on biochemical assays, where Klebsiella isolates differed in D-trehalose and succinate alkalisation tests. During fall 2021-2023, the disease has spread all the pearl millet-growing districts of the state, extending up to 70% disease incidence in the affected fields. The disease is causing considering grain as well as fodder losses. The proposed scale, consisting of six levels (0-5), is developed where scores 0, 1, 2, 3, 4, and 5 have been categorized as highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible disease reaction, respectively. The disease cycle, survival of pathogen, and possible losses have also been studied to understand other features of the disease.
{"title":"Stem Rot of Pearl Millet Prevalence, Symptomatology, Disease Cycle, Disease Rating Scale and Pathogen Characterization in Pearl Millet-Klebsiella Pathosystem.","authors":"Vinod Kumar Malik, Pooja Sangwan, Manjeet Singh, Pavitra Kumari, Niharika Shoeran, Navjeet Ahalawat, Mukesh Kumar, Harsh Deep, Kamla Malik, Preety Verma, Pankaj Yadav, Sheetal Kumari, Aakash, Sambandh Dhal","doi":"10.5423/PPJ.OA.09.2023.0126","DOIUrl":"10.5423/PPJ.OA.09.2023.0126","url":null,"abstract":"<p><p>The oldest and most extensively cultivated form of millet, known as pearl millet (Pennisetum glaucum (L.) R. Br. Syn. Pennisetum americanum (L.) Leeke), is raised over 312.00 lakh hectares in Asian and African countries. India is regarded as the significant hotspot for pearl millet diversity. In the Indian state of Haryana, where pearl millet is grown, a new and catastrophic bacterial disease known as stem rot of pearl millet spurred by the bacterium Klebsiella aerogenes (formerly Enterobacter) was first observed during fall 2018. The disease appears in form of small to long streaks on leaves, lesions on stem, and slimy rot appearance of stem. The associated bacterium showed close resemblance to Klebsiella aerogenes that was confirmed by a molecular evaluation based on 16S rDNA and gyrA gene nucleotide sequences. The isolates were also identified to be Klebsiella aerogenes based on biochemical assays, where Klebsiella isolates differed in D-trehalose and succinate alkalisation tests. During fall 2021-2023, the disease has spread all the pearl millet-growing districts of the state, extending up to 70% disease incidence in the affected fields. The disease is causing considering grain as well as fodder losses. The proposed scale, consisting of six levels (0-5), is developed where scores 0, 1, 2, 3, 4, and 5 have been categorized as highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible disease reaction, respectively. The disease cycle, survival of pathogen, and possible losses have also been studied to understand other features of the disease.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"40 1","pages":"48-58"},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.
{"title":"Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato.","authors":"Rattana Pengproh, Thanwanit Thanyasiriwat, Kusavadee Sangdee, Juthaporn Saengprajak, Praphat Kawicha, Aphidech Sangdee","doi":"10.5423/PPJ.OA.01.2023.0018","DOIUrl":"10.5423/PPJ.OA.01.2023.0018","url":null,"abstract":"<p><p>Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"39 5","pages":"430-448"},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/0b/ppj-oa-01-2023-0018.PMC10580056.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41209080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.5423/PPJ.OA.08.2023.0112
Hwi-Won Jeong, Tae Ho Ryu, Hyo-Jeong Lee, Kook-Hyung Kim, Rae-Dong Jeong
Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.
{"title":"DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants.","authors":"Hwi-Won Jeong, Tae Ho Ryu, Hyo-Jeong Lee, Kook-Hyung Kim, Rae-Dong Jeong","doi":"10.5423/PPJ.OA.08.2023.0112","DOIUrl":"10.5423/PPJ.OA.08.2023.0112","url":null,"abstract":"<p><p>Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"39 5","pages":"449-465"},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fd/db/ppj-oa-08-2023-0112.PMC10580055.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41209079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}