Pub Date : 2024-07-29DOI: 10.1007/s00425-024-04491-2
Yan Pan, Yanzhe Jia, Wenxin Liu, Qinlong Zhao, Wenqiu Pan, Yongpeng Jia, Shuzuo Lv, Xiaoqin Liu, Xiaojun Nie
Main conclusion: This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.
{"title":"Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.).","authors":"Yan Pan, Yanzhe Jia, Wenxin Liu, Qinlong Zhao, Wenqiu Pan, Yongpeng Jia, Shuzuo Lv, Xiaoqin Liu, Xiaojun Nie","doi":"10.1007/s00425-024-04491-2","DOIUrl":"10.1007/s00425-024-04491-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Arabidopsis CROWDED NUCLEI (CRWN) family proteins form a lamina-like meshwork beneath the nuclear envelope with multiple functions, including maintenance of nuclear morphology, genome organization, DNA damage repair and transcriptional regulation. CRWNs can form homodimers/heterodimers through protein‒protein interactions; however, the exact molecular mechanism of CRWN dimer formation and the diverse functions of different CRWN domains are not clear. In this report, we show that the N-terminal coiled-coil domain of CRWN1 facilitates its homodimerization and heterodimerization with the coiled-coil domains of CRWN2–CRWN4. We further demonstrated that the N-terminus but not the C-terminus of CRWN1 is sufficient to rescue the defect in nuclear morphology of the crwn1 crwn2 mutant to the WT phenotype. Moreover, both the N- and C-terminal fragments of CRWN1 are necessary for its normal function in the regulation of plant development. Collectively, our data shed light on the mechanism of plant lamina network formation and the functions of different domains in plant lamin-like proteins.
{"title":"The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance","authors":"Chunmei Yin, Yuanda Wang, Pan Wang, Guangxin Chen, Aiqing Sun, Yuda Fang","doi":"10.1007/s00425-024-04489-w","DOIUrl":"https://doi.org/10.1007/s00425-024-04489-w","url":null,"abstract":"<p>The <i>Arabidopsis</i> CROWDED NUCLEI (CRWN) family proteins form a lamina-like meshwork beneath the nuclear envelope with multiple functions, including maintenance of nuclear morphology, genome organization, DNA damage repair and transcriptional regulation. CRWNs can form homodimers/heterodimers through protein‒protein interactions; however, the exact molecular mechanism of CRWN dimer formation and the diverse functions of different CRWN domains are not clear. In this report, we show that the N-terminal coiled-coil domain of CRWN1 facilitates its homodimerization and heterodimerization with the coiled-coil domains of CRWN2–CRWN4. We further demonstrated that the N-terminus but not the C-terminus of CRWN1 is sufficient to rescue the defect in nuclear morphology of the <i>crwn1 crwn2</i> mutant to the WT phenotype. Moreover, both the N- and C-terminal fragments of CRWN1 are necessary for its normal function in the regulation of plant development. Collectively, our data shed light on the mechanism of plant lamina network formation and the functions of different domains in plant lamin-like proteins.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1007/s00425-024-04495-y
Satbeer Singh, Chandra Bhan Yadav, Nelson Lubanga, Matthew Hegarty, Rattan S. Yadav
Main conclusion
A total of 544 significant marker-trait associations and 286 candidate genes associated with total protein and 18 amino acids were identified. Thirty-three candidate genes were found near the strong marker trait associations (– log10P ≥ 5.5).
Abstract
Pearl millet (Pennisetum glaucum) is largely grown as a subsistence crop in South Asia and sub-Saharan Africa. It serves as a major source of daily protein intake in these regions. Despite its importance, no systematic effort has been made to study the genetic variations of protein and amino acid content in pearl millet germplasm. The present study was undertaken to dissect the global genetic variations of total protein and 18 essential and non-essential amino acids in pearl millet, using a set of 435 K Single Nucleotide Polymorphisms (SNPs) and 161 genotypes of the Pearl Millet Inbred Germplasm Association Panel (PMiGAP). A total of 544 significant marker-trait associations (at P < 0.0001; – log10P ≥ 4) were detected and 23 strong marker-trait associations were identified using Bonferroni’s correction method. Forty-eight pleiotropic loci were found in the genome for the studied traits. In total, 286 candidate genes associated with total protein and 18 amino acids were identified. Thirty-three candidate genes were found near strongly associated SNPs. The associated markers and the candidate genes provide an insight into the genetic architecture of the traits studied and are going to be useful in breeding improved pearl millet varieties in the future. Availabilities of improved pearl millet varieties possessing higher protein and amino acid compositions will help combat the rising malnutrition problem via diet.
{"title":"Genome-wide SNPs and candidate genes underlying the genetic variations for protein and amino acids in pearl millet (Pennisetum glaucum) germplasm","authors":"Satbeer Singh, Chandra Bhan Yadav, Nelson Lubanga, Matthew Hegarty, Rattan S. Yadav","doi":"10.1007/s00425-024-04495-y","DOIUrl":"https://doi.org/10.1007/s00425-024-04495-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Main conclusion</h3><p>A total of 544 significant marker-trait associations and 286 candidate genes associated with total protein and 18 amino acids were identified. Thirty-three candidate genes were found near the strong marker trait associations (– log<sub>10</sub><i>P</i> ≥ 5.5).</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Pearl millet (<i>Pennisetum glaucum</i>) is largely grown as a subsistence crop in South Asia and sub-Saharan Africa. It serves as a major source of daily protein intake in these regions. Despite its importance, no systematic effort has been made to study the genetic variations of protein and amino acid content in pearl millet germplasm. The present study was undertaken to dissect the global genetic variations of total protein and 18 essential and non-essential amino acids in pearl millet, using a set of 435 K Single Nucleotide Polymorphisms (SNPs) and 161 genotypes of the Pearl Millet Inbred Germplasm Association Panel (PMiGAP). A total of 544 significant marker-trait associations (at <i>P</i> < 0.0001; – log<sub>10</sub><i>P</i> ≥ 4) were detected and 23 strong marker-trait associations were identified using Bonferroni’s correction method. Forty-eight pleiotropic loci were found in the genome for the studied traits. In total, 286 candidate genes associated with total protein and 18 amino acids were identified. Thirty-three candidate genes were found near strongly associated SNPs. The associated markers and the candidate genes provide an insight into the genetic architecture of the traits studied and are going to be useful in breeding improved pearl millet varieties in the future. Availabilities of improved pearl millet varieties possessing higher protein and amino acid compositions will help combat the rising malnutrition problem via diet.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1007/s00425-024-04486-z
Yuyan Li, Qianwen Wu, Lingyi Zhu, Ruili Zhang, Boqiang Tong, Yan Wang, Yi Han, Yizeng Lu, Dequan Dou, Zhihui Tian, Jian Zheng, Yan Zhang
Main conclusion: The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree's high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis, and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana. The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri. In S. pohuashanensis, SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana, indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.
{"title":"Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis.","authors":"Yuyan Li, Qianwen Wu, Lingyi Zhu, Ruili Zhang, Boqiang Tong, Yan Wang, Yi Han, Yizeng Lu, Dequan Dou, Zhihui Tian, Jian Zheng, Yan Zhang","doi":"10.1007/s00425-024-04486-z","DOIUrl":"10.1007/s00425-024-04486-z","url":null,"abstract":"<p><strong>Main conclusion: </strong>The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree's high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis, and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana. The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri. In S. pohuashanensis, SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana, indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Main conclusion: This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost little millet production, nutritional value, and environmental adaptation. Little millet (P. sumatrense) is a staple grain in many parts of Asia and Africa owing to its abundance in vitamins and minerals and its ability to withstand harsh agro-ecological conditions. Enhancing little millet using natural resources and novel crop improvement strategy is an effective way of boosting nutritional and food security. To understand the genetic makeup of the crop and figure out important characteristics linked to nutritional value, biotic and abiotic resistance, and production, researchers in this field are currently resorting on genomic technology. These realizations have expedited the crop's response to shifting environmental conditions by enabling the production of superior cultivars through targeted breeding. Going forward, further improvements in breeding techniques and genetics may boost the resilience, nutritional content, and production of little millet, which would benefit growers and consumers alike. The research and development on little millet improvement using novel omics platform and the integration of genetic resources are summarized in this review paper. Improved cultivars of little millet that satisfy changing farmer and consumer demands have already been developed through the use of these novel breeding strategies. This article also explores possible future initiatives, such as the development of targeted breeding, genomics, and sustainable agriculture methods. The potential for these measures to boost little millet's overall production, nutritional value, and climate adaptation will be extremely helpful in addressing nutritional security.
{"title":"Improvement of little millet (Panicum sumatrense) using novel omics platform and genetic resource integration.","authors":"Abinash Mishra, Suman Dash, Tanya Barpanda, Suman Choudhury, Pratikshya Mishra, Manasi Dash, Digbijaya Swain","doi":"10.1007/s00425-024-04493-0","DOIUrl":"10.1007/s00425-024-04493-0","url":null,"abstract":"<p><strong>Main conclusion: </strong>This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost little millet production, nutritional value, and environmental adaptation. Little millet (P. sumatrense) is a staple grain in many parts of Asia and Africa owing to its abundance in vitamins and minerals and its ability to withstand harsh agro-ecological conditions. Enhancing little millet using natural resources and novel crop improvement strategy is an effective way of boosting nutritional and food security. To understand the genetic makeup of the crop and figure out important characteristics linked to nutritional value, biotic and abiotic resistance, and production, researchers in this field are currently resorting on genomic technology. These realizations have expedited the crop's response to shifting environmental conditions by enabling the production of superior cultivars through targeted breeding. Going forward, further improvements in breeding techniques and genetics may boost the resilience, nutritional content, and production of little millet, which would benefit growers and consumers alike. The research and development on little millet improvement using novel omics platform and the integration of genetic resources are summarized in this review paper. Improved cultivars of little millet that satisfy changing farmer and consumer demands have already been developed through the use of these novel breeding strategies. This article also explores possible future initiatives, such as the development of targeted breeding, genomics, and sustainable agriculture methods. The potential for these measures to boost little millet's overall production, nutritional value, and climate adaptation will be extremely helpful in addressing nutritional security.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Main conclusion: This review ascertains amaranth grains as a potent crop for food security and sustainable food systems by highlighting its agricultural advantages, health benefits and applications in the food, packaging, and brewing industry. The global population surge and rapidly transitioning climatic conditions necessitate the maximization of nutritional crop yield to mitigate malnutrition resulting from food and nutrition insecurity. The modern agricultural practices adopted to maximize the yield of the conventional staple crops are heavily contingent on the depleting natural resources and are contributing extensively to the contamination of these natural resources. Furthermore, these agricultural practices are also causing detrimental effects on the environment like rising emission of greenhouse gasses and increased water footprints. To address these challenges while ensuring sustainable nutrient-rich crop production, it is imperative to utilize underutilized crops like Amaranthus. Amaranth grains are gluten-free pseudo-cereals that are gaining much prominence owing to their abundance in vital nutrients and bio-active components, potential health benefits, resilience to adverse climatic and soil conditions, minimum agricultural input requirements, potential of generating income for small holder farmers as well as various applications across the sustainable value chain. However, due to the limited awareness of these potential benefits of the amaranth grains among the consumers, researchers, and policymakers, they have remained untapped. This review paper enunciates the nutritional composition and potential health benefits of the grains while briefly discussing their various applications in food and beverage industries and accentuating the need to explore further possibilities of valorizing amaranth grains to maximize their utilization along the value chain.
{"title":"Amaranthus crop for food security and sustainable food systems.","authors":"Naman Kaur, Simran Kaur, Aparna Agarwal, Manisha Sabharwal, Abhishek Dutt Tripathi","doi":"10.1007/s00425-024-04490-3","DOIUrl":"10.1007/s00425-024-04490-3","url":null,"abstract":"<p><strong>Main conclusion: </strong>This review ascertains amaranth grains as a potent crop for food security and sustainable food systems by highlighting its agricultural advantages, health benefits and applications in the food, packaging, and brewing industry. The global population surge and rapidly transitioning climatic conditions necessitate the maximization of nutritional crop yield to mitigate malnutrition resulting from food and nutrition insecurity. The modern agricultural practices adopted to maximize the yield of the conventional staple crops are heavily contingent on the depleting natural resources and are contributing extensively to the contamination of these natural resources. Furthermore, these agricultural practices are also causing detrimental effects on the environment like rising emission of greenhouse gasses and increased water footprints. To address these challenges while ensuring sustainable nutrient-rich crop production, it is imperative to utilize underutilized crops like Amaranthus. Amaranth grains are gluten-free pseudo-cereals that are gaining much prominence owing to their abundance in vital nutrients and bio-active components, potential health benefits, resilience to adverse climatic and soil conditions, minimum agricultural input requirements, potential of generating income for small holder farmers as well as various applications across the sustainable value chain. However, due to the limited awareness of these potential benefits of the amaranth grains among the consumers, researchers, and policymakers, they have remained untapped. This review paper enunciates the nutritional composition and potential health benefits of the grains while briefly discussing their various applications in food and beverage industries and accentuating the need to explore further possibilities of valorizing amaranth grains to maximize their utilization along the value chain.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Main conclusion: A genetic linkage map representing the pearl millet genome was constructed with SNP markers. Major and stable QTL associated with flowering, number of productive tillers, ear head length, and test weight were mapped on chromosomes 1 and 3. Pearl millet (Pennisetum glaucum) is a major cereal and fodder crop in arid and semi-arid regions of Asia and Africa. Agronomic traits are important traits in pearl millet breeding and genetic and environmental factors highly influence them. In the present study, an F9 recombinant inbred line (RIL) population derived from a cross between PT6029 and PT6129 was evaluated for agronomic traits in three environments. Utilizing a genotyping by sequencing approach, a dense genetic map with 993 single nucleotide polymorphism markers covering a total genetic distance of 1035.4 cM was constructed. The average interval between the markers was 1.04 cM, and the seven chromosomes varied from 115.39 to 206.72 cM. Quantitative trait loci (QTL) mapping revealed 35 QTL for seven agronomic traits, and they were distributed on all pearl millet chromosomes. These QTL individually explained 11.35 to 26.71% of the phenotypic variation, with LOD values ranging from 2.74 to 5.80. Notably, four QTL (qDFF1.1, qNPT3.1, qEHL3.1, and qTW1.1) associated with days to fifty percent flowering, the number of productive tillers, ear head length, and test weight were found to be major and stable QTL located on chromosomes 1 and 3. Collectively, our results provide an important base for understanding the genetic architecture of agronomic traits in pearl millet, which is useful for accelerating the genetic gain toward crop improvement.
{"title":"Consensus genetic linkage map and QTL mapping allow to capture the genomic regions associated with agronomic traits in pearl millet.","authors":"Kali Subbulakshmi, Adhimoolam Karthikeyan, Jayakodi Murukarthick, Manickam Dhasarathan, Ranganathan Naveen, Murughiah Sathya, Balasundaram Lavanya, Krishnamoorthy Iyanar, Subbarayan Sivakumar, Rajasekaran Ravikesavan, Pichaikannu Sumathi, Natesan Senthil","doi":"10.1007/s00425-024-04487-y","DOIUrl":"10.1007/s00425-024-04487-y","url":null,"abstract":"<p><strong>Main conclusion: </strong>A genetic linkage map representing the pearl millet genome was constructed with SNP markers. Major and stable QTL associated with flowering, number of productive tillers, ear head length, and test weight were mapped on chromosomes 1 and 3. Pearl millet (Pennisetum glaucum) is a major cereal and fodder crop in arid and semi-arid regions of Asia and Africa. Agronomic traits are important traits in pearl millet breeding and genetic and environmental factors highly influence them. In the present study, an F<sub>9</sub> recombinant inbred line (RIL) population derived from a cross between PT6029 and PT6129 was evaluated for agronomic traits in three environments. Utilizing a genotyping by sequencing approach, a dense genetic map with 993 single nucleotide polymorphism markers covering a total genetic distance of 1035.4 cM was constructed. The average interval between the markers was 1.04 cM, and the seven chromosomes varied from 115.39 to 206.72 cM. Quantitative trait loci (QTL) mapping revealed 35 QTL for seven agronomic traits, and they were distributed on all pearl millet chromosomes. These QTL individually explained 11.35 to 26.71% of the phenotypic variation, with LOD values ranging from 2.74 to 5.80. Notably, four QTL (qDFF<sub>1.1</sub>, qNPT<sub>3.1</sub>, qEHL<sub>3.1</sub>, and qTW<sub>1.1</sub>) associated with days to fifty percent flowering, the number of productive tillers, ear head length, and test weight were found to be major and stable QTL located on chromosomes 1 and 3. Collectively, our results provide an important base for understanding the genetic architecture of agronomic traits in pearl millet, which is useful for accelerating the genetic gain toward crop improvement.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s00425-024-04475-2
Yanhong Lan, Yao Song, Mengjia Liu, Dening Luo
Main conclusion: A genome-wide analysis had identified 642 ABA core component genes from 20 plant species, which were further categorized into three distinct subfamilies. The gene structures and evolutionary relationships of these genes had been characterized. PP2C_1, PP2C_2, and SnRK2_1 had emerged as key players in mediating the ABA signaling transduction pathway, specifically in rice, in response to abiotic stresses. The plant hormone abscisic acid (ABA) is essential for growth, development, and stress response, relying on its core components, pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptor (PYR/PYL/RCAR), 2C protein phosphatase (PP2C), sucrose non-fermenting-1-related protein kinase 2 (SnRK2). However, there's a lack of research on their structural evolution and functional differentiation across plants. Our study analyzed the phylogenetic, gene structure, homology, and duplication evolution of this complex in 20 plant species. We found conserved patterns in copy number and homology across subfamilies. Segmental and tandem duplications drove the evolution of these genes, while whole-genome duplication (WGD) expanded PYR/PYL/RCAR and PP2C subfamilies, enhancing environmental adaptation. In rice and Arabidopsis, the PYR/PYL/RCAR, PP2C, and SnRK2 genes showed distinct tissue-specific expression and responded to various stresses. Notably, PP2C_1 and PP2C_2 interacted with SnRK2_1 and were crucial for ABA signaling in rice. These findings offered new insights into ABA signaling evolution, interactions, and integration in green plants, benefiting future research in agriculture, evolutionary biology, ecology, and environmental science.
主要结论通过全基因组分析,从 20 种植物中发现了 642 个 ABA 核心成分基因,并进一步将其分为三个不同的亚家族。对这些基因的基因结构和进化关系进行了表征。PP2C_1、PP2C_2和SnRK2_1已成为介导ABA信号转导通路的关键角色,特别是在水稻应对非生物胁迫的过程中。植物激素脱落酸(ABA)对生长、发育和胁迫响应至关重要,它依赖于其核心成分--抗性吡拉菌素、类抗性吡拉菌素和 ABA 受体(PYR/PYL/RCAR)的调节成分、2C 蛋白磷酸酶(PP2C)、蔗糖不发酵-1 相关蛋白激酶 2(SnRK2)。然而,关于它们在不同植物中的结构演化和功能分化的研究还很缺乏。我们的研究分析了这一复合体在20种植物中的系统发育、基因结构、同源性和复制进化。我们发现各亚科在拷贝数和同源性方面的模式是一致的。片段复制和串联复制推动了这些基因的进化,而全基因组复制(WGD)扩大了PYR/PYL/RCAR和PP2C亚家族,增强了环境适应能力。在水稻和拟南芥中,PYR/PYL/RCAR、PP2C和SnRK2基因表现出不同的组织特异性表达,并对各种胁迫做出反应。值得注意的是,PP2C_1和PP2C_2与SnRK2_1相互作用,对水稻的ABA信号转导至关重要。这些发现为绿色植物中 ABA 信号的进化、相互作用和整合提供了新的视角,对未来农业、进化生物学、生态学和环境科学的研究大有裨益。
{"title":"Genome-wide identification, phylogenetic, structural and functional evolution of the core components of ABA signaling in plant species: a focus on rice.","authors":"Yanhong Lan, Yao Song, Mengjia Liu, Dening Luo","doi":"10.1007/s00425-024-04475-2","DOIUrl":"10.1007/s00425-024-04475-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>A genome-wide analysis had identified 642 ABA core component genes from 20 plant species, which were further categorized into three distinct subfamilies. The gene structures and evolutionary relationships of these genes had been characterized. PP2C_1, PP2C_2, and SnRK2_1 had emerged as key players in mediating the ABA signaling transduction pathway, specifically in rice, in response to abiotic stresses. The plant hormone abscisic acid (ABA) is essential for growth, development, and stress response, relying on its core components, pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptor (PYR/PYL/RCAR), 2C protein phosphatase (PP2C), sucrose non-fermenting-1-related protein kinase 2 (SnRK2). However, there's a lack of research on their structural evolution and functional differentiation across plants. Our study analyzed the phylogenetic, gene structure, homology, and duplication evolution of this complex in 20 plant species. We found conserved patterns in copy number and homology across subfamilies. Segmental and tandem duplications drove the evolution of these genes, while whole-genome duplication (WGD) expanded PYR/PYL/RCAR and PP2C subfamilies, enhancing environmental adaptation. In rice and Arabidopsis, the PYR/PYL/RCAR, PP2C, and SnRK2 genes showed distinct tissue-specific expression and responded to various stresses. Notably, PP2C_1 and PP2C_2 interacted with SnRK2_1 and were crucial for ABA signaling in rice. These findings offered new insights into ABA signaling evolution, interactions, and integration in green plants, benefiting future research in agriculture, evolutionary biology, ecology, and environmental science.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Main conclusion: Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 μm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 μmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.
{"title":"Decoding stomatal characteristics regulating water use efficiency at leaf and plant scales in rice genotypes.","authors":"Abhishree Ramachandra, Preethi Vijayaraghavareddy, Chaitanya Purushothama, Spoorthi Nagaraju, Sheshshayee Sreeman","doi":"10.1007/s00425-024-04488-x","DOIUrl":"10.1007/s00425-024-04488-x","url":null,"abstract":"<p><strong>Main conclusion: </strong>Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm<sup>2</sup> and the size varied between 128.31 and 339.01 μm<sup>2</sup> among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 μmol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1007/s00425-024-04484-1
Humberto A Gajardo, Melanie Morales, Giovanni Larama, Ana Luengo-Escobar, Dariel López, Mariana Machado, Adriano Nunes-Nesi, Marjorie Reyes-Díaz, Séverine Planchais, Arnould Savouré, Jorge Gago, León A Bravo
Main conclusions: In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.
{"title":"Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert.","authors":"Humberto A Gajardo, Melanie Morales, Giovanni Larama, Ana Luengo-Escobar, Dariel López, Mariana Machado, Adriano Nunes-Nesi, Marjorie Reyes-Díaz, Séverine Planchais, Arnould Savouré, Jorge Gago, León A Bravo","doi":"10.1007/s00425-024-04484-1","DOIUrl":"10.1007/s00425-024-04484-1","url":null,"abstract":"<p><strong>Main conclusions: </strong>In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}