首页 > 最新文献

Plant Cell最新文献

英文 中文
Flipping the sex switch: Genetic insights into sex determination factor in Ceratopteris richardii. 翻转性别开关:对richardii蠓性别决定因素的遗传见解。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf079
Sonhita Chakraborty
{"title":"Flipping the sex switch: Genetic insights into sex determination factor in Ceratopteris richardii.","authors":"Sonhita Chakraborty","doi":"10.1093/plcell/koaf079","DOIUrl":"10.1093/plcell/koaf079","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How UV-B-activated UVR8 triggers LOX1 to close stomata: Unveiling a mechanism of photoreceptor-regulated enzyme activity in the cytoplasm. uv - b激活的UVR8如何触发LOX1关闭气孔:揭示细胞质中光受体调节酶活性的机制。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf076
Jiajun Wang
{"title":"How UV-B-activated UVR8 triggers LOX1 to close stomata: Unveiling a mechanism of photoreceptor-regulated enzyme activity in the cytoplasm.","authors":"Jiajun Wang","doi":"10.1093/plcell/koaf076","DOIUrl":"10.1093/plcell/koaf076","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeing is believing: Whole-cell electron tomography models of vacuole morphology and formation in the early-stage root cortex of Arabidopsis. 眼见为实:拟南芥早期根皮层液泡形态和形成的全细胞电子断层扫描模型。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf057
Yong Cui, Jiayang Gao, Yanbin Li, Hai Zhang, Xiaohui Zheng, Qing Qi, Shengqi Zhang, Byung-Ho Kang, Liwen Jiang
{"title":"Seeing is believing: Whole-cell electron tomography models of vacuole morphology and formation in the early-stage root cortex of Arabidopsis.","authors":"Yong Cui, Jiayang Gao, Yanbin Li, Hai Zhang, Xiaohui Zheng, Qing Qi, Shengqi Zhang, Byung-Ho Kang, Liwen Jiang","doi":"10.1093/plcell/koaf057","DOIUrl":"10.1093/plcell/koaf057","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Like Alice in Wonderland, ROOT-ExM enlarges root tips for a closer look. 就像爱丽丝梦游仙境一样,root - exm可以放大根尖,让你更近距离地观察。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf078
Laura Arribas-Hernández
{"title":"Like Alice in Wonderland, ROOT-ExM enlarges root tips for a closer look.","authors":"Laura Arribas-Hernández","doi":"10.1093/plcell/koaf078","DOIUrl":"https://doi.org/10.1093/plcell/koaf078","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using chimeric rice proteins to make heads or tails of the function of repetitive elements in Gγ subunits. 利用嵌合水稻蛋白来了解 Gγ 亚基中重复元件的功能。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf080
Julie Robinson
{"title":"Using chimeric rice proteins to make heads or tails of the function of repetitive elements in Gγ subunits.","authors":"Julie Robinson","doi":"10.1093/plcell/koaf080","DOIUrl":"10.1093/plcell/koaf080","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize. CP24等位基因缺陷决定了玉米动态非光化学猝灭和光系统II效率的变异。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf063
John N Ferguson, Leonardo Caproni, Julia Walter, Katie Shaw, Lucia Arce-Cubas, Alice Baines, Min Soe Thein, Svenja Mager, Georgia Taylor, Lee Cackett, Jyotirmaya Mathan, Richard L Vath, Leo Martin, Bernard Genty, Mario Enrico Pè, Tracy Lawson, Matteo Dell'Acqua, Johannes Kromdijk

Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.

玉米(Zea mays L.)是一种通过C4途径进行二氧化碳同化的全球性作物物种。在温暖和干燥的条件下,C4光合作用通常比C3光合作用更有效;然而,尽管有这种固有的优势,C4植物的光合效率仍然存在相当大的差异,可以利用这些差异来提高作物的产量。在此,我们利用高通量表型和数量性状位点(QTL)定位相结合的方法,在一个大田栽培的多亲本高代交叉(MAGIC)定位群体中研究了NPQ和光系统II (PSII)效率的遗传结构。QTL定位之后,使用基因组学、转录组学、蛋白质生物化学和靶向生理表型相结合的方法鉴定推定的候选基因。我们确定了四个基因在观察到的QTL效应中具有假定的因果作用。在10号染色体上发现了对光合效率影响最大的QTL,这主要是由F7创始系单倍型相关的低表达驱动的PSII次要天线蛋白光系统II亚基(LHCB6或CP24)表达的等位基因变异所支撑的。该品系在早期开花育种中的历史作用可能表明,该缺陷等位基因的存在可以在温带玉米种质中得到丰富。这些发现促进了我们对C4植物NPQ和PSII效率遗传基础的理解,并突出了旨在优化玉米光合效率的育种策略的潜力。
{"title":"A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize.","authors":"John N Ferguson, Leonardo Caproni, Julia Walter, Katie Shaw, Lucia Arce-Cubas, Alice Baines, Min Soe Thein, Svenja Mager, Georgia Taylor, Lee Cackett, Jyotirmaya Mathan, Richard L Vath, Leo Martin, Bernard Genty, Mario Enrico Pè, Tracy Lawson, Matteo Dell'Acqua, Johannes Kromdijk","doi":"10.1093/plcell/koaf063","DOIUrl":"10.1093/plcell/koaf063","url":null,"abstract":"<p><p>Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LTD coordinates chlorophyll biosynthesis and LIGHT-HARVESTING CHLOROPHYLL A/B-BINDING PROTEIN transport. LTD协调叶绿素生物合成和光收集叶绿素A/ b结合蛋白运输。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-02 DOI: 10.1093/plcell/koaf068
Liwei Rong, Junhang An, Xinyue Chen, Chao Wang, Jianghao Wu, Peng Wang, Yongxing Zheng, Xin Wang, Xin Chai, Wei Li, Zhubing Hu, Dandan Lu, Guangyu E Chen, Min Ouyang, Bernhard Grimm, Lixin Zhang, Xiumei Xu

Chlorophyll biosynthesis must be tightly coupled to light-harvesting chlorophyll a/b-binding protein (LHCP) biogenesis, as free chlorophyll and its precursors are phototoxic. However, precisely how these 2 processes are coordinated in Arabidopsis (Arabidopsis thaliana) remains elusive. Our previous studies demonstrated the role of LHCP TRANSLOCATION DEFECT (LTD) in delivering LHCPs to the chloroplast via the signal recognition particle-dependent pathway. Here, we show that LTD interacts with and stabilizes the chlorophyll biosynthesis enzymes Mg-protoporphyrin methyltransferase and Mg-protoporphyrin monomethylester (MgPME) cyclase, maintaining their activity. We also demonstrate the direct binding of LTD to MgPME, and through crystal structure analysis, we show that the groove of the LTD dimer is critical for MgPME binding. Thus, we propose that LTD transfers MgPME from Mg-protoporphyrin methyltransferase to the MgPME cyclase. These results elucidate a role for LTD in synchronizing chlorophyll biosynthesis with LHCP transport to ensure the correct insertion of chlorophylls into LHCPs.

由于游离叶绿素及其前体具有光毒性,叶绿素的生物合成必须与光捕获叶绿素a/b结合蛋白(LHCP)的生物生成紧密耦合。然而,这两个过程在拟南芥(拟南芥)中是如何协调的仍然是一个谜。我们之前的研究表明LHCP易位缺陷(LHCP TRANSLOCATION DEFECT, LTD)通过信号识别颗粒依赖途径将LHCP传递到叶绿体中。在这里,我们发现LTD与叶绿素生物合成酶mg -原卟啉甲基转移酶和mg -原卟啉单甲基酯(MgPME)环化酶相互作用并稳定它们,保持它们的活性。我们还证明了LTD与MgPME的直接结合,并通过晶体结构分析表明LTD二聚体的凹槽对MgPME的结合至关重要。因此,我们提出LTD将MgPME从mg -原卟啉甲基转移酶转移到MgPME环化酶。这些结果阐明了LTD在同步叶绿素生物合成和LHCP运输中所起的作用,以确保叶绿素正确插入LHCP中。
{"title":"LTD coordinates chlorophyll biosynthesis and LIGHT-HARVESTING CHLOROPHYLL A/B-BINDING PROTEIN transport.","authors":"Liwei Rong, Junhang An, Xinyue Chen, Chao Wang, Jianghao Wu, Peng Wang, Yongxing Zheng, Xin Wang, Xin Chai, Wei Li, Zhubing Hu, Dandan Lu, Guangyu E Chen, Min Ouyang, Bernhard Grimm, Lixin Zhang, Xiumei Xu","doi":"10.1093/plcell/koaf068","DOIUrl":"10.1093/plcell/koaf068","url":null,"abstract":"<p><p>Chlorophyll biosynthesis must be tightly coupled to light-harvesting chlorophyll a/b-binding protein (LHCP) biogenesis, as free chlorophyll and its precursors are phototoxic. However, precisely how these 2 processes are coordinated in Arabidopsis (Arabidopsis thaliana) remains elusive. Our previous studies demonstrated the role of LHCP TRANSLOCATION DEFECT (LTD) in delivering LHCPs to the chloroplast via the signal recognition particle-dependent pathway. Here, we show that LTD interacts with and stabilizes the chlorophyll biosynthesis enzymes Mg-protoporphyrin methyltransferase and Mg-protoporphyrin monomethylester (MgPME) cyclase, maintaining their activity. We also demonstrate the direct binding of LTD to MgPME, and through crystal structure analysis, we show that the groove of the LTD dimer is critical for MgPME binding. Thus, we propose that LTD transfers MgPME from Mg-protoporphyrin methyltransferase to the MgPME cyclase. These results elucidate a role for LTD in synchronizing chlorophyll biosynthesis with LHCP transport to ensure the correct insertion of chlorophylls into LHCPs.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11979457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
It's a small world: Sinningia double flower cultivars share the same GLOBOSA1 allele. 这是一个小世界:Sinningia重瓣花品种具有相同的GLOBOSA1等位基因。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 DOI: 10.1093/plcell/koaf031
Andrew C Willoughby
{"title":"It's a small world: Sinningia double flower cultivars share the same GLOBOSA1 allele.","authors":"Andrew C Willoughby","doi":"10.1093/plcell/koaf031","DOIUrl":"10.1093/plcell/koaf031","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 3","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The kinase CPK5 phosphorylates MICRORCHIDIA1 to promote broad-spectrum disease resistance. 激酶 CPK5 磷酸化 MICRORCHIDIA1,促进广谱抗病性。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 DOI: 10.1093/plcell/koaf051
Congcong Sun, Yongming Chen, Aifang Ma, Pan Wang, Yingying Song, Jiaxin Pan, Tingting Zhao, Zhipeng Tu, Xiangxiu Liang, Xiaodan Wang, Jun Fan, Guozhi Bi, Xiangzong Meng, Daolong Dou, Guangyuan Xu

In Arabidopsis (Arabidopsis thaliana), MICRORCHIDIA 1 (MORC1), a member of the MORC family of evolutionarily conserved GHKL-type ATPases, plays important roles in multiple layers of plant immunity. However, the molecular mechanism by which MORC1 regulates plant immunity remains obscure. Here, we report that the pathogen-responsive kinase CALCIUM-DEPENDENT PROTEIN KINASE 5 (CPK5) directly interacts with and phosphorylates MORC1, thereby promoting its stability and nuclear translocation. In the nucleus, MORC1 associates with the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-TGACG-BINDING FACTOR (TGA) transcriptional complex to upregulate defense-responsive genes and promote plant resistance against several pathogens, such as the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea. Therefore, this study uncovers a MORC1-mediated immune signaling pathway, in which the CPK5-MORC1-NPR1-TGA module transduces Ca2+ signals, leading to the upregulation of defense genes involved in plant immunity.

在拟南芥(Arabidopsis thaliana)中,MICRORCHIDIA 1 (MORC1)是进化保守的ghkl型atp酶MORC家族的成员,在植物多层免疫中发挥重要作用。然而,MORC1调控植物免疫的分子机制尚不清楚。在这里,我们报道了病原体反应性激酶钙依赖性蛋白激酶5 (CPK5)直接与MORC1相互作用并使其磷酸化,从而促进其稳定性和核易位。在细胞核中,MORC1与致病相关基因1 (NPR1)- tgacg结合因子(TGA)转录复合物结合,上调防御应答基因,促进植物对几种病原体的抗性,如丁香假单胞菌pv。番茄DC3000和真菌病原体灰霉病菌。因此,本研究揭示了morc1介导的免疫信号通路,其中CPK5-MORC1-NPR1-TGA模块转导Ca2+信号,导致参与植物免疫的防御基因上调。
{"title":"The kinase CPK5 phosphorylates MICRORCHIDIA1 to promote broad-spectrum disease resistance.","authors":"Congcong Sun, Yongming Chen, Aifang Ma, Pan Wang, Yingying Song, Jiaxin Pan, Tingting Zhao, Zhipeng Tu, Xiangxiu Liang, Xiaodan Wang, Jun Fan, Guozhi Bi, Xiangzong Meng, Daolong Dou, Guangyuan Xu","doi":"10.1093/plcell/koaf051","DOIUrl":"10.1093/plcell/koaf051","url":null,"abstract":"<p><p>In Arabidopsis (Arabidopsis thaliana), MICRORCHIDIA 1 (MORC1), a member of the MORC family of evolutionarily conserved GHKL-type ATPases, plays important roles in multiple layers of plant immunity. However, the molecular mechanism by which MORC1 regulates plant immunity remains obscure. Here, we report that the pathogen-responsive kinase CALCIUM-DEPENDENT PROTEIN KINASE 5 (CPK5) directly interacts with and phosphorylates MORC1, thereby promoting its stability and nuclear translocation. In the nucleus, MORC1 associates with the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-TGACG-BINDING FACTOR (TGA) transcriptional complex to upregulate defense-responsive genes and promote plant resistance against several pathogens, such as the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea. Therefore, this study uncovers a MORC1-mediated immune signaling pathway, in which the CPK5-MORC1-NPR1-TGA module transduces Ca2+ signals, leading to the upregulation of defense genes involved in plant immunity.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrate attenuates abscisic acid signaling via NIN-LIKE PROTEIN8 in Arabidopsis seed germination. 硝酸盐在拟南芥种子萌发过程中通过n - like蛋白8减弱脱落酸信号。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 DOI: 10.1093/plcell/koaf046
Zhichong Huang, Xiao Han, Kunrong He, Jingwen Ye, Chunlan Yu, Tingting Xu, Juping Zhang, Jiancan Du, Qiantang Fu, Yanru Hu

Abscisic acid (ABA) suppresses Arabidopsis (Arabidopsis thaliana) seed germination and post-germinative growth. Nitrate stimulates seed germination, but whether it directly regulates ABA signaling and the associated underlying molecular mechanisms remain unknown. Here, we showed that nitrate alleviates the repressive effects of ABA on seed germination independently of the nitric oxide (NO) pathway. Moreover, nitrate attenuates ABA signaling activated by ABSCISIC ACID INSENSITIVE3 (ABI3) and ABI5, two critical transcriptional regulators of the ABA pathway. Mechanistic analyses demonstrated that ABI3 and ABI5 physically interact with the nitrate signaling-related core transcription factor NIN-LIKE PROTEIN 8 (NLP8). After ABA treatment, NLP8 suppresses ABA responses during seed germination without affecting ABA content. Notably, nitrate represses ABA signaling mainly through NLP8. Genetic analyses showed that NLP8 acts upstream of ABI3 and ABI5. Specifically, NLP8 inhibits the transcriptional functions of ABI3 and ABI5, as well as their ABA-induced accumulation. Additionally, NLP8 overexpression largely suppresses the ABA hypersensitivity of mutant plants exhibiting impaired NO biosynthesis or signaling. Collectively, our study reveals that nitrate counteracts the inhibitory effects of ABA signaling on seed germination and provides mechanistic insights into the NLP8-ABI3/ABI5 interactions and their antagonistic relationships in ABA signaling.

脱落酸(ABA)抑制拟南芥(Arabidopsis thaliana)种子萌发和萌发后生长。硝酸盐刺激种子萌发,但是否直接调节ABA信号和相关的潜在分子机制尚不清楚。在这里,我们发现硝酸盐减轻了ABA对种子萌发的抑制作用,而不依赖于一氧化氮(NO)途径。此外,硝酸盐会减弱ABA通路中两个关键转录调控因子ABSCISIC ACID INSENSITIVE3 (ABI3)和ABI5激活的ABA信号。机制分析表明,ABI3和ABI5与硝酸盐信号相关的核心转录因子n - like PROTEIN 8 (NLP8)发生物理相互作用。经外源ABA处理后,NLP8抑制种子萌发过程中的ABA反应,但不影响ABA含量。值得注意的是,硝酸盐主要通过NLP8抑制ABA信号。遗传分析表明NLP8作用于ABI3和ABI5的上游。具体来说,NLP8抑制ABI3和ABI5的转录功能,以及它们在aba诱导下的积累。此外,NLP8过表达在很大程度上抑制了突变植物对ABA的超敏反应,表现为NO生物合成或信号传导受损。总的来说,我们的研究揭示了硝酸盐抵消了ABA信号对种子萌发的抑制作用,并为NLP8-ABI3/ABI5相互作用及其在ABA信号传导中的拮抗关系提供了机制见解。
{"title":"Nitrate attenuates abscisic acid signaling via NIN-LIKE PROTEIN8 in Arabidopsis seed germination.","authors":"Zhichong Huang, Xiao Han, Kunrong He, Jingwen Ye, Chunlan Yu, Tingting Xu, Juping Zhang, Jiancan Du, Qiantang Fu, Yanru Hu","doi":"10.1093/plcell/koaf046","DOIUrl":"10.1093/plcell/koaf046","url":null,"abstract":"<p><p>Abscisic acid (ABA) suppresses Arabidopsis (Arabidopsis thaliana) seed germination and post-germinative growth. Nitrate stimulates seed germination, but whether it directly regulates ABA signaling and the associated underlying molecular mechanisms remain unknown. Here, we showed that nitrate alleviates the repressive effects of ABA on seed germination independently of the nitric oxide (NO) pathway. Moreover, nitrate attenuates ABA signaling activated by ABSCISIC ACID INSENSITIVE3 (ABI3) and ABI5, two critical transcriptional regulators of the ABA pathway. Mechanistic analyses demonstrated that ABI3 and ABI5 physically interact with the nitrate signaling-related core transcription factor NIN-LIKE PROTEIN 8 (NLP8). After ABA treatment, NLP8 suppresses ABA responses during seed germination without affecting ABA content. Notably, nitrate represses ABA signaling mainly through NLP8. Genetic analyses showed that NLP8 acts upstream of ABI3 and ABI5. Specifically, NLP8 inhibits the transcriptional functions of ABI3 and ABI5, as well as their ABA-induced accumulation. Additionally, NLP8 overexpression largely suppresses the ABA hypersensitivity of mutant plants exhibiting impaired NO biosynthesis or signaling. Collectively, our study reveals that nitrate counteracts the inhibitory effects of ABA signaling on seed germination and provides mechanistic insights into the NLP8-ABI3/ABI5 interactions and their antagonistic relationships in ABA signaling.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1