Pub Date : 2023-07-01Epub Date: 2022-11-24DOI: 10.1152/physrev.00030.2021
Angela Balistrieri, Ayako Makino, Jason X-J Yuan
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
{"title":"Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca<sup>2+</sup> signaling.","authors":"Angela Balistrieri, Ayako Makino, Jason X-J Yuan","doi":"10.1152/physrev.00030.2021","DOIUrl":"10.1152/physrev.00030.2021","url":null,"abstract":"<p><p>The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca<sup>2+</sup> signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1827-1897"},"PeriodicalIF":29.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1152/physrev.00054.2021
Brendan Egan, Adam P Sharples
Repeated, episodic bouts of skeletal muscle contraction undertaken frequently as structured exercise training are a potent stimulus for physiological adaptation in many organs. Specifically, in skeletal muscle, remarkable plasticity is demonstrated by the remodeling of muscle structure and function in terms of muscular size, force, endurance, and contractile velocity as a result of the functional demands induced by various types of exercise training. This plasticity, and the mechanistic basis for adaptations to skeletal muscle in response to exercise training, are underpinned by activation and/or repression of molecular pathways and processes in response to each individual acute exercise session. These pathways include the transduction of signals arising from neuronal, mechanical, metabolic, and hormonal stimuli through complex signal transduction networks, which are linked to a myriad of effector proteins involved in the regulation of pre- and posttranscriptional processes, and protein translation and degradation processes. This review therefore describes acute exercise-induced signal transduction and the molecular responses to acute exercise in skeletal muscle including emerging concepts such as epigenetic pre- and posttranscriptional regulation and the regulation of protein translation and degradation. A critical appraisal of methodological approaches and the current state of knowledge informs a series of recommendations offered as future directions in the field.
{"title":"Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training.","authors":"Brendan Egan, Adam P Sharples","doi":"10.1152/physrev.00054.2021","DOIUrl":"https://doi.org/10.1152/physrev.00054.2021","url":null,"abstract":"<p><p>Repeated, episodic bouts of skeletal muscle contraction undertaken frequently as structured exercise training are a potent stimulus for physiological adaptation in many organs. Specifically, in skeletal muscle, remarkable plasticity is demonstrated by the remodeling of muscle structure and function in terms of muscular size, force, endurance, and contractile velocity as a result of the functional demands induced by various types of exercise training. This plasticity, and the mechanistic basis for adaptations to skeletal muscle in response to exercise training, are underpinned by activation and/or repression of molecular pathways and processes in response to each individual acute exercise session. These pathways include the transduction of signals arising from neuronal, mechanical, metabolic, and hormonal stimuli through complex signal transduction networks, which are linked to a myriad of effector proteins involved in the regulation of pre- and posttranscriptional processes, and protein translation and degradation processes. This review therefore describes acute exercise-induced signal transduction and the molecular responses to acute exercise in skeletal muscle including emerging concepts such as epigenetic pre- and posttranscriptional regulation and the regulation of protein translation and degradation. A critical appraisal of methodological approaches and the current state of knowledge informs a series of recommendations offered as future directions in the field.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2057-2170"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1152/physrev.00023.2022
Aarti Jagannath, Lewis Taylor, Yining Ru, Zeinab Wakaf, Kayomavua Akpobaro, Sridhar Vasudevan, Russell G Foster
Salt-inducible kinases (SIKs), which comprise a family of three homologous serine-threonine kinases, were first described for their role in sodium sensing but have since been shown to regulate multiple aspects of physiology. These kinases are activated or deactivated in response to extracellular signals that are cell surface receptor mediated and go on to phosphorylate multiple targets including the transcription cofactors CRTC1-3 and the class IIa histone deacetylases (HDACs). Thus, the SIK family conveys signals about the cellular environment to reprogram transcriptional and posttranscriptional processes in response. In this manner, SIKs have been shown to regulate metabolic responses to feeding/fasting, cell division and oncogenesis, inflammation, immune responses, and most recently, sleep and circadian rhythms. Sleep and circadian rhythms are master regulators of physiology and are exquisitely sensitive to regulation by environmental light and physiological signals such as the need for sleep. Salt-inducible kinases have been shown to be central to the molecular regulation of both these processes. Here, we summarize the molecular mechanisms by which SIKs control these different domains of physiology and highlight where there is mechanistic overlap with sleep/circadian rhythm control.
{"title":"The multiple roles of salt-inducible kinases in regulating physiology.","authors":"Aarti Jagannath, Lewis Taylor, Yining Ru, Zeinab Wakaf, Kayomavua Akpobaro, Sridhar Vasudevan, Russell G Foster","doi":"10.1152/physrev.00023.2022","DOIUrl":"https://doi.org/10.1152/physrev.00023.2022","url":null,"abstract":"<p><p>Salt-inducible kinases (SIKs), which comprise a family of three homologous serine-threonine kinases, were first described for their role in sodium sensing but have since been shown to regulate multiple aspects of physiology. These kinases are activated or deactivated in response to extracellular signals that are cell surface receptor mediated and go on to phosphorylate multiple targets including the transcription cofactors CRTC1-3 and the class IIa histone deacetylases (HDACs). Thus, the SIK family conveys signals about the cellular environment to reprogram transcriptional and posttranscriptional processes in response. In this manner, SIKs have been shown to regulate metabolic responses to feeding/fasting, cell division and oncogenesis, inflammation, immune responses, and most recently, sleep and circadian rhythms. Sleep and circadian rhythms are master regulators of physiology and are exquisitely sensitive to regulation by environmental light and physiological signals such as the need for sleep. Salt-inducible kinases have been shown to be central to the molecular regulation of both these processes. Here, we summarize the molecular mechanisms by which SIKs control these different domains of physiology and highlight where there is mechanistic overlap with sleep/circadian rhythm control.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2231-2269"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9487148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-01-19DOI: 10.1152/physrev.00019.2022
Bing-Dong Sui, Chen-Xi Zheng, Wan-Min Zhao, Kun Xuan, Bei Li, Yan Jin
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
{"title":"Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis.","authors":"Bing-Dong Sui, Chen-Xi Zheng, Wan-Min Zhao, Kun Xuan, Bei Li, Yan Jin","doi":"10.1152/physrev.00019.2022","DOIUrl":"10.1152/physrev.00019.2022","url":null,"abstract":"<p><p>The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1899-1964"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9519064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-01-05DOI: 10.1152/physrev.00053.2021
Michael J Davis, Scott Earley, Yi-Shuan Li, Shu Chien
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
{"title":"Vascular mechanotransduction.","authors":"Michael J Davis, Scott Earley, Yi-Shuan Li, Shu Chien","doi":"10.1152/physrev.00053.2021","DOIUrl":"10.1152/physrev.00053.2021","url":null,"abstract":"<p><p>This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 2","pages":"1247-1421"},"PeriodicalIF":33.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10081054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-01-12DOI: 10.1152/physrev.00016.2022
Travis T Mallard, Andrew D Grotzinger, Jordan W Smoller
Genome-wide association studies (GWASs) have ushered in a new era of reproducible discovery in psychiatric genetics. The field has now identified hundreds of common genetic variants that are associated with mental disorders, and many of them influence more than one disorder. By advancing the understanding of causal biology underlying psychopathology, GWAS results are poised to inform the development of novel therapeutics, stratification of at-risk patients, and perhaps even the revision of top-down classification systems in psychiatry. Here, we provide a concise review of GWAS findings with an emphasis on findings that have elucidated the shared genetic etiology of psychopathology, summarizing insights at three levels of analysis: 1) genome-wide architecture; 2) networks, pathways, and gene sets; and 3) individual variants/genes. Three themes emerge from these efforts. First, all psychiatric phenotypes are heritable, highly polygenic, and influenced by many pleiotropic variants with incomplete penetrance. Second, GWAS results highlight the broad etiological roles of neuronal biology, system-wide effects over localized effects, and early neurodevelopment as a critical period. Third, many loci that are robustly associated with multiple forms of psychopathology harbor genes that are involved in synaptic structure and function. Finally, we conclude our review by discussing the implications that GWAS results hold for the field of psychiatry, as well as expected challenges and future directions in the next stage of psychiatric genetics.
{"title":"Examining the shared etiology of psychopathology with genome-wide association studies.","authors":"Travis T Mallard, Andrew D Grotzinger, Jordan W Smoller","doi":"10.1152/physrev.00016.2022","DOIUrl":"10.1152/physrev.00016.2022","url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) have ushered in a new era of reproducible discovery in psychiatric genetics. The field has now identified hundreds of common genetic variants that are associated with mental disorders, and many of them influence more than one disorder. By advancing the understanding of causal biology underlying psychopathology, GWAS results are poised to inform the development of novel therapeutics, stratification of at-risk patients, and perhaps even the revision of top-down classification systems in psychiatry. Here, we provide a concise review of GWAS findings with an emphasis on findings that have elucidated the shared genetic etiology of psychopathology, summarizing insights at three levels of analysis: <i>1</i>) genome-wide architecture; <i>2</i>) networks, pathways, and gene sets; and <i>3</i>) individual variants/genes. Three themes emerge from these efforts. First, all psychiatric phenotypes are heritable, highly polygenic, and influenced by many pleiotropic variants with incomplete penetrance. Second, GWAS results highlight the broad etiological roles of neuronal biology, system-wide effects over localized effects, and early neurodevelopment as a critical period. Third, many loci that are robustly associated with multiple forms of psychopathology harbor genes that are involved in synaptic structure and function. Finally, we conclude our review by discussing the implications that GWAS results hold for the field of psychiatry, as well as expected challenges and future directions in the next stage of psychiatric genetics.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 2","pages":"1645-1665"},"PeriodicalIF":29.9,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9464039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2022-10-06DOI: 10.1152/physrev.00036.2021
Farrah Kheradmand, Yun Zhang, David B Corry
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
慢性阻塞性肺病(COPD)的病理生理学以及先天性免疫细胞在这种疾病中无可争议的作用多年来一直主导着基础研究领域。然而,最近有令人信服的数据表明,适应性免疫细胞也可能导致与慢性阻塞性肺病相关的吸烟者肺部进行性破坏,这引起了人们的极大关注。吸烟者肺部的组织病理学变化可能仅限于大气道或小气道,但肺泡缺失导致的肺气肿仍是其最重要且不可逆转的结果。然而,重要的是,为什么肺气肿会在一部分曾经吸烟的人身上发展,这个问题多年来一直是个谜。在肺气肿肺部发现活化和有组织的三级 T 淋巴细胞和 B 淋巴细胞聚集体,首次提供了适应性免疫细胞可能在慢性阻塞性肺病病理生理学中发挥关键作用的线索。基于这些人类转化研究的发现,肺气肿的实验动物模型被用来确定烟雾暴露启动和协调肺部适应性自反应炎症的机制。这些模型揭示了 T 辅助细胞(Th)1 和 Th17 亚群促进激活先天性免疫细胞的正反馈循环,证实了它们在肺气肿发病机制中的作用。基因研究和基于免疫的发现进一步提供了强有力的证据,证明患有肺气肿的吸烟者会诱发自身免疫。这些新发现为探索慢性阻塞性肺疾病肺部炎症的基本机制提供了一个新的机会,并为开发精准治疗方法以阻止肺部破坏提供了启示。
{"title":"Contribution of adaptive immunity to human COPD and experimental models of emphysema.","authors":"Farrah Kheradmand, Yun Zhang, David B Corry","doi":"10.1152/physrev.00036.2021","DOIUrl":"10.1152/physrev.00036.2021","url":null,"abstract":"<p><p>The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 2","pages":"1059-1093"},"PeriodicalIF":33.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10696504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2022-11-24DOI: 10.1152/physrev.00025.2022
Wolfgang Langhans, Alan G Watts, Alan C Spector
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
{"title":"The elusive cephalic phase insulin response: triggers, mechanisms, and functions.","authors":"Wolfgang Langhans, Alan G Watts, Alan C Spector","doi":"10.1152/physrev.00025.2022","DOIUrl":"10.1152/physrev.00025.2022","url":null,"abstract":"<p><p>The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 2","pages":"1423-1485"},"PeriodicalIF":29.9,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942918/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9614940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1152/physrev.00012.2022
Máire E Doyle, Hasitha U Premathilake, Qin Yao, Caio H Mazucanti, Josephine M Egan
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
{"title":"Physiology of the tongue with emphasis on taste transduction.","authors":"Máire E Doyle, Hasitha U Premathilake, Qin Yao, Caio H Mazucanti, Josephine M Egan","doi":"10.1152/physrev.00012.2022","DOIUrl":"https://doi.org/10.1152/physrev.00012.2022","url":null,"abstract":"<p><p>The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 2","pages":"1193-1246"},"PeriodicalIF":33.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9083947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1152/physrev.00037.2021
Joseph A Taylor, Paul L Greenhaff, David B Bartlett, Thomas A Jackson, Niharika A Duggal, Janet M Lord
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
{"title":"Multisystem physiological perspective of human frailty and its modulation by physical activity.","authors":"Joseph A Taylor, Paul L Greenhaff, David B Bartlett, Thomas A Jackson, Niharika A Duggal, Janet M Lord","doi":"10.1152/physrev.00037.2021","DOIUrl":"https://doi.org/10.1152/physrev.00037.2021","url":null,"abstract":"<p><p>\"Frailty\" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 2","pages":"1137-1191"},"PeriodicalIF":33.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9106531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}