首页 > 最新文献

Physiological reviews最新文献

英文 中文
Navigating the multifaceted intricacies of the Na+-Cl- cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. 驾驭 Na+-Cl- 共转运体的多面复杂性,它是控制水矿物质平衡的高度调节和关键效应器。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-02-08 DOI: 10.1152/physrev.00027.2023
A V Rioux, T R Nsimba-Batomene, S Slimani, N A D Bergeron, M A M Gravel, S V Schreiber, M J Fiola, L Haydock, A P Garneau, P Isenring

The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.

Na+-Cl- 共转运体(NCC;SLC12A3)是一种高度调节的整体膜蛋白,在灵长类动物中已知有 3 种剪接变体。它在肾脏中的主要作用是介导 Na+ 和 Cl- 跨远端曲小管顶端膜的共转运。通过这一作用以及其他离子转运系统的参与,NCC 允许全身循环回收一部分超滤的 Na+、K+、Cl- 和 Mg+,以交换 Ca2+ 和 HCO3-。人体 Na+-Cl- 共转运机制的生理意义体现在服用噻嗪类药物或因遗传性疾病导致 NCC 失活而出现的一些异常现象。本综述的目的是讨论 Na+-Cl- 共转运的分子机制和整体作用,这是我们感兴趣的主要话题。在阅读所提出的叙述时,人们会意识到,无论现在的知识多么精炼,有关这些主题的知识仍将不断进步。
{"title":"Navigating the multifaceted intricacies of the Na<sup>+</sup>-Cl<sup>-</sup> cotransporter, a highly regulated key effector in the control of hydromineral homeostasis.","authors":"A V Rioux, T R Nsimba-Batomene, S Slimani, N A D Bergeron, M A M Gravel, S V Schreiber, M J Fiola, L Haydock, A P Garneau, P Isenring","doi":"10.1152/physrev.00027.2023","DOIUrl":"10.1152/physrev.00027.2023","url":null,"abstract":"<p><p>The Na<sup>+</sup>-Cl<sup>-</sup> cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na<sup>+</sup> and Cl<sup>-</sup> across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>-</sup>, and Mg<sup>+</sup> loads in exchange for Ca<sup>2+</sup> and [Formula: see text]. The physiological relevance of the Na<sup>+</sup>-Cl<sup>-</sup> cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na<sup>+</sup>-Cl<sup>-</sup> cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1147-1204"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological basis for xenotransplantation from genetically modified pigs to humans. 转基因猪向人类异种移植的生理基础:综述。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-22 DOI: 10.1152/physrev.00041.2023
Leigh Peterson, Magdi H Yacoub, David Ayares, Kazuhiko Yamada, Daniel Eisenson, Bartley P Griffith, Muhammad M Mohiuddin, Willard Eyestone, J Craig Venter, Ryszard T Smolenski, Martine Rothblatt

The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.

经过科学家们几十年的共同努力,以分子和细胞生物学为基础的技术(包括基因工程和动物克隆)取得了进步,现在这些技术正被用来提高猪器官异种移植到人体内的适宜性。研究人员利用多基因缺失和人类转基因插入的猪器官,克服了猪与非人灵长类动物(NHP)异种移植中难以克服的免疫学和生理学障碍,延长了猪异种移植的存活时间。这些研究为 Revivicor 公司(Revivicor Inc,弗吉尼亚州布莱克斯堡)设计具有 10 个基因修饰(10 GE)(包括 4 个猪内源基因失活和 6 个人类转基因插入)的基因工程猪提供了依据,目前已在临床前人类异种移植模型中使用脑死亡受体对其心脏和肾脏进行了研究。此外,马里兰大学最近利用这头 10 GE 猪的心脏进行了首两例猪对人心脏异种移植临床试验。虽然这篇综述的重点是心脏和肾脏的异种移植,但来自基因工程猪的多种器官、组织和细胞类型将在未来提供急需的治疗干预。
{"title":"Physiological basis for xenotransplantation from genetically modified pigs to humans.","authors":"Leigh Peterson, Magdi H Yacoub, David Ayares, Kazuhiko Yamada, Daniel Eisenson, Bartley P Griffith, Muhammad M Mohiuddin, Willard Eyestone, J Craig Venter, Ryszard T Smolenski, Martine Rothblatt","doi":"10.1152/physrev.00041.2023","DOIUrl":"10.1152/physrev.00041.2023","url":null,"abstract":"<p><p>The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1409-1459"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140185347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurobiology and systems biology of stress resilience. 压力复原力的神经生物学和系统生物学。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-14 DOI: 10.1152/physrev.00042.2023
Raffael Kalisch, Scott J Russo, Marianne B Müller

Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.

抗压能力是指一些人在面临逆境时仍能保持心理健康,或仅表现出暂时的心理障碍,随后又能迅速恢复的现象。抗压能力研究试图揭示使抗压能力成为可能的因素和机制,并利用其洞察力为有可能出现压力相关功能障碍的人制定预防性干预措施。生物复原力研究一直落后于心理和社会科学研究,但近年来却出现了大幅增长。与此同时,这一领域的研究进展也受到了方法论挑战的阻碍,这些挑战包括寻找合适的操作方法和研究设计、复制研究结果以及建立动物复原力模型。我们将对成人的行为学、神经影像学、神经生物学和系统生物学研究结果进行回顾,并对关键方法进行讨论。我们发现有初步证据表明,基于海马体的模式分离和基于前额叶的认知控制功能可以通过促进对安全的感知,在单一的事件型压力之后防止病态恐惧的发展(如在与恐惧相关的疾病中发现的那样,包括创伤后应激障碍(PTSD)的较简单形式)。基于奖赏系统的对积极强化物的追求和品味似乎可以防止因更严重或更持久的压力(如抑郁症、广泛或合并焦虑症或严重创伤后应激障碍)而导致的焦虑抑郁谱系中更广泛的功能障碍的发展。这些神经系统在应激状态下的功能保持与神经可塑性、免疫调节、肠道微生物组的组成以及肠道屏障和血脑屏障的完整性之间的联系已开始显现。在此基础上,指出了生物干预的途径。
{"title":"Neurobiology and systems biology of stress resilience.","authors":"Raffael Kalisch, Scott J Russo, Marianne B Müller","doi":"10.1152/physrev.00042.2023","DOIUrl":"10.1152/physrev.00042.2023","url":null,"abstract":"<p><p>Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1205-1263"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140120382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best practices for data management and sharing in experimental biomedical research. 生物医学实验研究数据管理与共享的最佳实践。
IF 28.7 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-07 DOI: 10.1152/physrev.00043.2023
Teresa Cunha-Oliveira, John P A Ioannidis, Paulo J Oliveira

Effective data management is crucial for scientific integrity and reproducibility, a cornerstone of scientific progress. Well-organized and well-documented data enable validation and building on results. Data management encompasses activities including organization, documentation, storage, sharing, and preservation. Robust data management establishes credibility, fostering trust within the scientific community and benefiting researchers' careers. In experimental biomedicine, comprehensive data management is vital due to the typically intricate protocols, extensive metadata, and large datasets. Low-throughput experiments, in particular, require careful management to address variations and errors in protocols and raw data quality. Transparent and accountable research practices rely on accurate documentation of procedures, data collection, and analysis methods. Proper data management ensures long-term preservation and accessibility of valuable datasets. Well-managed data can be revisited, contributing to cumulative knowledge and potential new discoveries. Publicly funded research has an added responsibility for transparency, resource allocation, and avoiding redundancy. Meeting funding agency expectations increasingly requires rigorous methodologies, adherence to standards, comprehensive documentation, and widespread sharing of data, code, and other auxiliary resources. This review provides critical insights into raw and processed data, metadata, high-throughput versus low-throughput datasets, a common language for documentation, experimental and reporting guidelines, efficient data management systems, sharing practices, and relevant repositories. We systematically present available resources and optimal practices for wide use by experimental biomedical researchers.

有效的数据管理对于科学完整性和可重复性至关重要,是科学进步的基石。有条理、有据可查的数据有助于验证和巩固成果。数据管理包括组织、记录、存储、共享和保存等活动。健全的数据管理可建立可信度,促进科学界的信任,并有利于研究人员的职业发展。在生物医学实验中,由于通常需要复杂的实验方案、广泛的元数据和庞大的数据集,因此全面的数据管理至关重要。低通量实验尤其需要精心管理,以解决方案和原始数据质量方面的变化和错误。透明、负责的研究实践有赖于对程序、数据收集和分析方法的准确记录。适当的数据管理可确保宝贵数据集的长期保存和可访问性。管理得当的数据可以被重新研究,有助于知识的积累和潜在的新发现。公共资助的研究在透明度、资源分配和避免重复方面负有更多责任。要满足资助机构的期望,越来越需要严格的方法、遵守标准、全面的文档以及广泛的数据、代码和其他辅助资源共享。本综述对原始数据和处理过的数据、元数据、高通量数据集与低通量数据集、文档的通用语言、实验和报告指南、高效的数据管理系统、共享实践以及相关资源库提供了重要的见解。我们系统地介绍了可供生物医学实验研究人员广泛使用的可用资源和最佳实践。
{"title":"Best practices for data management and sharing in experimental biomedical research.","authors":"Teresa Cunha-Oliveira, John P A Ioannidis, Paulo J Oliveira","doi":"10.1152/physrev.00043.2023","DOIUrl":"10.1152/physrev.00043.2023","url":null,"abstract":"<p><p>Effective data management is crucial for scientific integrity and reproducibility, a cornerstone of scientific progress. Well-organized and well-documented data enable validation and building on results. Data management encompasses activities including organization, documentation, storage, sharing, and preservation. Robust data management establishes credibility, fostering trust within the scientific community and benefiting researchers' careers. In experimental biomedicine, comprehensive data management is vital due to the typically intricate protocols, extensive metadata, and large datasets. Low-throughput experiments, in particular, require careful management to address variations and errors in protocols and raw data quality. Transparent and accountable research practices rely on accurate documentation of procedures, data collection, and analysis methods. Proper data management ensures long-term preservation and accessibility of valuable datasets. Well-managed data can be revisited, contributing to cumulative knowledge and potential new discoveries. Publicly funded research has an added responsibility for transparency, resource allocation, and avoiding redundancy. Meeting funding agency expectations increasingly requires rigorous methodologies, adherence to standards, comprehensive documentation, and widespread sharing of data, code, and other auxiliary resources. This review provides critical insights into raw and processed data, metadata, high-throughput versus low-throughput datasets, a common language for documentation, experimental and reporting guidelines, efficient data management systems, sharing practices, and relevant repositories. We systematically present available resources and optimal practices for wide use by experimental biomedical researchers.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1387-1408"},"PeriodicalIF":28.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. 眼球前房技术及其解剖学、光学和免疫学基础。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-01-11 DOI: 10.1152/physrev.00024.2023
Shao-Nian Yang, Yue Shi, Per-Olof Berggren

The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.

眼球前房(ACE)在解剖学、光学和免疫学方面都与众不同。这保证了眼睛即使在遇到炎症等不利因素时,也能在生理环境中感知视觉信息。此外,这还赋予了 ACE 特殊的育儿床虹膜,其中富含血管和神经。ACE 是一个封闭的空间,内含氧气/营养丰富、免疫力高、压力小的环境以及光学透明的介质。因此,除了视觉感知外,ACE 还意外地成为不同身体部位的绝佳移植场所,以及对不同移植物进行无创、纵向和体内显微成像的独特平台。在这些优点的基础上,ACE 技术从原型到传统再到先进版本不断发展。将该技术作为一个多功能生物医学研究平台进行的研究,使人们获得了各种基础知识,并深入了解了各种细胞、组织和器官以及人造生物材料、药物和非生物物质。值得注意的是,该技术将巩膜内移植物在生理和病理条件下的形态特征、器官型特征、发育命运和特定功能的体内动态成像变成了现实。在此,我们回顾了 ACE 技术的解剖学、光学和免疫学基础以及技术细节。此外,我们还讨论了这项技术取得的主要成就和潜在的发展前景。
{"title":"The anterior chamber of the eye technology and its anatomical, optical, and immunological bases.","authors":"Shao-Nian Yang, Yue Shi, Per-Olof Berggren","doi":"10.1152/physrev.00024.2023","DOIUrl":"10.1152/physrev.00024.2023","url":null,"abstract":"<p><p>The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"881-929"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ceramides are fuel gauges on the drive to cardiometabolic disease. 神经酰胺是通往心脏代谢疾病的 "燃料计"。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-02-01 DOI: 10.1152/physrev.00008.2023
Joseph L Wilkerson, Sean M Tatum, William L Holland, Scott A Summers

Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.

神经酰胺是脂肪酸过剩的信号,当细胞的能量需求得到满足、营养储存达到饱和时,神经酰胺就会累积。随着这些鞘脂的累积,它们会改变包括心脏、肝脏、血管、骨骼肌、大脑和肾脏在内的全身细胞的新陈代谢和存活。这些神经酰胺的作用会引起组织功能障碍,而组织功能障碍是糖尿病、冠状动脉疾病、代谢相关性脂肪性肝炎和心力衰竭等心脏代谢性疾病的基础。在此,我们回顾了维持正常生理状态下神经酰胺水平的生物合成和降解途径,并讨论了神经酰胺平衡的丧失是如何导致心脏代谢疾病的。我们重点介绍了感知神经酰胺微小变化的信号节点,这些节点反过来会重新规划细胞代谢并刺激细胞凋亡。最后,我们评估了这些独特脂质作为预测疾病风险的生物标志物以及作为改善疾病的降神经酰胺干预目标的新兴治疗用途。
{"title":"Ceramides are fuel gauges on the drive to cardiometabolic disease.","authors":"Joseph L Wilkerson, Sean M Tatum, William L Holland, Scott A Summers","doi":"10.1152/physrev.00008.2023","DOIUrl":"10.1152/physrev.00008.2023","url":null,"abstract":"<p><p>Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1061-1119"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hormonal control of parturition. 分娩的荷尔蒙控制
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-02-08 DOI: 10.1152/physrev.00019.2023
Emily Hamburg-Shields, Sam Mesiano

Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17β-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.

分娩是一个复杂的生理过程,必须以可靠的方式在适当的妊娠阶段进行,以确保新生儿和母亲的健康。为此,影响妊娠子宫功能的激素,尤其是孕酮(P4)、17ß-雌二醇(E2)、催产素(OT)和前列腺素(PGs)发挥着关键作用。P4 通过核 P4 受体(PR)促进子宫静止,并在妊娠的大部分时间里对分娩起着主要的阻碍作用。P4 阻滞分娩作用的消失与促分娩作用 E2 的增加是导致分娩的激素级联中的关键转变。根据物种和生理环境的不同,P4 可通过各种机制退出。大多数物种的临产都涉及子宫组织内的炎症,尤其是母胎界面的炎症。局部 PGs 和其他炎症介质可能会通过诱导 P4 退出来启动分娩。P4 阻滞的撤出与 E2 作用的增强相协调,从而增强由 OT 和 PGs 介导的子宫收缩信号,促进子宫收缩、宫颈软化和胎膜破裂,即分娩。本综述探讨了了解分娩激素控制的最新研究进展,重点是 P4、E2、PGs、OT、炎性细胞因子和胎盘肽类激素的作用,以及人类分娩的进化生物学和对临床管理的影响。
{"title":"The hormonal control of parturition.","authors":"Emily Hamburg-Shields, Sam Mesiano","doi":"10.1152/physrev.00019.2023","DOIUrl":"10.1152/physrev.00019.2023","url":null,"abstract":"<p><p>Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17β-estradiol (E<sub>2</sub>), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E<sub>2</sub> are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E<sub>2</sub> actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E<sub>2</sub>, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1121-1145"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degenerate Neuronal and Circuit Mechanisms Important for Generating Rhythmic Motor Patterns 生成节律性运动模式的重要退化神经元和电路机制
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-06-13 DOI: 10.1152/physrev.00003.2024
Ronald L Calabrese, Eve Marder
Physiological Reviews, Ahead of Print.
生理学评论》,提前出版。
{"title":"Degenerate Neuronal and Circuit Mechanisms Important for Generating Rhythmic Motor Patterns","authors":"Ronald L Calabrese, Eve Marder","doi":"10.1152/physrev.00003.2024","DOIUrl":"https://doi.org/10.1152/physrev.00003.2024","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"33 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile delivery vehicle for cellular oxygen and fuels, or metabolic sensor? - A review and perspective on the functions of myoglobin 细胞氧气和燃料的多功能输送工具,还是代谢传感器?- 肌红蛋白功能的回顾与展望
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-02 DOI: 10.1152/physrev.00031.2023
Kiran Kumar Adepu, Andriy Anishkin, Sean H. Adams, Sree V Chintapalli
Physiological Reviews, Ahead of Print.
生理学评论》,提前出版。
{"title":"A versatile delivery vehicle for cellular oxygen and fuels, or metabolic sensor? - A review and perspective on the functions of myoglobin","authors":"Kiran Kumar Adepu, Andriy Anishkin, Sean H. Adams, Sree V Chintapalli","doi":"10.1152/physrev.00031.2023","DOIUrl":"https://doi.org/10.1152/physrev.00031.2023","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"35 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion 控制胰岛素和胰高血糖素分泌的神经元葡萄糖传感机制和回路
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-25 DOI: 10.1152/physrev.00038.2023
Bernard Thorens
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle or glucose production by the liver. The balance between the secretion of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet b-cells and a-cells can sense variations in glycemia and respond by an appropriate secretory response to restore euglycemia. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and, thus, a vital interest in ensuring that glycemic levels never fall below ~5mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cells secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we will present the autonomic innervation of the pancreatic islets; the mechanisms of neurons activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow to integrate specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function. Finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
葡萄糖稳态主要受胰岛激素胰岛素和胰高血糖素的控制,这两种激素分别刺激肝脏、脂肪和肌肉摄取和利用葡萄糖,或刺激肝脏产生葡萄糖。这些激素分泌之间的平衡受血糖浓度的控制。事实上,胰岛 b 细胞和 a 细胞能够感知血糖的变化,并通过适当的分泌反应来恢复优血症。然而,这些细胞的分泌活动还受到新陈代谢、荷尔蒙和神经元等多种额外信号的影响,这些信号共同作用,确保在人的一生中完美地控制血糖。中枢神经系统(CNS)几乎绝对需要葡萄糖作为新陈代谢的能量来源,因此,确保血糖水平永远不低于约 5 毫摩尔对中枢神经系统来说至关重要。这些神经元通过多种方式控制胰岛细胞的分泌活动:通过自律神经系统的两个分支、通过下丘脑-垂体-肾上腺轴以及通过在垂体后叶水平分泌血液中的血管加压素(AVP)。在这里,我们将介绍胰岛的自主神经支配;葡萄糖浓度升高或降低激活神经元的机制;目前的病毒追踪、化学遗传和光遗传技术如何将特定的葡萄糖传感神经元整合到控制胰腺内分泌功能的神经元回路中。最后,小鼠基因筛选如何解开控制低血糖反应的下丘脑机制的多样性。
{"title":"Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion","authors":"Bernard Thorens","doi":"10.1152/physrev.00038.2023","DOIUrl":"https://doi.org/10.1152/physrev.00038.2023","url":null,"abstract":"Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle or glucose production by the liver. The balance between the secretion of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet b-cells and a-cells can sense variations in glycemia and respond by an appropriate secretory response to restore euglycemia. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and, thus, a vital interest in ensuring that glycemic levels never fall below ~5mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cells secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we will present the autonomic innervation of the pancreatic islets; the mechanisms of neurons activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow to integrate specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function. Finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"23 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1