Pub Date : 2025-10-20eCollection Date: 2025-10-01DOI: 10.1002/pld3.70111
Zhihua Hua
RNA editing and maturation are critical regulatory mechanisms in plant organelles, yet their quantification remains technically challenging. Traditional Sanger sequencing lacks sensitivity and reproducibility, whereas advanced next-generation sequencing (NGS) approaches, such as rRNA-depleted long non-coding (lnc) RNA-seq or targeted amplicon-seq, involve high costs, complex workflows, and limited accessibility. To address these limitations, I developed a rapid and cost-effective long-read sequencing approach, termed Target-Indexed-PCR (TIP) sequencing, for digital quantification of RNA editing and intron retention events in targeted chloroplast transcripts. This method combines multiplexed high-fidelity PCR amplification with Oxford Nanopore sequencing and custom in-house Perl and Python scripts for streamlined data processing, including barcode-based demultiplexing, strand reorientation, alignment to a pseudo-genome, manual editing-site inspection, and splicing variant identification. As a proof of concept, TIP sequencing was applied to ndhB and ndhD transcripts, two chloroplast NAD(P)H dehydrogenase genes with the highest number of known editing sites in Arabidopsis thaliana. These transcripts were analyzed both in an inducible CRISPR interference (iCRISPRi) system targeting MORF2, a key RNA-editing factor, and in MORF2-YFP transgenic lines with either overexpression or co-suppression silencing. My findings revealed dose- and development-dependent impacts of MORF2 on C-to-U editing efficiency. Moreover, I identified an accumulation of intron-retaining ndhB transcripts, specifically in Dex-treated iCRISPRi lines and in both MORF2-YFP overexpression and silencing rosette leaves, indicating impaired chloroplast splicing functions when MORF2 expression is perturbed beyond an as-yet-undefined threshold. The platform achieves single-molecule resolution, robust reproducibility, and high read coverage across biological replicates at a fraction of the cost of lncRNA-seq. Collectively, this study establishes TIP sequencing as a versatile, scalable, and affordable tool for targeted post-transcriptional analysis in plant organelles and expands our understanding of MORF2's role in chloroplast RNA maturation. By overcoming key limitations of existing approaches, TIP sequencing enables routine, site-specific quantification of post-transcriptional regulation in organelles, including RNA editing and splicing, making it broadly accessible to researchers studying plastid biology, stress responses, and organelle-nucleus communication.
{"title":"Rapid and Cost-Effective Digital Quantification of RNA Editing and Maturation in Organelle Transcripts by Oxford Nanopore Target-Indexed-PCR (TIP) Sequencing.","authors":"Zhihua Hua","doi":"10.1002/pld3.70111","DOIUrl":"10.1002/pld3.70111","url":null,"abstract":"<p><p>RNA editing and maturation are critical regulatory mechanisms in plant organelles, yet their quantification remains technically challenging. Traditional Sanger sequencing lacks sensitivity and reproducibility, whereas advanced next-generation sequencing (NGS) approaches, such as rRNA-depleted long non-coding (lnc) RNA-seq or targeted amplicon-seq, involve high costs, complex workflows, and limited accessibility. To address these limitations, I developed a rapid and cost-effective long-read sequencing approach, termed Target-Indexed-PCR (TIP) sequencing, for digital quantification of RNA editing and intron retention events in targeted chloroplast transcripts. This method combines multiplexed high-fidelity PCR amplification with Oxford Nanopore sequencing and custom in-house Perl and Python scripts for streamlined data processing, including barcode-based demultiplexing, strand reorientation, alignment to a pseudo-genome, manual editing-site inspection, and splicing variant identification. As a proof of concept, TIP sequencing was applied to <i>ndhB</i> and <i>ndhD</i> transcripts, two chloroplast <i>NAD</i>(<i>P</i>)<i>H dehydrogenase</i> genes with the highest number of known editing sites in <i>Arabidopsis thaliana</i>. These transcripts were analyzed both in an inducible CRISPR interference (iCRISPRi) system targeting <i>MORF2</i>, a key RNA-editing factor, and in <i>MORF2-YFP</i> transgenic lines with either overexpression or co-suppression silencing. My findings revealed dose- and development-dependent impacts of <i>MORF2</i> on C-to-U editing efficiency. Moreover, I identified an accumulation of intron-retaining <i>ndhB</i> transcripts, specifically in Dex-treated iCRISPRi lines and in both <i>MORF2-YFP</i> overexpression and silencing rosette leaves, indicating impaired chloroplast splicing functions when <i>MORF2</i> expression is perturbed beyond an as-yet-undefined threshold. The platform achieves single-molecule resolution, robust reproducibility, and high read coverage across biological replicates at a fraction of the cost of lncRNA-seq. Collectively, this study establishes TIP sequencing as a versatile, scalable, and affordable tool for targeted post-transcriptional analysis in plant organelles and expands our understanding of <i>MORF2</i>'s role in chloroplast RNA maturation. By overcoming key limitations of existing approaches, TIP sequencing enables routine, site-specific quantification of post-transcriptional regulation in organelles, including RNA editing and splicing, making it broadly accessible to researchers studying plastid biology, stress responses, and organelle-nucleus communication.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 10","pages":"e70111"},"PeriodicalIF":2.3,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145346745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-20eCollection Date: 2025-10-01DOI: 10.1002/pld3.70110
Yasmine Jnaid, Rory Burke, Inge De Clercq, Joanna Kacprzyk, Paul F McCabe
Programmed cell death (PCD) mediates plant development and environmental interactions. Photosynthesis-derived singlet oxygen (1O2) is one of key reactive oxygen species (ROS) implicated in acclimation and PCD responses to environmental stress conditions. Using Arabidopsis thaliana cell suspension culture system, we characterized the PCD induced by Rose Bengal (RB), a photosensitizer generating 1O₂ upon light exposure. Obtained results reiterated that RB-induced PCD is light and chloroplast dependent. Further, we demonstrate that PCD induced by RB involves calcium signaling and mitochondria, thus sharing common features with other forms of regulated cell death in plants. The PCD induced by RB was associated with early transcriptional reprogramming, involving switching off the primary metabolism and activation of stress response and cell death related pathways (e.g., oxidative stress, hypoxia, immunity, and salicylic acid). The constructed gene regulatory network featured 1O2-responsive genes and suggested involvement of transcription factor ANAC102 in retrograde regulation of RB-induced PCD. Interestingly, treatment with RB also induced light independent toxicity, showing features of uncontrolled, necrotic cell death. Presented findings highlight RB as a valuable tool for studying 1O2-induced PCD that may advance future work on chloroplast-mediated oxidative stress responses and enhancing plant resilience to climate change-related stressors through targeted modulation of ROS pathways.
{"title":"Rose Bengal Is a Precise Pharmacological Tool Triggering Chloroplast-Driven Programmed Cell Death in Plants, Dependent on Calcium and Mitochondria, and Associated With Early Transcriptional Reprogramming.","authors":"Yasmine Jnaid, Rory Burke, Inge De Clercq, Joanna Kacprzyk, Paul F McCabe","doi":"10.1002/pld3.70110","DOIUrl":"10.1002/pld3.70110","url":null,"abstract":"<p><p>Programmed cell death (PCD) mediates plant development and environmental interactions. Photosynthesis-derived singlet oxygen (<sup>1</sup>O<sub>2</sub>) is one of key reactive oxygen species (ROS) implicated in acclimation and PCD responses to environmental stress conditions. Using <i>Arabidopsis thaliana</i> cell suspension culture system, we characterized the PCD induced by Rose Bengal (RB), a photosensitizer generating <sup>1</sup>O₂ upon light exposure. Obtained results reiterated that RB-induced PCD is light and chloroplast dependent. Further, we demonstrate that PCD induced by RB involves calcium signaling and mitochondria, thus sharing common features with other forms of regulated cell death in plants. The PCD induced by RB was associated with early transcriptional reprogramming, involving switching off the primary metabolism and activation of stress response and cell death related pathways (e.g., oxidative stress, hypoxia, immunity, and salicylic acid). The constructed gene regulatory network featured <sup>1</sup>O<sub>2</sub>-responsive genes and suggested involvement of transcription factor <i>ANAC102</i> in retrograde regulation of RB-induced PCD. Interestingly, treatment with RB also induced light independent toxicity, showing features of uncontrolled, necrotic cell death. Presented findings highlight RB as a valuable tool for studying <sup>1</sup>O<sub>2</sub>-induced PCD that may advance future work on chloroplast-mediated oxidative stress responses and enhancing plant resilience to climate change-related stressors through targeted modulation of ROS pathways.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 10","pages":"e70110"},"PeriodicalIF":2.3,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12536220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145346752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Powdery mildew (PM), mainly caused by Podosphaera xanthii, is a severe destructive disease that threatens the production of cucurbit crops globally. Heterologous transformation has shown that the CmSGT1 gene (suppressor of the G2 allele of skp1) improved PM resistance in tobacco. However, the function of the gene in pumpkins (Cucurbita moschata) is largely unknown. Herein, transient CmSGT1 overexpression in pumpkin cotyledons inhibited the spore germination and mycelia growth of P. xanthii by inducing an increase in salicylic acid (SA) content, and exogenous SA intensified the inhibitory effect of the gene on the growth of P. xanthii. The β-glucuronidase activity of cotyledons transformed with the CmSGT1 promoter was induced by PM and signaling molecules (gibberellic acid, ethephon, SA, abscisic acid, and methyl jasmonate). The yeast one-hybrid assay verified that transcription factor CmWRKY21, CmWRKY31, and CmWRKY75 proteins interact with the CmSGT1 promoter. Transactivation analysis revealed that CmWRKY21 and CmWRKY31 significantly triggered the expression of GUS driven by the CmSGT1 promoter under PM. Furthermore, transient co-overexpression of CmWRKY21/CmWRKY31 and CmSGT1 enhanced the inhibitory effect on the growth of P. xanthii. In conclusion, the CmSGT1 gene is a PM resistance gene in pumpkin and is transcriptionally regulated by CmWRKY21 and CmWRKY31. Our study provides a reference for resistance breeding of pumpkins.
{"title":"Cm<i>SGT1</i>, Transcriptionally Regulated by CmWRKY21 and CmWRKY31, Improves Powdery Mildew Resistance in <i>Cucurbita moschata</i>.","authors":"Wei-Li Guo, Jin-Peng Zhao, Xue-Jin Chen, Bi-Hua Chen, Qing-Fei Li, Xin-Zheng Li","doi":"10.1002/pld3.70112","DOIUrl":"10.1002/pld3.70112","url":null,"abstract":"<p><p>Powdery mildew (PM), mainly caused by <i>Podosphaera xanthii</i>, is a severe destructive disease that threatens the production of cucurbit crops globally. Heterologous transformation has shown that the <i>CmSGT1</i> gene (suppressor of the G2 allele of skp1) improved PM resistance in tobacco. However, the function of the gene in pumpkins (<i>Cucurbita moschata</i>) is largely unknown. Herein, transient <i>CmSGT1</i> overexpression in pumpkin cotyledons inhibited the spore germination and mycelia growth of <i>P. xanthii</i> by inducing an increase in salicylic acid (SA) content, and exogenous SA intensified the inhibitory effect of the gene on the growth of <i>P. xanthii</i>. The β-glucuronidase activity of cotyledons transformed with the <i>CmSGT1</i> promoter was induced by PM and signaling molecules (gibberellic acid, ethephon, SA, abscisic acid, and methyl jasmonate). The yeast one-hybrid assay verified that transcription factor CmWRKY21, CmWRKY31, and CmWRKY75 proteins interact with the <i>CmSGT1</i> promoter. Transactivation analysis revealed that CmWRKY21 and CmWRKY31 significantly triggered the expression of <i>GUS</i> driven by the <i>CmSGT1</i> promoter under PM. Furthermore, transient co-overexpression of <i>CmWRKY21</i>/<i>CmWRKY31</i> and <i>CmSGT1</i> enhanced the inhibitory effect on the growth of <i>P. xanthii</i>. In conclusion, the <i>CmSGT1</i> gene is a PM resistance gene in pumpkin and is transcriptionally regulated by CmWRKY21 and CmWRKY31. Our study provides a reference for resistance breeding of pumpkins.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 10","pages":"e70112"},"PeriodicalIF":2.3,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145346778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02eCollection Date: 2025-10-01DOI: 10.1002/pld3.70104
Žaklina Pavlović, Miriam Payá-Milans, Marzena Nowakowska, Matthew L Huff, Kimberly D Gwinn, Robert N Trigiano, Marcin Nowicki
Flowering dogwood (Cornus florida L.) and Asian dogwood (Cornus kousa F. Buerger ex Hance) are popular deciduous ornamental trees native to a wide range of the eastern and southeastern United States and East Asia, respectively. Anthocyanin pigments enhance desirable pink or dark red colored bracts in dogwoods. Although anthocyanin biosynthesis is one of the best-studied biological processes in nature, genomic and genetic resources to understand the molecular regulation of its synthesis in dogwoods are still lacking. Two classes of genes control anthocyanin production; both structural genes and MYB transcription factors may function as positive or negative regulators of anthocyanin biosynthesis. To reveal the molecular mechanisms that govern color production in ornamental dogwoods, mature bracts of three cultivars of C. florida (white bracts: "Cloud Nine"; red bracts: "Cherokee Brave," and "Cherokee Chief") and two cultivars of C. kousa (light green bracts: "Greensleeves" and midtone pink bracts "Rosy Teacups") were sampled when color was maximally visible. Differential gene expression analysis of the RNAseq data identified 1156 differentially expressed genes in C. florida and 1396 in C. kousa. Phylogenetic analysis with functional orthologues in other plants grouped the candidate R2R3-MYB identified in this study into two distinct subgroups. CfMYB2, CfMYB3, and CkMYB2 belong to Subgroup 4, whereas CfMYB1 80 and CkMYB1 clustered in Subgroup 5. Genes in the former group repress anthocyanin and proanthocyanidin synthesis in flowering and Asian dogwoods, whereas genes in the latter increase it. Our study contributes to understanding processes behind anthocyanin production and lays the foundation for the future development of molecular markers for faster development of desirable red-bracted dogwoods.
开花茱萸(Cornus florida L.)和亚洲茱萸(Cornus kousa F. Buerger ex Hance)是流行的落叶观赏树木,分别原产于美国东部和东南部以及东亚的广泛地区。花青素增强了山茱萸可取的粉红色或深红色苞片。虽然花青素的生物合成是自然界中研究最多的生物过程之一,但了解其在山茱萸中合成的分子调控的基因组和遗传资源仍然缺乏。两类基因控制花青素的产生;结构基因和MYB转录因子都可能是花青素生物合成的正调控因子或负调控因子。为了揭示支配观赏山茱萸颜色产生的分子机制,我们对三种佛罗里达山茱萸的成熟苞片(白色苞片:“Cloud Nine”;红色苞片:“Cherokee Brave”和“Cherokee Chief”)和两种库萨山茱萸的成熟苞片(浅绿色苞片:“Greensleeves”和中粉色苞片“Rosy Teacups”)在颜色最明显的时候进行了采样。RNAseq数据的差异基因表达分析鉴定出佛罗里达C.的1156个差异表达基因和库萨C.的1396个差异表达基因。系统发育分析与其他植物的功能同源物将本研究中鉴定的候选R2R3-MYB分为两个不同的亚群。CfMYB2、CfMYB3和CkMYB2属于亚群4,而CfMYB1 80和CkMYB1属于亚群5。前一组基因抑制开花和亚洲山茱萸花青素和原花青素的合成,而后一组基因则增加花青素和原花青素的合成。我们的研究有助于了解花青素产生的过程,为未来开发分子标记奠定基础,以更快地开发出理想的红苞山茱萸。
{"title":"Genetic Regulation of Anthocyanin Biosynthesis in <i>Cornus</i> Species: The Roles of R2R3-MYB Transcription Factors.","authors":"Žaklina Pavlović, Miriam Payá-Milans, Marzena Nowakowska, Matthew L Huff, Kimberly D Gwinn, Robert N Trigiano, Marcin Nowicki","doi":"10.1002/pld3.70104","DOIUrl":"10.1002/pld3.70104","url":null,"abstract":"<p><p>Flowering dogwood (<i>Cornus florida</i> L.) and Asian dogwood (<i>Cornus kousa</i> F. Buerger ex Hance) are popular deciduous ornamental trees native to a wide range of the eastern and southeastern United States and East Asia, respectively. Anthocyanin pigments enhance desirable pink or dark red colored bracts in dogwoods. Although anthocyanin biosynthesis is one of the best-studied biological processes in nature, genomic and genetic resources to understand the molecular regulation of its synthesis in dogwoods are still lacking. Two classes of genes control anthocyanin production; both structural genes and MYB transcription factors may function as positive or negative regulators of anthocyanin biosynthesis. To reveal the molecular mechanisms that govern color production in ornamental dogwoods, mature bracts of three cultivars of <i>C. florida</i> (white bracts: \"Cloud Nine\"; red bracts: \"Cherokee Brave,\" and \"Cherokee Chief\") and two cultivars of <i>C. kousa</i> (light green bracts: \"Greensleeves\" and midtone pink bracts \"Rosy Teacups\") were sampled when color was maximally visible. Differential gene expression analysis of the RNAseq data identified 1156 differentially expressed genes in <i>C. florida</i> and 1396 in <i>C. kousa</i>. Phylogenetic analysis with functional orthologues in other plants grouped the candidate R2R3-MYB identified in this study into two distinct subgroups. <i>CfMYB2</i>, <i>CfMYB3</i>, and <i>CkMYB</i>2 belong to Subgroup 4, whereas <i>CfMYB1 80</i> and <i>CkMYB1</i> clustered in Subgroup 5. Genes in the former group repress anthocyanin and proanthocyanidin synthesis in flowering and Asian dogwoods, whereas genes in the latter increase it. Our study contributes to understanding processes behind anthocyanin production and lays the foundation for the future development of molecular markers for faster development of desirable red-bracted dogwoods.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 10","pages":"e70104"},"PeriodicalIF":2.3,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145233148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02eCollection Date: 2025-10-01DOI: 10.1002/pld3.70109
Shuang Li, Jiankuo Du
Davidia involucrata Baill. is a species that thrives in warm, humid climates with consistently moist soil conditions. With rising global temperatures and an increasing frequency of droughts, the natural habitat of Davidia involucrata Baill. is facing severe threats. In-depth investigation of the molecular mechanisms underlying Davidia involucrata Baill.'s response to drought stress is crucial for the conservation of this rare species and the enhancement of its environmental adaptability. This study systematically analyzed the drought stress response of Davidia involucrata Baill. under varying light conditions through transcriptome data analysis. The results showed that under different light conditions, Davidia involucrata Baill. responded to drought stress by regulating its internal osmotic balance via the "response to mannitol" pathway. Notably, the molecular mechanisms by which Davidia involucrata Baill. responds to drought stress vary significantly under different light conditions. Compared with high light intensity, Davidia involucrata Baill. under shaded conditions responded to drought stress by upregulating glycosyltransferase-related pathways. In addition, three soil drought-related pathway genes (SDRPGs) (Dinv08247, Dinv34952, and Dinv00865) involved in the regulation of drought stress in Davidia involucrata Baill. were identified, and both ABA and SA were found to influence their expression. As a key environmental factor, air humidification may enhance the drought stress adaptability of Davidia involucrata Baill. by modulating ABA biosynthesis. The SDRPGs and signaling pathways identified in this study may serve as important candidate targets, providing theoretical guidance and scientific reference for the genetic improvement of drought resistance in Davidia involucrata Baill. and the long-term conservation of rare plant resources.
{"title":"A Study on the Response Mechanism of <i>Davidia involucrata</i> Baill. to Drought Stress Based on Transcriptomic Analysis.","authors":"Shuang Li, Jiankuo Du","doi":"10.1002/pld3.70109","DOIUrl":"10.1002/pld3.70109","url":null,"abstract":"<p><p><i>Davidia involucrata</i> Baill. is a species that thrives in warm, humid climates with consistently moist soil conditions. With rising global temperatures and an increasing frequency of droughts, the natural habitat of <i>Davidia involucrata</i> Baill. is facing severe threats. In-depth investigation of the molecular mechanisms underlying <i>Davidia involucrata</i> Baill.'s response to drought stress is crucial for the conservation of this rare species and the enhancement of its environmental adaptability. This study systematically analyzed the drought stress response of <i>Davidia involucrata</i> Baill. under varying light conditions through transcriptome data analysis. The results showed that under different light conditions, <i>Davidia involucrata</i> Baill. responded to drought stress by regulating its internal osmotic balance via the \"response to mannitol\" pathway. Notably, the molecular mechanisms by which <i>Davidia involucrata</i> Baill. responds to drought stress vary significantly under different light conditions. Compared with high light intensity, <i>Davidia involucrata</i> Baill. under shaded conditions responded to drought stress by upregulating glycosyltransferase-related pathways. In addition, three soil drought-related pathway genes (SDRPGs) (<i>Dinv08247</i>, <i>Dinv34952</i>, and <i>Dinv00865</i>) involved in the regulation of drought stress in <i>Davidia involucrata</i> Baill. were identified, and both ABA and SA were found to influence their expression. As a key environmental factor, air humidification may enhance the drought stress adaptability of <i>Davidia involucrata</i> Baill. by modulating ABA biosynthesis. The SDRPGs and signaling pathways identified in this study may serve as important candidate targets, providing theoretical guidance and scientific reference for the genetic improvement of drought resistance in <i>Davidia involucrata</i> Baill. and the long-term conservation of rare plant resources.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 10","pages":"e70109"},"PeriodicalIF":2.3,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145233154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-26eCollection Date: 2025-09-01DOI: 10.1002/pld3.70093
Chae-Min Lee, Seung Yong Shin, Su-Jin Park, Ji-Sun Park, Changsoo Kim, Hyun-Soon Kim, Hyo-Jun Lee
Anthocyanins are pigments that contribute to plant defense and adaptation to environmental stresses. Given their antioxidant properties and positive impacts on human health, enhancing anthocyanin biosynthesis in plants holds significant economic importance. In potato, several genotypes produce a high amount of anthocyanins, but the molecular mechanisms underlying the genotypic variation of anthocyanin content remain poorly understood. Here, key genes that may determine the genotype-dependent capacity for anthocyanin biosynthesis were analyzed. Anthocyanin content in tubers from five genotypes was measured, and Heimeiren and Desiree, exhibiting high and low anthocyanin content, respectively, were selected. We were unable to identify any evidence of differing activity in anthocyanin biosynthesis enzymes based on single amino acid polymorphism analysis between the two genotypes. However, transcriptome sequencing coupled with prediction of gene function identified 27 candidate genes showing different expression levels in tubers of these genotypes. We additionally verified expression patterns of these genes and found that four genes encoding flavanone 3-hydroxylase, flavonoid 3',5'-hydroxylase, anthocyanin synthase (ANS), and anthocyanin O-methyltransferase (AOMT) were strong candidates for high accumulation of anthocyanins in Heimeiren. Particularly, ANS and AOMT are strong candidates increasing anthocyanin content in the tuber flesh. These results imply that genotype-dependent variations of anthocyanin biosynthesis may be due to difference of gene expression, but not enzymatic activities. Our study suggests key anthocyanin biosynthesis genes showing different expression levels in high- and low-anthocyanin genotypes, offering potential for the metabolic engineering of potatoes to increase anthocyanin content.
{"title":"Analysis of Genotypic Variations in the Anthocyanin Biosynthetic Pathway in Potatoes.","authors":"Chae-Min Lee, Seung Yong Shin, Su-Jin Park, Ji-Sun Park, Changsoo Kim, Hyun-Soon Kim, Hyo-Jun Lee","doi":"10.1002/pld3.70093","DOIUrl":"10.1002/pld3.70093","url":null,"abstract":"<p><p>Anthocyanins are pigments that contribute to plant defense and adaptation to environmental stresses. Given their antioxidant properties and positive impacts on human health, enhancing anthocyanin biosynthesis in plants holds significant economic importance. In potato, several genotypes produce a high amount of anthocyanins, but the molecular mechanisms underlying the genotypic variation of anthocyanin content remain poorly understood. Here, key genes that may determine the genotype-dependent capacity for anthocyanin biosynthesis were analyzed. Anthocyanin content in tubers from five genotypes was measured, and Heimeiren and Desiree, exhibiting high and low anthocyanin content, respectively, were selected. We were unable to identify any evidence of differing activity in anthocyanin biosynthesis enzymes based on single amino acid polymorphism analysis between the two genotypes. However, transcriptome sequencing coupled with prediction of gene function identified 27 candidate genes showing different expression levels in tubers of these genotypes. We additionally verified expression patterns of these genes and found that four genes encoding flavanone 3-hydroxylase, flavonoid 3',5'-hydroxylase, anthocyanin synthase (ANS), and anthocyanin O-methyltransferase (AOMT) were strong candidates for high accumulation of anthocyanins in Heimeiren. Particularly, ANS and AOMT are strong candidates increasing anthocyanin content in the tuber flesh. These results imply that genotype-dependent variations of anthocyanin biosynthesis may be due to difference of gene expression, but not enzymatic activities. Our study suggests key anthocyanin biosynthesis genes showing different expression levels in high- and low-anthocyanin genotypes, offering potential for the metabolic engineering of potatoes to increase anthocyanin content.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70093"},"PeriodicalIF":2.3,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145186411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23eCollection Date: 2025-09-01DOI: 10.1002/pld3.70107
Geoffrey M C Cobb, Johanna Krahmer, Ganesh M Nawkar, Alessandra Boccaccini, Sandi Paulišić, Christian Fankhauser
Phototropic bending of plants towards a light source allows them to position their photosynthetic tissues to optimize light capture. In light-grown (de-etiolated) Arabidopsis seedlings, phototropic bending of the hypocotyl is inhibited by light with a high red:far-red ratio (HRFR) and high levels of blue light (HBL). This occurs via activation of the phytochrome B (phyB) and cryptochrome 1 (cry1) photoreceptor signaling pathways. Both phyB and cry1 act upstream of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors, which are required for hypocotyl bending in light-grown seedlings. Presently, it is not known whether other pathways are involved in the inhibition of PIF-mediated phototropism in light-grown seedlings. To address this, we conducted a screen to identify mutants with increased phototropic bending relative to wild type in HRFR + HBL conditions. Through this screen, we identified EARLY FLOWERING 3 (ELF3), a member of the Evening Complex (EC), as a key inhibitor of phototropic bending in green seedlings. We show that both ELF3 and LUX, another component of the EC, inhibit phototropic bending upstream of PIF4/PIF5. Furthermore, we show that phototropic bending in Arabidopsis seedlings is subject to circadian regulation in an ELF3-dependent manner. Finally, we provide evidence that ELF3 in the grass Brachypodium distachyon also affects phototropism but in an opposite way than in Arabidopsis.
{"title":"Early Flowering 3 (ELF3) Inhibits Hypocotyl Phototropism in Light-Grown <i>Arabidopsis</i> Seedlings.","authors":"Geoffrey M C Cobb, Johanna Krahmer, Ganesh M Nawkar, Alessandra Boccaccini, Sandi Paulišić, Christian Fankhauser","doi":"10.1002/pld3.70107","DOIUrl":"10.1002/pld3.70107","url":null,"abstract":"<p><p>Phototropic bending of plants towards a light source allows them to position their photosynthetic tissues to optimize light capture. In light-grown (de-etiolated) <i>Arabidopsis</i> seedlings, phototropic bending of the hypocotyl is inhibited by light with a high red:far-red ratio (HRFR) and high levels of blue light (HBL). This occurs via activation of the phytochrome B (phyB) and cryptochrome 1 (cry1) photoreceptor signaling pathways. Both phyB and cry1 act upstream of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors, which are required for hypocotyl bending in light-grown seedlings. Presently, it is not known whether other pathways are involved in the inhibition of PIF-mediated phototropism in light-grown seedlings. To address this, we conducted a screen to identify mutants with increased phototropic bending relative to wild type in HRFR + HBL conditions. Through this screen, we identified EARLY FLOWERING 3 (ELF3), a member of the Evening Complex (EC), as a key inhibitor of phototropic bending in green seedlings. We show that both ELF3 and LUX, another component of the EC, inhibit phototropic bending upstream of PIF4/PIF5. Furthermore, we show that phototropic bending in <i>Arabidopsis</i> seedlings is subject to circadian regulation in an ELF3-dependent manner. Finally, we provide evidence that ELF3 in the grass <i>Brachypodium distachyon</i> also affects phototropism but in an opposite way than in <i>Arabidopsis</i>.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70107"},"PeriodicalIF":2.3,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145138429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-19eCollection Date: 2025-09-01DOI: 10.1002/pld3.70108
Mohamad Al Bolbol, Cecilia Costigliolo-Rojas, Evelyne Costes, David Alabadί, Fernando Andrés
In apple (Malus domestica), flowering is repressed by the phytohormone gibberellin (GA) and high temperatures (> 27°C), but the molecular mechanisms underlying this repression remain unknown. In Arabidopsis thaliana (Arabidopsis), GA and temperature signaling converge on DELLA protein regulation, with both factors promoting DELLA degradation through independent 26S proteasome-mediated pathways. Here, we tested whether high-temperature-induced DELLA degradation is conserved in apple. Using the heterologous systems Arabidopsis and Nicotiana benthamiana, we characterized the function of the apple DELLA protein DELLA REPRESSOR OF ga1-3 (MdRGL1a) and found that high temperatures promote its degradation via a 26S proteasome-dependent mechanism. Additionally, MdRGL1a interacts with apple orthologs of Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF phyA-105 2 (SPA2), components of an E3 ubiquitin ligase complex that mediates protein ubiquitination and degradation. These findings suggest a conserved mechanism of temperature-induced DELLA degradation between apple and Arabidopsis. The degradation of MdRGL1a may underlie flowering suppression in apple under high temperatures, providing molecular insights that could aid in developing strategies to stabilize apple and other crop production in the face of climate change.
在苹果(Malus domestica)中,开花受到植物激素赤霉素(GA)和高温(bbb27°C)的抑制,但这种抑制的分子机制尚不清楚。在拟南芥(Arabidopsis thaliana,简称Arabidopsis)中,GA和温度信号汇聚于DELLA蛋白调控上,这两个因素通过独立的26S蛋白酶体介导途径促进DELLA降解。在这里,我们测试了高温诱导的DELLA降解在苹果中是否守恒。利用拟南芥和拟南芥的异种系统,研究了苹果DELLA蛋白DELLA REPRESSOR of ga1-3 (MdRGL1a)的功能,发现高温通过26S蛋白酶体依赖机制促进其降解。此外,MdRGL1a与拟南芥的苹果同源基因COP1和SPA2相互作用,后者是介导蛋白质泛素化和降解的E3泛素连接酶复合物的组分。这些发现提示了苹果和拟南芥之间温度诱导DELLA降解的保守机制。MdRGL1a的降解可能是高温下苹果开花抑制的基础,为在气候变化下稳定苹果和其他作物生产提供了分子见解。
{"title":"Apple DELLA Is Degraded Under Warm Temperature Conditions in <i>Nicotiana benthamiana</i> Leaves Through a COP1-Dependent Mechanism.","authors":"Mohamad Al Bolbol, Cecilia Costigliolo-Rojas, Evelyne Costes, David Alabadί, Fernando Andrés","doi":"10.1002/pld3.70108","DOIUrl":"10.1002/pld3.70108","url":null,"abstract":"<p><p>In apple (<i>Malus domestica</i>), flowering is repressed by the phytohormone gibberellin (GA) and high temperatures (> 27°C), but the molecular mechanisms underlying this repression remain unknown. In <i>Arabidopsis thaliana</i> (Arabidopsis), GA and temperature signaling converge on DELLA protein regulation, with both factors promoting DELLA degradation through independent 26S proteasome-mediated pathways. Here, we tested whether high-temperature-induced DELLA degradation is conserved in apple. Using the heterologous systems Arabidopsis and <i>Nicotiana benthamiana</i>, we characterized the function of the apple DELLA protein DELLA REPRESSOR OF ga1-3 (MdRGL1a) and found that high temperatures promote its degradation via a 26S proteasome-dependent mechanism. Additionally, MdRGL1a interacts with apple orthologs of Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF phyA-105 2 (SPA2), components of an E3 ubiquitin ligase complex that mediates protein ubiquitination and degradation. These findings suggest a conserved mechanism of temperature-induced DELLA degradation between apple and Arabidopsis. The degradation of MdRGL1a may underlie flowering suppression in apple under high temperatures, providing molecular insights that could aid in developing strategies to stabilize apple and other crop production in the face of climate change.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70108"},"PeriodicalIF":2.3,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145114004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant diseases caused by pathogenic microorganisms result in significant damage to agriculture. Lactic acid bacteria (LAB), in particular strains of Lactiplantibacillus plantarum (L. plantarum), are used as one of the biocontrol methods against plant pathogenic bacteria due to high antagonistic activity associated with their metabolic potential. We have investigated the influence of nutrient medium components (various carbon and nitrogen sources) and cultivation conditions (temperature, duration, and pH) of L. plantarum strains on the level of their antagonistic activity against the test strains of plant pathogenic bacteria. The antimicrobial activity of LAB supernatants was maximal in the presence of 3% (30 g/L) sucrose as the main carbon source and 1% (10 g/L) tyrosine as the main nitrogen source in the nutrient medium against all investigated test strains of PPB. However, the use of such a carbon source as galactose or arabinose led to a decrease or even absence of antimicrobial properties of LAB against phytopathogenic bacteria. The optimal conditions for cultivation of lactobacilli were determined: cultivation temperature +30 ± 1°C, pH 7.8, and duration 72 h. Strains of L. plantarum13c and 21c caused zones of inhibition in test pathogens from 298 to 291 mm. Whereas during 24-h cultivation of LAB strains, their antagonistic activity was significantly lower, and the zones of inhibition decreased by 30%. The duration and temperature had a significant effect on increasing the antagonistic activity of L. plantarum strains, in contrast to the pH of the medium (p ≥ 0.05).
{"title":"The Influence of the Conditions of Cultivation of Lactic Acid Bacteria on Their Antagonistic Activity Against Some Plant Pathogenic Bacteria.","authors":"Olha Vasyliuk, Inna Garmasheva, Serhii Skrotskyi, Liudmyla Khomenko, Ihor Hretskyi, Natalia Senchylo","doi":"10.1002/pld3.70101","DOIUrl":"10.1002/pld3.70101","url":null,"abstract":"<p><p>Plant diseases caused by pathogenic microorganisms result in significant damage to agriculture. Lactic acid bacteria (LAB), in particular strains of <i>Lactiplantibacillus plantarum</i> (<i>L. plantarum</i>), are used as one of the biocontrol methods against plant pathogenic bacteria due to high antagonistic activity associated with their metabolic potential. We have investigated the influence of nutrient medium components (various carbon and nitrogen sources) and cultivation conditions (temperature, duration, and pH) of <i>L. plantarum</i> strains on the level of their antagonistic activity against the test strains of plant pathogenic bacteria. The antimicrobial activity of LAB supernatants was maximal in the presence of 3% (30 g/L) sucrose as the main carbon source and 1% (10 g/L) tyrosine as the main nitrogen source in the nutrient medium against all investigated test strains of PPB. However, the use of such a carbon source as galactose or arabinose led to a decrease or even absence of antimicrobial properties of LAB against phytopathogenic bacteria. The optimal conditions for cultivation of lactobacilli were determined: cultivation temperature +30 ± 1°C, pH 7.8, and duration 72 h. Strains of <i>L. plantarum</i> <i>13c</i> and <i>21c</i> caused zones of inhibition in test pathogens from 298 to 291 mm. Whereas during 24-h cultivation of LAB strains, their antagonistic activity was significantly lower, and the zones of inhibition decreased by 30%. The duration and temperature had a significant effect on increasing the antagonistic activity of <i>L. plantarum</i> strains, in contrast to the pH of the medium (<i>p</i> ≥ 0.05).</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70101"},"PeriodicalIF":2.3,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-12eCollection Date: 2025-09-01DOI: 10.1002/pld3.70106
Tim L Jeffers, Ryan McCombs, Stefan Schmollinger, Srikanth Tirumani, Shivani Upadhyaya, Sabeeha S Merchant, Krishna K Niyogi, Melissa S Roth
Microalgae are promising sources to sustainably meet the global needs for energy and products. Algae grow under different trophic conditions, where nutritional status regulates biosynthetic pathways, energy production, and growth. The green alga Chromochloris zofingiensis has strong economic potential because it co-produces biofuel precursors and the high-value antioxidant astaxanthin while accumulating biomass when grown mixotrophically. As an emerging reference alga for photosynthesis, metabolism, and bioproduction, C. zofingiensis needs a defined, optimized medium to standardize experiments during fast growth for batch cultivation. Because the interplay of glucose treatment (+Glc) and mineral deficiency influences photosynthesis, growth, and the production of lipids and astaxanthin, we designed a replete nutrient medium tailored to the C. zofingiensis cellular ionome. We combined inductively coupled plasma mass spectrometry (ICP-MS) and +Glc growth curves to determine a medium that is nutrient replete for at least 5 days of +Glc logarithmic growth. We found that there are high nutritional needs for phosphorus and sulfur during mixotrophy. Iron was the only element measured for which the cellular concentration correlated with exogenous concentration and was iteratively adjusted until the cellular ionome was consistent through the logarithmic growth phase. This Chromochloris-Optimized Ratio of Elements (CORE) medium supports fast growth and high biomass and lipid accumulation without causing excess nutrient toxicity. This defined, nutrient-replete standard is important for future C. zofingiensis investigations and can be adapted for other species to support high biomass for batch cultivation. The method used to develop CORE medium shows how ionomics informs replicable media design and may be applied in industrial settings to inform cost-effective biofuel production.
{"title":"An Algal Nutrient-Replete, Optimized Medium for Fast Growth and High Triacylglycerol Accumulation.","authors":"Tim L Jeffers, Ryan McCombs, Stefan Schmollinger, Srikanth Tirumani, Shivani Upadhyaya, Sabeeha S Merchant, Krishna K Niyogi, Melissa S Roth","doi":"10.1002/pld3.70106","DOIUrl":"10.1002/pld3.70106","url":null,"abstract":"<p><p>Microalgae are promising sources to sustainably meet the global needs for energy and products. Algae grow under different trophic conditions, where nutritional status regulates biosynthetic pathways, energy production, and growth. The green alga <i>Chromochloris zofingiensis</i> has strong economic potential because it co-produces biofuel precursors and the high-value antioxidant astaxanthin while accumulating biomass when grown mixotrophically. As an emerging reference alga for photosynthesis, metabolism, and bioproduction, <i>C. zofingiensis</i> needs a defined, optimized medium to standardize experiments during fast growth for batch cultivation. Because the interplay of glucose treatment (+Glc) and mineral deficiency influences photosynthesis, growth, and the production of lipids and astaxanthin, we designed a replete nutrient medium tailored to the <i>C. zofingiensis</i> cellular ionome. We combined inductively coupled plasma mass spectrometry (ICP-MS) and +Glc growth curves to determine a medium that is nutrient replete for at least 5 days of +Glc logarithmic growth. We found that there are high nutritional needs for phosphorus and sulfur during mixotrophy. Iron was the only element measured for which the cellular concentration correlated with exogenous concentration and was iteratively adjusted until the cellular ionome was consistent through the logarithmic growth phase. This <i>Chromochloris</i>-Optimized Ratio of Elements (CORE) medium supports fast growth and high biomass and lipid accumulation without causing excess nutrient toxicity. This defined, nutrient-replete standard is important for future <i>C. zofingiensis</i> investigations and can be adapted for other species to support high biomass for batch cultivation. The method used to develop CORE medium shows how ionomics informs replicable media design and may be applied in industrial settings to inform cost-effective biofuel production.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70106"},"PeriodicalIF":2.3,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145065033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}