Pub Date : 2022-05-18DOI: 10.1017/s1479262122000120
Ruihua Ren, Fang Liao, D. Kong, Yanyan Yin, Wei Liu, Shaona Teng, Jie Feng, Guanrong Li
HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase, is a major rate-limiting enzyme in mevalonate (MVA) pathway for isoprenoids and subsequent tanshinone biosynthesis in the Chinese traditional bulk herbal medicine Danshen, Salvia miltiorrhiza, mainly for cardiovascular disorders. In this paper, the genomic SmHMGR genes of 38 cultivated populations of S. miltiorrhiza collected in China were for the first time sequenced to reveal the genetic diversity and phylogeny. The SmHMGR gene was shown to be intron-free, 1650~1659 bp in complete CDS with the majority being 1656 bp, and two unique populations (W-FJLY-V-1 and W-SCHY-W-1) being 1659 and 1650 bp respectively. A total of 103 SNP variation sites were detected with a variation rate of 6.22%, most of which occurred in S. miltiorrhiza f. alba population W-SCHY-W-1; a total of 25 amino acid variation sites were found, of which 19 was in W-SCHY-W-1. The same four populations, W-SCHY-W-1, V-HBAG-V-1, V-JLCC-V-1 and S-NM-V-1 could be discriminated from the remaining 34 by both the SNP fingerprints and the deduced amino acid variation sites. Other or composite DNA markers are needed for better identification. The SmHMGR gene of white flower S. miltiorrhiza f. alba population W-SCHY-W-1 is especially rich in variations and worthy of further studies. Phylogenetic trees based on both the gene and the deduced amino acid sequences showed a very similar two-clade topological structure. This research enriched the content and the genetic means for the molecular identification, genetic diversity and phylogenetic studies of the cultivated S. miltiorrhiza populations, and laid a solid foundation for further related and in-depth investigations.
HMGR(3-羟基-3-甲基戊二酰辅酶a还原酶)是中药丹参中异戊二烯类化合物及其后丹参酮生物合成的甲羟戊酸(MVA)途径的主要限制性酶,主要用于心血管疾病。本文首次对国内38个丹参栽培居群的SmHMGR基因进行了基因组测序,揭示了其遗传多样性和系统发育。SmHMGR基因不含内含子,全长1650~1659 bp,多数为1656 bp,两个独特群体W-FJLY-V-1和W-SCHY-W-1分别为1659和1650 bp。共检测到103个SNP变异位点,变异率为6.22%,主要发生在白芍群体W-SCHY-W-1;共发现25个氨基酸变异位点,其中W-SCHY-W-1变异位点19个。通过SNP指纹图谱和推测的氨基酸变异位点,可以将W-SCHY-W-1、V-HBAG-V-1、v - jlc - v -1和S-NM-V-1这4个群体与其余34个群体进行区分。其他或复合DNA标记需要更好的识别。白花丹参群体W-SCHY-W-1的SmHMGR基因变异尤其丰富,值得进一步研究。基于该基因和推导出的氨基酸序列的系统发育树显示出非常相似的两枝拓扑结构。本研究丰富了栽培丹参群体的分子鉴定、遗传多样性和系统发育研究的内容和遗传手段,为进一步相关和深入研究奠定了坚实的基础。
{"title":"Genetic diversity and phylogeny analysis of 3-hydroxy 3-methylglutaryl-CoA reductase gene (SmHMGR) in Danshen (Salvia miltiorrhiza Bunge)","authors":"Ruihua Ren, Fang Liao, D. Kong, Yanyan Yin, Wei Liu, Shaona Teng, Jie Feng, Guanrong Li","doi":"10.1017/s1479262122000120","DOIUrl":"https://doi.org/10.1017/s1479262122000120","url":null,"abstract":"\u0000 HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase, is a major rate-limiting enzyme in mevalonate (MVA) pathway for isoprenoids and subsequent tanshinone biosynthesis in the Chinese traditional bulk herbal medicine Danshen, Salvia miltiorrhiza, mainly for cardiovascular disorders. In this paper, the genomic SmHMGR genes of 38 cultivated populations of S. miltiorrhiza collected in China were for the first time sequenced to reveal the genetic diversity and phylogeny. The SmHMGR gene was shown to be intron-free, 1650~1659 bp in complete CDS with the majority being 1656 bp, and two unique populations (W-FJLY-V-1 and W-SCHY-W-1) being 1659 and 1650 bp respectively. A total of 103 SNP variation sites were detected with a variation rate of 6.22%, most of which occurred in S. miltiorrhiza f. alba population W-SCHY-W-1; a total of 25 amino acid variation sites were found, of which 19 was in W-SCHY-W-1. The same four populations, W-SCHY-W-1, V-HBAG-V-1, V-JLCC-V-1 and S-NM-V-1 could be discriminated from the remaining 34 by both the SNP fingerprints and the deduced amino acid variation sites. Other or composite DNA markers are needed for better identification. The SmHMGR gene of white flower S. miltiorrhiza f. alba population W-SCHY-W-1 is especially rich in variations and worthy of further studies. Phylogenetic trees based on both the gene and the deduced amino acid sequences showed a very similar two-clade topological structure. This research enriched the content and the genetic means for the molecular identification, genetic diversity and phylogenetic studies of the cultivated S. miltiorrhiza populations, and laid a solid foundation for further related and in-depth investigations.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"56 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77365215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-17DOI: 10.1017/s1479262122000119
Desalegn Alemayehu, W. Garedew, Abush Tesfaye Abebe
As a country of origin of coffee, Ethiopia is endowed with an immense diversity of the crop in its diverse coffee-growing agro-ecologies. Amaro Kelo is one of the major coffee production agro-ecologies in Ethiopia, where the genetic diversity of its landrace coffee germplasm was not properly characterized previously. The study aimed to characterize 64 Amaro Kelo local coffee accessions to understand the potential of the accessions for utilization in future coffee genetic improvement efforts. The experiment was laid out in an 8 × 8 simple lattice design with two replications at Awada Agricultural Research Sub-Center. Data were collected on 19 quantitative and 10 qualitative traits, and subjected to multivariate analyses, i.e. cluster and principal component analyses. The cluster analysis identified five clusters based on the quantitative characters, and the distances between most of the clusters were highly significant at P < 0.01. Principal component analysis revealed the first six principal components with Eigenvalues greater than one accounted for 77.7% of the total variation. The first two principal components with respective contributions of 23.32 and 18.85% cumulatively accounted for 42.2% of the total variation in the accessions. In addition, high values of Shannon-diversity index were found for the qualitative traits: branching habit, growth habit, fruit shape, overall appearance and stem habit. In general, the multivariate analyses confirmed the presence of high variation among the studied Amaro-Kelo coffee accessions that might serve as an important genetic resource for future coffee genetic improvement or conservation efforts.
{"title":"Phenotypic characterization of Amaro coffee (Coffea arabica L.) local accessions using multi-variate techniques at Awada, Southern Ethiopia","authors":"Desalegn Alemayehu, W. Garedew, Abush Tesfaye Abebe","doi":"10.1017/s1479262122000119","DOIUrl":"https://doi.org/10.1017/s1479262122000119","url":null,"abstract":"\u0000 As a country of origin of coffee, Ethiopia is endowed with an immense diversity of the crop in its diverse coffee-growing agro-ecologies. Amaro Kelo is one of the major coffee production agro-ecologies in Ethiopia, where the genetic diversity of its landrace coffee germplasm was not properly characterized previously. The study aimed to characterize 64 Amaro Kelo local coffee accessions to understand the potential of the accessions for utilization in future coffee genetic improvement efforts. The experiment was laid out in an 8 × 8 simple lattice design with two replications at Awada Agricultural Research Sub-Center. Data were collected on 19 quantitative and 10 qualitative traits, and subjected to multivariate analyses, i.e. cluster and principal component analyses. The cluster analysis identified five clusters based on the quantitative characters, and the distances between most of the clusters were highly significant at P < 0.01. Principal component analysis revealed the first six principal components with Eigenvalues greater than one accounted for 77.7% of the total variation. The first two principal components with respective contributions of 23.32 and 18.85% cumulatively accounted for 42.2% of the total variation in the accessions. In addition, high values of Shannon-diversity index were found for the qualitative traits: branching habit, growth habit, fruit shape, overall appearance and stem habit. In general, the multivariate analyses confirmed the presence of high variation among the studied Amaro-Kelo coffee accessions that might serve as an important genetic resource for future coffee genetic improvement or conservation efforts.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"32 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87494913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.1017/s1479262122000089
Wattanaporn Teerasan, Pattaraborn Moonsap, Apinya Longya, K. Damchuay, S. Ito, P. Tasanasuwan, Sureeporn Kate-ngam, C. Jantasuriyarat
Rice blast disease, caused by Magnaporthe oryzae, is one of the most damaging diseases of rice worldwide. Cultivation of rice varieties carrying resistance genes is the most economic and successful strategy to control the disease. In this study, 451 rice varieties from around the world including 363 Thai landrace rice varieties, 21 Thai improved rice varieties, 43 Japanese rice varieties and 24 worldwide rice varieties were screened by PCR technique using gene-specific markers for 10 rice blast resistance genes: Pi9, Piz-t, Pi50, Pigm(t), Pid2, Pid3, Pia, Pik, Pi54 and Pita. The results showed that 382 (99.48%) Thai rice varieties have at least one resistance gene and two rice varieties, ‘Hom’ and ‘Bak muay’, contained eight out of ten screened rice blast resistance genes. 320 rice varieties (83.33%) contained three or more rice blast resistance genes. The frequency of the rice blast resistance gene ranges from 87.76–9.64 per cent, of which the Pid3 gene has the highest frequency and the Pi54 gene has the lowest frequency. Two major resistance genes, found in Japanese rice varieties, are the Pik gene (76.74%) and the Pi9 gene (72.09%). While two major resistance genes, found in the international rice varieties are the Pi9 gene (66.67%) and the Pi54 gene (62.50%). The disease resistance gene profile of each rice variety obtained from this study will benefit the rice blast resistant breeding programme in the future.
{"title":"Rice blast resistance gene profiling of Thai, Japanese and International rice varieties using gene-specific markers","authors":"Wattanaporn Teerasan, Pattaraborn Moonsap, Apinya Longya, K. Damchuay, S. Ito, P. Tasanasuwan, Sureeporn Kate-ngam, C. Jantasuriyarat","doi":"10.1017/s1479262122000089","DOIUrl":"https://doi.org/10.1017/s1479262122000089","url":null,"abstract":"\u0000 Rice blast disease, caused by Magnaporthe oryzae, is one of the most damaging diseases of rice worldwide. Cultivation of rice varieties carrying resistance genes is the most economic and successful strategy to control the disease. In this study, 451 rice varieties from around the world including 363 Thai landrace rice varieties, 21 Thai improved rice varieties, 43 Japanese rice varieties and 24 worldwide rice varieties were screened by PCR technique using gene-specific markers for 10 rice blast resistance genes: Pi9, Piz-t, Pi50, Pigm(t), Pid2, Pid3, Pia, Pik, Pi54 and Pita. The results showed that 382 (99.48%) Thai rice varieties have at least one resistance gene and two rice varieties, ‘Hom’ and ‘Bak muay’, contained eight out of ten screened rice blast resistance genes. 320 rice varieties (83.33%) contained three or more rice blast resistance genes. The frequency of the rice blast resistance gene ranges from 87.76–9.64 per cent, of which the Pid3 gene has the highest frequency and the Pi54 gene has the lowest frequency. Two major resistance genes, found in Japanese rice varieties, are the Pik gene (76.74%) and the Pi9 gene (72.09%). While two major resistance genes, found in the international rice varieties are the Pi9 gene (66.67%) and the Pi54 gene (62.50%). The disease resistance gene profile of each rice variety obtained from this study will benefit the rice blast resistant breeding programme in the future.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"17 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83697832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.1017/s1479262122000090
S. Banik, M. Rasul, N. Ivy, M. M. Haque, M. Hasan
A detailed study of rice genetic resources in Bangladesh's coastal areas is necessary. This understanding is a necessary requirement for its utilization in selective breeding. The study reports on the qualitative morphological trait-based assessment of 150 local rice samples collected from Bangladesh's coastal zone, including 50 advanced lines developed from coastal germplasm. Six of the thirteen analysed characters had a substantial gene contribution, whereas the average was 0.694. The most impressive diversity was in leaf blade intensity of green colour (LBIGC: 0.705). The total morpho-qualitative diversity was calculated to be 0.412. The character efficiency content ranged from 0.655 (LBIGC) to 0.136 (Leaf Sheath: Anthocyanin colouration, Leaf Blade: Presence/Absence, and Leaf Blade: Anthocyanin. Colouration). As per the morphological variance study, 93% of morphological changes were detected within individuals, whereas 7% were found in populations. The 150 germplasm samples were divided into four subpopulations using STRUCTURE-based population analysis. A moderate genotypic difference was detected amongst all groups, with an Fst value of 0.111. The G statistic backed up the record as well. The Shannon mutual information index reached a value of 1.252 between populations 2 and 3. In terms of gene exchange, the highest value was found between populations 3 and 4. Our data indicate a high degree of diversity in Bangladesh's coastline rice germplasm. The findings will aid in conferring the farmers' Intellectual Property Rights on the investigated rice germplasm.
{"title":"Delineation of Bangladeshi coastal rice germplasm based on qualitative phenotypic traits","authors":"S. Banik, M. Rasul, N. Ivy, M. M. Haque, M. Hasan","doi":"10.1017/s1479262122000090","DOIUrl":"https://doi.org/10.1017/s1479262122000090","url":null,"abstract":"\u0000 A detailed study of rice genetic resources in Bangladesh's coastal areas is necessary. This understanding is a necessary requirement for its utilization in selective breeding. The study reports on the qualitative morphological trait-based assessment of 150 local rice samples collected from Bangladesh's coastal zone, including 50 advanced lines developed from coastal germplasm. Six of the thirteen analysed characters had a substantial gene contribution, whereas the average was 0.694. The most impressive diversity was in leaf blade intensity of green colour (LBIGC: 0.705). The total morpho-qualitative diversity was calculated to be 0.412. The character efficiency content ranged from 0.655 (LBIGC) to 0.136 (Leaf Sheath: Anthocyanin colouration, Leaf Blade: Presence/Absence, and Leaf Blade: Anthocyanin. Colouration). As per the morphological variance study, 93% of morphological changes were detected within individuals, whereas 7% were found in populations. The 150 germplasm samples were divided into four subpopulations using STRUCTURE-based population analysis. A moderate genotypic difference was detected amongst all groups, with an Fst value of 0.111. The G statistic backed up the record as well. The Shannon mutual information index reached a value of 1.252 between populations 2 and 3. In terms of gene exchange, the highest value was found between populations 3 and 4. Our data indicate a high degree of diversity in Bangladesh's coastline rice germplasm. The findings will aid in conferring the farmers' Intellectual Property Rights on the investigated rice germplasm.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"22 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81567036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.1017/s1479262122000077
B. R. Chandana, S. Ramesh, R. Kirankumar, G. Basanagouda
Early elimination of poor crosses based on an objective criterion allows increased allocation of resources only to a few promising crosses for identifying superior recombinant inbred lines (RILs) for use as pure-line cultivars in self-pollinated crops. Early generation (F2:3) prediction of frequency of superior RILs that could be derived from advanced generations of crosses is one such criterion. We predicted the frequency of transgressive RILs from two horse gram crosses (namely HPKM 320 × CRIDA18-R and IC 361290 × Palem 1) for primary branches per plant, pods per plant, pod weight per plant and grain weight per plant based on mid parental value, additive genetic effects and additive genetic variance estimated from trait means of parents, and their F2 and F2:3 generations. The predicted frequency of RILs that transgressed better parent/two checks varied with the cross and the trait within a cross. The frequencies of transgressive RILs predicted from IC 361290 × Palem 1 were higher than those predicted from HPKM 320 × CRIDA 18-R for three of the four traits. As expected, the minimum population size required to recover the transgressive RILs predicted from IC 361290 × Palem 1 was relatively smaller than that from IC 361290 × Palem 1. Increased allocation of resources for handling segregating populations derived from IC 361290 × Palem 1 is expected to result in superior RILs for use as cultivars. We believe that the objective criterion used in our study is handy in identifying superior RILs in early segregating populations derived from a few promising crosses.
{"title":"Predicting the frequency of transgressive RILs and minimum population size required for their recovery in horse gram (Macrotyloma uniflorum (Lam.) Verdc)","authors":"B. R. Chandana, S. Ramesh, R. Kirankumar, G. Basanagouda","doi":"10.1017/s1479262122000077","DOIUrl":"https://doi.org/10.1017/s1479262122000077","url":null,"abstract":"\u0000 Early elimination of poor crosses based on an objective criterion allows increased allocation of resources only to a few promising crosses for identifying superior recombinant inbred lines (RILs) for use as pure-line cultivars in self-pollinated crops. Early generation (F2:3) prediction of frequency of superior RILs that could be derived from advanced generations of crosses is one such criterion. We predicted the frequency of transgressive RILs from two horse gram crosses (namely HPKM 320 × CRIDA18-R and IC 361290 × Palem 1) for primary branches per plant, pods per plant, pod weight per plant and grain weight per plant based on mid parental value, additive genetic effects and additive genetic variance estimated from trait means of parents, and their F2 and F2:3 generations. The predicted frequency of RILs that transgressed better parent/two checks varied with the cross and the trait within a cross. The frequencies of transgressive RILs predicted from IC 361290 × Palem 1 were higher than those predicted from HPKM 320 × CRIDA 18-R for three of the four traits. As expected, the minimum population size required to recover the transgressive RILs predicted from IC 361290 × Palem 1 was relatively smaller than that from IC 361290 × Palem 1. Increased allocation of resources for handling segregating populations derived from IC 361290 × Palem 1 is expected to result in superior RILs for use as cultivars. We believe that the objective criterion used in our study is handy in identifying superior RILs in early segregating populations derived from a few promising crosses.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"121 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74255956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.1017/s1479262122000016
Wenyang Wang, Wenjun Ji, Lihua Feng, S. Ning, Zhongwei Yuan, M. Hao, Lianquan Zhang, Zehong Yan, Bihua Wu, Dengcai Liu, Lin Huang
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
{"title":"Characterization of novel low-molecular-weight glutenin subunit genes from the diploid wild wheat relative Aegilops umbellulata","authors":"Wenyang Wang, Wenjun Ji, Lihua Feng, S. Ning, Zhongwei Yuan, M. Hao, Lianquan Zhang, Zehong Yan, Bihua Wu, Dengcai Liu, Lin Huang","doi":"10.1017/s1479262122000016","DOIUrl":"https://doi.org/10.1017/s1479262122000016","url":null,"abstract":"\u0000 Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"9 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74381519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-10DOI: 10.1017/s1479262122000065
C. Kapoor, Shweta Singh, R. Avasthe, C. Raj, Matber Singh, Hissay L. Lepcha
‘Sikkim Primitive’ (SP) maize locally known as ‘murali makkai’ in Sikkim is a unique genetic resource exhibiting prolificacy and excellent popping capacity. Status of SP has reached extinction level due to its very small population size and neglected conservation efforts in-situ. In an initial effort to conserve and revive this landrace, characterization and documentation was carried out with 31 morphologically assayed traits recorded at different growth stages along with molecular characterization with simple-sequence repeat (SSR) markers. Plants exhibited prolificacy (5–6 cobs/plant) and excellent popping capacity along with other distinct traits. Plants were tall with thin stem, loose drooping tassel with anthocyanin coloration present at the base of glumes and in brace roots. Cobs were medium sized carrying small seeds with low test weight (87.90 g). A total of 22 SSR markers show amplification in murali makkai with markers bnlg1083, umc1353, umc1128, bnlg1017, bnlg2077, umc2298 and umc2373 amplified unique amplicons ranging from 100 to 800 bp. The characterized set of traits and molecular characterization for murali makkai will facilitate in utilization for genetic improvement and maintenance of genetic purity.
{"title":"Morphological description based on DUS characters and molecular characterization of ‘Sikkim Primitive’ maize: an endangered unique genetic resource","authors":"C. Kapoor, Shweta Singh, R. Avasthe, C. Raj, Matber Singh, Hissay L. Lepcha","doi":"10.1017/s1479262122000065","DOIUrl":"https://doi.org/10.1017/s1479262122000065","url":null,"abstract":"\u0000 ‘Sikkim Primitive’ (SP) maize locally known as ‘murali makkai’ in Sikkim is a unique genetic resource exhibiting prolificacy and excellent popping capacity. Status of SP has reached extinction level due to its very small population size and neglected conservation efforts in-situ. In an initial effort to conserve and revive this landrace, characterization and documentation was carried out with 31 morphologically assayed traits recorded at different growth stages along with molecular characterization with simple-sequence repeat (SSR) markers. Plants exhibited prolificacy (5–6 cobs/plant) and excellent popping capacity along with other distinct traits. Plants were tall with thin stem, loose drooping tassel with anthocyanin coloration present at the base of glumes and in brace roots. Cobs were medium sized carrying small seeds with low test weight (87.90 g). A total of 22 SSR markers show amplification in murali makkai with markers bnlg1083, umc1353, umc1128, bnlg1017, bnlg2077, umc2298 and umc2373 amplified unique amplicons ranging from 100 to 800 bp. The characterized set of traits and molecular characterization for murali makkai will facilitate in utilization for genetic improvement and maintenance of genetic purity.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"22 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84452366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-04DOI: 10.1017/s1479262122000041
J. S. Lore, J. Jain, Sanjay Kumar, Ishwinder Kamboj, N. Sidhu, R. Khanna, R. Kaur, G. S. Mangat
False smut of rice is an emerging disease and caused severe damage to hybrids and inbred rice cultivars grown in Asian countries. The objective of the study was to quantify of false smut resistance and identification of donors in some of the advanced breeding lines and rice varieties developed at Punjab Agricultural University, Ludhiana, India. A total of 31 genotypes were evaluated for three years in two planting date per year under field conditions. The lines were categorized into short, medium and long durations based on days to flowering. False smut was quantified using different disease variables such as per cent infected panicle, number of false smut ball per plant and disease score. Disease variables were significantly and positively correlated to each other. The infected panicle ranged 0.0–75.4% was observed among the genotypes. Three advanced lines namely RGS-2 (short), RGM-3 (medium) and RGL-3 (long) showed the lowest ranged 0.0–4.9% of infected panicle as compared to susceptible checks (47.7–75.4%). The genotypes were divided into five groups according to a component of resistance. The third group had the lowest average values (3.3%) of infected panicle as compared to the fifth group with the highest values (36.2%) of the infected panicle. The overall trend of disease variables was higher in short duration genotypes as compared to medium and long durations. Weather factors such as rain fall, rainy days and high relative humidity during the flowering period were favourable for disease development. The genotypes with lower disease variables could be utilized in diseases resistance breeding programme.
{"title":"Identification of potential donors for false smut resistance in elite breeding lines of rice (Oryza sativa L.) under field conditions","authors":"J. S. Lore, J. Jain, Sanjay Kumar, Ishwinder Kamboj, N. Sidhu, R. Khanna, R. Kaur, G. S. Mangat","doi":"10.1017/s1479262122000041","DOIUrl":"https://doi.org/10.1017/s1479262122000041","url":null,"abstract":"\u0000 False smut of rice is an emerging disease and caused severe damage to hybrids and inbred rice cultivars grown in Asian countries. The objective of the study was to quantify of false smut resistance and identification of donors in some of the advanced breeding lines and rice varieties developed at Punjab Agricultural University, Ludhiana, India. A total of 31 genotypes were evaluated for three years in two planting date per year under field conditions. The lines were categorized into short, medium and long durations based on days to flowering. False smut was quantified using different disease variables such as per cent infected panicle, number of false smut ball per plant and disease score. Disease variables were significantly and positively correlated to each other. The infected panicle ranged 0.0–75.4% was observed among the genotypes. Three advanced lines namely RGS-2 (short), RGM-3 (medium) and RGL-3 (long) showed the lowest ranged 0.0–4.9% of infected panicle as compared to susceptible checks (47.7–75.4%). The genotypes were divided into five groups according to a component of resistance. The third group had the lowest average values (3.3%) of infected panicle as compared to the fifth group with the highest values (36.2%) of the infected panicle. The overall trend of disease variables was higher in short duration genotypes as compared to medium and long durations. Weather factors such as rain fall, rainy days and high relative humidity during the flowering period were favourable for disease development. The genotypes with lower disease variables could be utilized in diseases resistance breeding programme.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85259649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-04DOI: 10.1017/s147926212200003x
J. Song, J. Yi, J. Bae, Jung-ro Lee, M. Yoon, Young-yi Lee
The genus Lilium contains a number of ornamental crop species, which are commercially important in many countries. As they are vegetatively propagated, maintaining genetic stability is essential for their efficient conservation. In this study, we investigated the genetic stability of regenerated plants of three cultivars (L. bolanderi ‘Lenora’, L. bolanderi ‘Mount Duckling’ and L. bolanderi ‘Mount Dragon’) and one variety (L. callosum var. flavum) after cryopreservation, compared with fresh (donor) and non-cryopreserved plants using morphological traits and ISSR markers. No differences in morphological parameters including flower, stigma and pollen colour, floral spots, floral direction or polymorphic bands were observed between control (fresh and non-cryopreserved) and cryopreserved plantlets. In addition, based on the resulting UPGMA dendrogram, the four taxa were divided into different clusters. All cryopreserved, non-cryopreserved and fresh plants in each group could be grouped together in a single cluster with more than 97 or 100% similarity. The results suggest a very low level or the absence of genetic variation in terms of morphological and genetic stability among the plants regenerated after cryopreservation.
百合属包含许多观赏作物品种,在许多国家具有重要的商业价值。由于它们是无性繁殖的,因此保持遗传稳定性对它们的有效保护至关重要。本研究利用形态特征和ISSR标记,对3个品种(L. bolanderi ' Lenora '、L. bolanderi ' Mount Duckling '和L. bolanderi ' Mount Dragon ')和1个品种(L. callosum var. flavum)的再生植株与新鲜(供体)和非冷冻植株进行了低温保存后的遗传稳定性比较。在花、柱头和花粉颜色、花斑、花方向和多态带等形态学参数上,对照(新鲜和非冷冻保存)和冷冻保存的植株没有差异。此外,根据UPGMA树状图,将4个类群划分为不同的聚类。每组中所有低温保存、非低温保存和新鲜植物均可归为一个簇,相似性大于97%或100%。结果表明,低温保存后再生植株在形态和遗传稳定性方面的遗传变异水平很低或没有遗传变异。
{"title":"Genetic stability of cryopreserved ornamental Lilium germplasm","authors":"J. Song, J. Yi, J. Bae, Jung-ro Lee, M. Yoon, Young-yi Lee","doi":"10.1017/s147926212200003x","DOIUrl":"https://doi.org/10.1017/s147926212200003x","url":null,"abstract":"\u0000 The genus Lilium contains a number of ornamental crop species, which are commercially important in many countries. As they are vegetatively propagated, maintaining genetic stability is essential for their efficient conservation. In this study, we investigated the genetic stability of regenerated plants of three cultivars (L. bolanderi ‘Lenora’, L. bolanderi ‘Mount Duckling’ and L. bolanderi ‘Mount Dragon’) and one variety (L. callosum var. flavum) after cryopreservation, compared with fresh (donor) and non-cryopreserved plants using morphological traits and ISSR markers. No differences in morphological parameters including flower, stigma and pollen colour, floral spots, floral direction or polymorphic bands were observed between control (fresh and non-cryopreserved) and cryopreserved plantlets. In addition, based on the resulting UPGMA dendrogram, the four taxa were divided into different clusters. All cryopreserved, non-cryopreserved and fresh plants in each group could be grouped together in a single cluster with more than 97 or 100% similarity. The results suggest a very low level or the absence of genetic variation in terms of morphological and genetic stability among the plants regenerated after cryopreservation.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"27 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73642615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-04DOI: 10.1017/s1479262122000053
H. Han, Z. Wang, X. Wang, Xiushan Sun, C. Fang, C. Wang
It is generally accepted that high-oleic crops have at least 70% oleate. As compared to their normal-oleic counterparts, oil and food products made from high-oleic peanut have better keeping quality and are much healthier. Therefore, high-oleic peanut is well recognized by processors and consumers. However, owing to the limited availability of high-oleic donors, most present-day high-oleic peanut varietal releases merely have F435 type FAD2 mutations. Through screening of a mutagenized peanut population of 15L46, a high-yielding peanut line with desirable elliptical oblong large seeds, using near infrared model for predicting oleate content in individual single seeds, high-oleic peanut mutants were identified. Sequencing FAD2A and FAD2B of the mutants along with the wild type revealed that these mutants possessed G448A FAD2A (F435 type FAD2A mutation) and G558A FAD2B (non-F435 type FAD2B mutation). Expression of the wild and mutated type FAD2B in yeast verified that the functional mutation contributed to the high-oleic phenotype in these mutants. The mutants provided additional high-oleic donors to peanut quality improvement.
{"title":"Identification of high-oleic peanut chemical mutants and functional analysis of mutated FAD2B gene","authors":"H. Han, Z. Wang, X. Wang, Xiushan Sun, C. Fang, C. Wang","doi":"10.1017/s1479262122000053","DOIUrl":"https://doi.org/10.1017/s1479262122000053","url":null,"abstract":"\u0000 It is generally accepted that high-oleic crops have at least 70% oleate. As compared to their normal-oleic counterparts, oil and food products made from high-oleic peanut have better keeping quality and are much healthier. Therefore, high-oleic peanut is well recognized by processors and consumers. However, owing to the limited availability of high-oleic donors, most present-day high-oleic peanut varietal releases merely have F435 type FAD2 mutations. Through screening of a mutagenized peanut population of 15L46, a high-yielding peanut line with desirable elliptical oblong large seeds, using near infrared model for predicting oleate content in individual single seeds, high-oleic peanut mutants were identified. Sequencing FAD2A and FAD2B of the mutants along with the wild type revealed that these mutants possessed G448A FAD2A (F435 type FAD2A mutation) and G558A FAD2B (non-F435 type FAD2B mutation). Expression of the wild and mutated type FAD2B in yeast verified that the functional mutation contributed to the high-oleic phenotype in these mutants. The mutants provided additional high-oleic donors to peanut quality improvement.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"15 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82911508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}