We study the formation of laser-induced shallow pits (LSPs) on silica output surfaces and relate these features to optical performance as a function of incident laser fluence. Typical characteristics of the LSPs morphology are presented. Closed-form expressions for the scattered power and far-field angular distribution are derived and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. The model predictions agree well with the measurements for precise profile micro-machined shallow pits on glass, and for pitting caused by laser cleaning of bound metal micro-particles at different fluences.
{"title":"Light scattering from laser-induced shallow pits on silica exit surfaces","authors":"E. Feigenbaum, R. Raman, N. Nielsen, M. Matthews","doi":"10.1117/12.2195504","DOIUrl":"https://doi.org/10.1117/12.2195504","url":null,"abstract":"We study the formation of laser-induced shallow pits (LSPs) on silica output surfaces and relate these features to optical performance as a function of incident laser fluence. Typical characteristics of the LSPs morphology are presented. Closed-form expressions for the scattered power and far-field angular distribution are derived and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. The model predictions agree well with the measurements for precise profile micro-machined shallow pits on glass, and for pitting caused by laser cleaning of bound metal micro-particles at different fluences.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"9632 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129889367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Liessmann, L. Jensen, I. Balasa, M. Hunnekuhl, A. Büttner, P. Wessels, J. Neumann, D. Ristau
The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.
在地外任务中,光学元件的激光诱导污染(LIC)的增长是一个众所周知的问题,特别是在紫外光谱区域。汉诺威激光中心(Laser Zentrum Hannover e.V.)负责为ExoMars任务开发波长为266纳米的脉冲激光系统,并对使用过的光学器件和材料进行LIC认证。在这种情况下,使用了甲苯,这是在LIC研究中经常使用的模型污染物。将355nm和266nm两种紫外波长分别应用于熔融二氧化硅基片和ararcoated光学器件上进行了测试循环,并比较了观察到的污染效应。这种缩放可以粗略估计在266nm处LIC对空间光学退化的破坏性影响。在接近操作的环境条件下,将对集成到exomars -激光头中的材料进行进一步的测试。
{"title":"Scaling of laser-induced contamination growth at 266nm and 355nm","authors":"M. Liessmann, L. Jensen, I. Balasa, M. Hunnekuhl, A. Büttner, P. Wessels, J. Neumann, D. Ristau","doi":"10.1117/12.2194083","DOIUrl":"https://doi.org/10.1117/12.2194083","url":null,"abstract":"The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126806249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sozet, J. Néauport, E. Lavastre, N. Roquin, L. Gallais, L. Lamaignère
A rasterscan procedure is set to determine laser-induced damage densities in sub-picosecond regime at 1053nm on high-reflective coatings. Whereas laser-induced damage is usually considered deterministic in this regime, damage events occur on these structures for fluences lower than their intrinsic Laser-Induced Damage Threshold (LIDT). Damage densities are found to be high even for fluences as low as 20% of the LIDT. Scanning Electron Microscope observations of these “under threshold” damage sites evidence ejections of defects, embedded in the dielectric stack. It brings a new viewpoint for the qualification of optical components and for the optimization of manufacturing processes of coatings.
{"title":"Laser damage resistance of optical components in sub-picosecond regime in the infrared","authors":"M. Sozet, J. Néauport, E. Lavastre, N. Roquin, L. Gallais, L. Lamaignère","doi":"10.1117/12.2194286","DOIUrl":"https://doi.org/10.1117/12.2194286","url":null,"abstract":"A rasterscan procedure is set to determine laser-induced damage densities in sub-picosecond regime at 1053nm on high-reflective coatings. Whereas laser-induced damage is usually considered deterministic in this regime, damage events occur on these structures for fluences lower than their intrinsic Laser-Induced Damage Threshold (LIDT). Damage densities are found to be high even for fluences as low as 20% of the LIDT. Scanning Electron Microscope observations of these “under threshold” damage sites evidence ejections of defects, embedded in the dielectric stack. It brings a new viewpoint for the qualification of optical components and for the optimization of manufacturing processes of coatings.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"9 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129753270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Zorila, A. Stratan, I. Dumitrache, L. Rusen, G. Nemeş
Data collected in real S-on-1 LIDT experiments performed with a nanosecond, 1064 nm automated station are used to calculate the damage probability with the ISO-recommended (conventional) method and the recently-suggested cumulative method. The damage probability points versus fluence for each type of calculation are fitted using both, linear and nonlinear curves. The resultant four data sets corresponding to each real experiment are used to compare important parameters as: statistical uncertainty of damage probability points, fitting errors, damage threshold fluences for actual number of pulses, and the extrapolated threshold fluences for very large number of pulses. We suggest and analyze also a limit case of the cumulative method, when the damage probability points are calculated for each interrogated site. Both, the recently-suggested cumulative method, and our limit case, look very promising.
{"title":"Analysis of cumulative versus ISO-recommended calculation of damage probability using a database of real S-on-1 tests","authors":"A. Zorila, A. Stratan, I. Dumitrache, L. Rusen, G. Nemeş","doi":"10.1117/12.2194303","DOIUrl":"https://doi.org/10.1117/12.2194303","url":null,"abstract":"Data collected in real S-on-1 LIDT experiments performed with a nanosecond, 1064 nm automated station are used to calculate the damage probability with the ISO-recommended (conventional) method and the recently-suggested cumulative method. The damage probability points versus fluence for each type of calculation are fitted using both, linear and nonlinear curves. The resultant four data sets corresponding to each real experiment are used to compare important parameters as: statistical uncertainty of damage probability points, fitting errors, damage threshold fluences for actual number of pulses, and the extrapolated threshold fluences for very large number of pulses. We suggest and analyze also a limit case of the cumulative method, when the damage probability points are calculated for each interrogated site. Both, the recently-suggested cumulative method, and our limit case, look very promising.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115004604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ghoumazi, N. Demagh, A. Adouane, B. Boubir, A. Daoui
In recent years, the rare earth ions and primarily Er played a crucial role in the development of the technology of optical telecommunications. The Emission of erbium ions at 1.53 microns is important for optical telecommunications because this emission corresponds to minimum mitigation of silica fibers which used as purpose to transport information. At first, we study the evolution of the signal powers and the pump powers along the propagation in the optical fiber amplifier Erbium doped. In addition, we study the variation of Erbium ions concentration for different spectroscopic parameters such as signal strength with (0, 1μW, 1mW) and the power of the pump going up 200 mW.
{"title":"Improved parametric spectroscopic performance of an optical fiber doped with erbium","authors":"M. Ghoumazi, N. Demagh, A. Adouane, B. Boubir, A. Daoui","doi":"10.1117/12.2194077","DOIUrl":"https://doi.org/10.1117/12.2194077","url":null,"abstract":"In recent years, the rare earth ions and primarily Er played a crucial role in the development of the technology of optical telecommunications. The Emission of erbium ions at 1.53 microns is important for optical telecommunications because this emission corresponds to minimum mitigation of silica fibers which used as purpose to transport information. At first, we study the evolution of the signal powers and the pump powers along the propagation in the optical fiber amplifier Erbium doped. In addition, we study the variation of Erbium ions concentration for different spectroscopic parameters such as signal strength with (0, 1μW, 1mW) and the power of the pump going up 200 mW.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128341971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Control of the time duration of a laser pulse as it focuses spatially in a material provides a means for delaying the onset of nonlinear effects during propagation. We investigate simultaneous space-time focusing (SSTF) of femtosecond radially-chirped annular pulses in Kerr dielectrics. The energy and temporal chirp of pulses incident upon a grating-grating-lens system are varied in simulations that solve the unidirectional pulse propagation equation. This system is modeled by inserting transformations that act on the electric field obtained from propagation from one component to the next. The propagation is coupled to the time evolution of the free charge density as a function of space. The resulting “ionization tracks” are taken as a metric for predicting material modification and/or damage in bulk fused silica. As expected from linear-optical considerations, the temporal pre-chirp determines the overall pulse duration as the focusing annulus closes. We find in addition that, for a given pulse energy, the temporal pre-chirp also determines the on-axis intensity distribution as energy collapses onto the propagation axis. This effect determines how the local ionization-induced decrease in refractive index shifts energy in time relative to energy arriving on-axis from the spatially collapsing beam. The magnitude of the pre-chirp can thus control the spatial structure of ionization that may lead to material modification and/or damage.
{"title":"Calculation of nonlinear optical damage from space-time-tailored pulses in dielectrics","authors":"T. Lanier, J. Gulley","doi":"10.1117/12.2195299","DOIUrl":"https://doi.org/10.1117/12.2195299","url":null,"abstract":"Control of the time duration of a laser pulse as it focuses spatially in a material provides a means for delaying the onset of nonlinear effects during propagation. We investigate simultaneous space-time focusing (SSTF) of femtosecond radially-chirped annular pulses in Kerr dielectrics. The energy and temporal chirp of pulses incident upon a grating-grating-lens system are varied in simulations that solve the unidirectional pulse propagation equation. This system is modeled by inserting transformations that act on the electric field obtained from propagation from one component to the next. The propagation is coupled to the time evolution of the free charge density as a function of space. The resulting “ionization tracks” are taken as a metric for predicting material modification and/or damage in bulk fused silica. As expected from linear-optical considerations, the temporal pre-chirp determines the overall pulse duration as the focusing annulus closes. We find in addition that, for a given pulse energy, the temporal pre-chirp also determines the on-axis intensity distribution as energy collapses onto the propagation axis. This effect determines how the local ionization-induced decrease in refractive index shifts energy in time relative to energy arriving on-axis from the spatially collapsing beam. The magnitude of the pre-chirp can thus control the spatial structure of ionization that may lead to material modification and/or damage.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131714165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klaus Mann, B. Schäfer, M. Stubenvoll, K. Hentschel, M. Zenz
We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.
{"title":"Measurement and compensation of wavefront deformations and focal shifts in high-power laser optics","authors":"Klaus Mann, B. Schäfer, M. Stubenvoll, K. Hentschel, M. Zenz","doi":"10.1117/12.2196160","DOIUrl":"https://doi.org/10.1117/12.2196160","url":null,"abstract":"We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116282180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dam-be Douti, M. Chrayteh, S. Monneret, M. Commandré, L. Gallais
Laser Induced Damage Thresholds and morphologies of damage sites on thin films samples irradiated by sub-ps pulses are studied based on experimental and numerical studies. Experiments are conducted with 500fs pulses at 1030nm and 343nm and the irradiated sites are analyzed with phase imaging, AFM and SEM. The results are compared to simulations of energy deposition in the films based on the Single Rate Equation taking account transient optical properties of the films. Results suggest that a critical absorbed energy as a damage criterion give consistent results both with the measured LIDT and the observed damage morphologies.
{"title":"Analysis of energy deposition and damage mechanisms in single layers of HfO2 and Nb2O5 submitted to 500fs pulses","authors":"Dam-be Douti, M. Chrayteh, S. Monneret, M. Commandré, L. Gallais","doi":"10.1117/12.2195005","DOIUrl":"https://doi.org/10.1117/12.2195005","url":null,"abstract":"Laser Induced Damage Thresholds and morphologies of damage sites on thin films samples irradiated by sub-ps pulses are studied based on experimental and numerical studies. Experiments are conducted with 500fs pulses at 1030nm and 343nm and the irradiated sites are analyzed with phase imaging, AFM and SEM. The results are compared to simulations of energy deposition in the films based on the Single Rate Equation taking account transient optical properties of the films. Results suggest that a critical absorbed energy as a damage criterion give consistent results both with the measured LIDT and the observed damage morphologies.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116227107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Shen, S. Demos, R. Negres, A. Rubenchik, C. Harris, M. Matthews
Surface particulate contamination on optics can lead to laser-induced damage hence limit the performance of high power laser system. In this work we focus on understanding the fundamental mechanisms that lead to damage initiation by metal contaminants. Using time resolved microscopy and plasma spectroscopy, we studied the dynamic process of ejecting ~30 μm stainless steel particles from the exit surface of fused silica substrate irradiated with 1064 nm, 10 ns and 355 nm, 8 ns laser pulses. Time-resolved plasma emission spectroscopy was used to characterize the energy coupling and temperature rise associated with single, 10-ns pulsed laser ablation of metallic particles bound to transparent substrates. Plasma associated with Fe(I) emission lines originating from steel microspheres was observe to cool from <24,000 K to ~15,000 K over ~220 ns as τ-0.22, consistent with radiative losses and adiabatic gas expansion of a relatively free plasma. Simultaneous emission lines from Si(II) associated with the plasma etching of the SiO2 substrate were observed yielding higher plasma temperatures, ~35,000 K, relative to the Fe(I) plasma. The difference in species temperatures is consistent with plasma confinement at the microsphere-substrate interface as the particle is ejected, and is directly visualized using pump-probe shadowgraphy as a function of pulsed laser energy.
{"title":"Energetic laser cleaning of metallic particles and surface damage on silica optics: investigation of the underlying mechanisms","authors":"N. Shen, S. Demos, R. Negres, A. Rubenchik, C. Harris, M. Matthews","doi":"10.1117/12.2195593","DOIUrl":"https://doi.org/10.1117/12.2195593","url":null,"abstract":"Surface particulate contamination on optics can lead to laser-induced damage hence limit the performance of high power laser system. In this work we focus on understanding the fundamental mechanisms that lead to damage initiation by metal contaminants. Using time resolved microscopy and plasma spectroscopy, we studied the dynamic process of ejecting ~30 μm stainless steel particles from the exit surface of fused silica substrate irradiated with 1064 nm, 10 ns and 355 nm, 8 ns laser pulses. Time-resolved plasma emission spectroscopy was used to characterize the energy coupling and temperature rise associated with single, 10-ns pulsed laser ablation of metallic particles bound to transparent substrates. Plasma associated with Fe(I) emission lines originating from steel microspheres was observe to cool from <24,000 K to ~15,000 K over ~220 ns as τ-0.22, consistent with radiative losses and adiabatic gas expansion of a relatively free plasma. Simultaneous emission lines from Si(II) associated with the plasma etching of the SiO2 substrate were observed yielding higher plasma temperatures, ~35,000 K, relative to the Fe(I) plasma. The difference in species temperatures is consistent with plasma confinement at the microsphere-substrate interface as the particle is ejected, and is directly visualized using pump-probe shadowgraphy as a function of pulsed laser energy.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126408093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report on the first realization of direct absorption measurements in thin rods and optical fibers using the laser induced deflection (LID) technique. Typically, along the fiber processing chain more or less technology steps are able to introduce additional losses to the starting material. After the final processing, the fibers are commonly characterized regarding losses using the so-called cut-back technique in combination with spectrometers. This, however, only serves for a total loss determination. For optimization of the fiber processing, it would be of great interest to not only distinguish between different loss mechanisms but also have a better understanding of possible causes. For measuring the absorption losses along the fiber processing, a particular concept for the LID technique is introduced and requirements, calibration procedure as well as first results are presented. It allows to measure thin rods, e.g. during preform manufacturing, as well as optical fibers. In addition, the results show the prospects to also apply the new concept to topics like characterizing unwanted absorption after fiber splicing or Bragg grating inscription.
{"title":"Direct absorption measurements in thin rods and optical fibers","authors":"C. Mühlig, S. Bublitz, M. Lorenz","doi":"10.1117/12.2192579","DOIUrl":"https://doi.org/10.1117/12.2192579","url":null,"abstract":"We report on the first realization of direct absorption measurements in thin rods and optical fibers using the laser induced deflection (LID) technique. Typically, along the fiber processing chain more or less technology steps are able to introduce additional losses to the starting material. After the final processing, the fibers are commonly characterized regarding losses using the so-called cut-back technique in combination with spectrometers. This, however, only serves for a total loss determination. For optimization of the fiber processing, it would be of great interest to not only distinguish between different loss mechanisms but also have a better understanding of possible causes. For measuring the absorption losses along the fiber processing, a particular concept for the LID technique is introduced and requirements, calibration procedure as well as first results are presented. It allows to measure thin rods, e.g. during preform manufacturing, as well as optical fibers. In addition, the results show the prospects to also apply the new concept to topics like characterizing unwanted absorption after fiber splicing or Bragg grating inscription.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114253379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}