Pub Date : 2024-07-25DOI: 10.1177/09544089241263144
Abhishek Shrivastava, S Anand Kumar, Samrat Rao
The influence of post-heat treatment on the microstructural and electropolishing characteristics of the laser powder bed fusion processed Inconel 718 is studied. The electropolishing results show a significant decrease in the surface roughness for as-printed (∼69%) and post-heat treatment conditions (∼74%) with increasing current density and polishing time. The surface morphology of the as-printed samples showed the presence of unaltered asperities on the electropolished surface, which can be attributed to the precipitation of non-conductive lave phases and metal carbides during laser powder bed fusion processing. The post-heat treatment homogenizes microstructure and dissolves these phases in the metal matrix along with the precipitation of strengthening phases. As a result, the surface morphology of post-heat treatment samples becomes more uniform, signifying fewer surface irregularities. The statistical parameters show a significant reduction in sharp asperities in the post-heat treatment condition. The material ratio curves revealed uniform material distribution in the post-heat treatment samples, signifying reduced surface asperities compared to as-printed conditions.
{"title":"Exploring the post-heat treatment on the electropolishing characteristics of laser powder bed fusion processed Inconel 718 superalloy","authors":"Abhishek Shrivastava, S Anand Kumar, Samrat Rao","doi":"10.1177/09544089241263144","DOIUrl":"https://doi.org/10.1177/09544089241263144","url":null,"abstract":"The influence of post-heat treatment on the microstructural and electropolishing characteristics of the laser powder bed fusion processed Inconel 718 is studied. The electropolishing results show a significant decrease in the surface roughness for as-printed (∼69%) and post-heat treatment conditions (∼74%) with increasing current density and polishing time. The surface morphology of the as-printed samples showed the presence of unaltered asperities on the electropolished surface, which can be attributed to the precipitation of non-conductive lave phases and metal carbides during laser powder bed fusion processing. The post-heat treatment homogenizes microstructure and dissolves these phases in the metal matrix along with the precipitation of strengthening phases. As a result, the surface morphology of post-heat treatment samples becomes more uniform, signifying fewer surface irregularities. The statistical parameters show a significant reduction in sharp asperities in the post-heat treatment condition. The material ratio curves revealed uniform material distribution in the post-heat treatment samples, signifying reduced surface asperities compared to as-printed conditions.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this work is to study the effect of the position of an obstacle in the U-shaped with length lr = 0.6 H and height hr = 0.4 H, thickness wr = 0.2 H located inside a square cavity of two-dimensional length L and height H filled with a diamond–water nanofluid (solid volume fraction in the range of 0.05). The bottom wall of the cavity is brought to a constant hot temperature ( Th). The two side walls are cooled to a constant temperature Tf, and the upper wall of the cavity is adiabatic. The position of the obstacle in relation to the hot wall was studied in four cases: in the first case, the obstacle is placed on the vertical left side wall, the obstacle is placed on the upper in case 2, (against a hot wall), the obstacle is placed on the vertical right side wall in the case three, and the fourth case the obstacle is placed on the hot wall. The effect of the obstacle dimensions, such as its thickness, length, and width in the fourth case, on heat exchange inside the cavity was also studied. Numerical results were developed for Rayleigh numbers equal to 103 and 105 for the laminar and steady flow regime. According to the results obtained from the study, the effect of increasing the Rayleigh number on the heat transfer coefficient was observed in the four cases. We found that the position of the obstacle in the fourth case gives the best heat exchange compared to the cases studied, with a difference of 8.8%, 11%, and 8.9% for the first case, the second case, and the third case, respectively. We also noticed that an increase in the thickness, length, and height of the obstacle affects the heat exchange in the fourth case.
这项工作的目的是研究在长度为 lr = 0.6 H、高度为 hr = 0.4 H、厚度为 wr = 0.2 H 的二维长度为 L、高度为 H 的正方形空腔内填充金刚石水纳米流体(固体体积分数范围为 0.05)的 U 形障碍物位置的影响。空腔底壁温度恒定(Th)。两个侧壁冷却到恒温 Tf,空腔上壁为绝热。研究了四种情况下障碍物与热壁的位置关系:第一种情况下,障碍物位于垂直的左侧壁上;第二种情况下,障碍物位于上部(靠着热壁);第三种情况下,障碍物位于垂直的右侧壁上;第四种情况下,障碍物位于热壁上。此外,还研究了第四种情况下障碍物的厚度、长度和宽度等尺寸对空腔内热交换的影响。在层流和稳定流状态下,在雷利数等于 103 和 105 时得出了数值结果。研究结果表明,在四种情况下,增加瑞利数对传热系数都有影响。我们发现,与所研究的情况相比,第四种情况下的障碍物位置的热交换效果最好,与第一种情况、第二种情况和第三种情况的热交换效果分别相差 8.8%、11% 和 8.9%。我们还注意到,障碍物厚度、长度和高度的增加会影响第四种情况下的热交换。
{"title":"Influence of the position and dimensions of a U-shaped obstacle in a cavity containing a nanofluid on the thermal performances","authors":"Chadi Kamel, Belghar Nourredine, Lachi Mohammed, Driss Zied, Azzouz El amin","doi":"10.1177/09544089241263706","DOIUrl":"https://doi.org/10.1177/09544089241263706","url":null,"abstract":"The aim of this work is to study the effect of the position of an obstacle in the U-shaped with length l<jats:sub>r </jats:sub>= 0.6 H and height h<jats:sub>r </jats:sub>= 0.4 H, thickness w<jats:sub>r </jats:sub>= 0.2 H located inside a square cavity of two-dimensional length L and height H filled with a diamond–water nanofluid (solid volume fraction in the range of 0.05). The bottom wall of the cavity is brought to a constant hot temperature ( T<jats:sub>h</jats:sub>). The two side walls are cooled to a constant temperature T<jats:sub>f</jats:sub>, and the upper wall of the cavity is adiabatic. The position of the obstacle in relation to the hot wall was studied in four cases: in the first case, the obstacle is placed on the vertical left side wall, the obstacle is placed on the upper in case 2, (against a hot wall), the obstacle is placed on the vertical right side wall in the case three, and the fourth case the obstacle is placed on the hot wall. The effect of the obstacle dimensions, such as its thickness, length, and width in the fourth case, on heat exchange inside the cavity was also studied. Numerical results were developed for Rayleigh numbers equal to 10<jats:sup>3</jats:sup> and 10<jats:sup>5</jats:sup> for the laminar and steady flow regime. According to the results obtained from the study, the effect of increasing the Rayleigh number on the heat transfer coefficient was observed in the four cases. We found that the position of the obstacle in the fourth case gives the best heat exchange compared to the cases studied, with a difference of 8.8%, 11%, and 8.9% for the first case, the second case, and the third case, respectively. We also noticed that an increase in the thickness, length, and height of the obstacle affects the heat exchange in the fourth case.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"108 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetohydrodynamic (MHD) flow for nonlinear convective fluids with heat source, viscous dissipation, and heat radiation play such vital role in various engineering and applied problems. The present study concerned about entropy generation and stream surface on MHD nonlinear convective flow over an oscillating surface. Both heat source and nonlinear form of heat radiation are taken into account for their respective effects. Moreover, this study assumes a uniformly sized magnetic field that acts normal to the fluid flow. Through proper similarity transformations, leading nonlinear partial differential equations (PDEs) can be reduced to non-dimensional form. To solve these nonlinear PDEs numerically, finite difference method was employed. This study aims to find out the behavior of stream surface, entropy generation, Bejan number, temperature, and velocity for numerous physical factors as well. Observation highlights that the magnetic parameter reduces fluid velocity, and rate of heat transfer, though enhances entropy generation and shear stress. Grashof number lowers heat transport rate and share stress despite improving fluid velocity and stream surface. The application of electromagnetic field reflects stream surface to be decreased. The fluid temperature rises in response to Eckert number and heat source. Brinkman number amplifies both Bejan number and entropy generation.
{"title":"A finite difference approach for analysis of entropy generation and stream surface on nonlinear convective magnetohydrodynamic flow over an oscillating surface","authors":"Gopal Chandra Hazarika, Utpal Jyoti Das, Indushri Patgiri, Jubi Begum","doi":"10.1177/09544089241266423","DOIUrl":"https://doi.org/10.1177/09544089241266423","url":null,"abstract":"Magnetohydrodynamic (MHD) flow for nonlinear convective fluids with heat source, viscous dissipation, and heat radiation play such vital role in various engineering and applied problems. The present study concerned about entropy generation and stream surface on MHD nonlinear convective flow over an oscillating surface. Both heat source and nonlinear form of heat radiation are taken into account for their respective effects. Moreover, this study assumes a uniformly sized magnetic field that acts normal to the fluid flow. Through proper similarity transformations, leading nonlinear partial differential equations (PDEs) can be reduced to non-dimensional form. To solve these nonlinear PDEs numerically, finite difference method was employed. This study aims to find out the behavior of stream surface, entropy generation, Bejan number, temperature, and velocity for numerous physical factors as well. Observation highlights that the magnetic parameter reduces fluid velocity, and rate of heat transfer, though enhances entropy generation and shear stress. Grashof number lowers heat transport rate and share stress despite improving fluid velocity and stream surface. The application of electromagnetic field reflects stream surface to be decreased. The fluid temperature rises in response to Eckert number and heat source. Brinkman number amplifies both Bejan number and entropy generation.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"71 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544089241262957
Zeynep Küçükakça Meral, Umut Küçükoğlu, Zekeriya Parlak, Nezaket Parlak
In this study, single- and two-phase flow and heat transfer characteristics in copper and aluminum heat sinks were investigated experimentally. Deionized water was used as the working fluid in the experiments. Two-phase flow tests were performed at low vapor qualities (∼0.1). Each heat sink has a square shape of 20 mm × 20 mm. Heat sinks have 15 parallel microchannels. The hydraulic diameters of the channels range from 400 to 500μm, and their aspect ratios range from 0.4 to 2.5. The effects of material and aspect ratio on two-phase flow were studied. Experimental Nu values for single-phase flow were found to vary with an increasing trend between 4.6 and 7.2 values. The data overlap with the data obtained from the Sieder-Tate correlation for Re > 280. For Re < 280, the difference reaches 25%. The pressure drop in two-phase flow is 2.5 times higher than that measured in single-phase flow. The heat transfer coefficients of two-phase flow decreased with increasing the degree of vapor quality and increased with increasing mass flow rate. Heat transfer coefficients were found to be higher for 2.5 aspect ratio than coolers with similar hydraulic diameters. Additionally, the heat transfer coefficients of the copper heatsink were higher than those of aluminum.
{"title":"An experimental investigation of single- and two-phase flow in copper and aluminum microchannel heat sinks","authors":"Zeynep Küçükakça Meral, Umut Küçükoğlu, Zekeriya Parlak, Nezaket Parlak","doi":"10.1177/09544089241262957","DOIUrl":"https://doi.org/10.1177/09544089241262957","url":null,"abstract":"In this study, single- and two-phase flow and heat transfer characteristics in copper and aluminum heat sinks were investigated experimentally. Deionized water was used as the working fluid in the experiments. Two-phase flow tests were performed at low vapor qualities (∼0.1). Each heat sink has a square shape of 20 mm × 20 mm. Heat sinks have 15 parallel microchannels. The hydraulic diameters of the channels range from 400 to 500μm, and their aspect ratios range from 0.4 to 2.5. The effects of material and aspect ratio on two-phase flow were studied. Experimental Nu values for single-phase flow were found to vary with an increasing trend between 4.6 and 7.2 values. The data overlap with the data obtained from the Sieder-Tate correlation for Re > 280. For Re < 280, the difference reaches 25%. The pressure drop in two-phase flow is 2.5 times higher than that measured in single-phase flow. The heat transfer coefficients of two-phase flow decreased with increasing the degree of vapor quality and increased with increasing mass flow rate. Heat transfer coefficients were found to be higher for 2.5 aspect ratio than coolers with similar hydraulic diameters. Additionally, the heat transfer coefficients of the copper heatsink were higher than those of aluminum.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"29 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544089241262965
Wuguo Wei, Chao Wu, Junjie Zhang
Variations in mass moment of aeroengine blades can cause different residual unbalances, leading to exceeding vibration limit values. For this reason, an accurate and rapid selection of a suitable blade arrangement is essential for improving assembly quality and efficiency. This work innovatively applies the strengthened elitist genetic algorithm (SEGA) to the optimization of blade arrangement for aeroengine. This work investigates the effects of population size (Ps: 100–500), population crossover probability (Pc: 0.6–0.9), and population mutation probability (Pm: 0.6–0.9) on the convergence speed and accuracy of the algorithm, respectively. The obtained results indicate that the optimal parameters of the algorithm are 300 for Ps, 0.7 for Pc, and 0.9 for Pm, which can quickly search for high-precision solution. Compared to the elitist genetic algorithm (EGA), the accuracy value of SEGA is improved about 82%. In addition, this work conducted simulated vibration platform to verify SEGA, and the obtained results show that the vibration values are reduced by 4.19%, 10.19%, and 2.99% at stable speeds of 1000, 1500, and 2000 rpm, respectively, compared to that of group sorting. This work employs a novel SEGA that can effectively improve the accuracy value and reduce vibration values compared to EGA and group sorting, respectively. The above may reduce the residual unbalances of the aeroengine, improve the quality of assembly, and provide a new idea for the assembly of blades.
航空发动机叶片质量力矩的变化会造成不同的残余不平衡,从而导致超过振动极限值。因此,准确、快速地选择合适的叶片排列方式对于提高装配质量和效率至关重要。本研究创新性地将强化精英遗传算法(SEGA)应用于航空发动机叶片排列的优化。研究了种群规模(Ps:100-500)、种群交叉概率(Pc:0.6-0.9)和种群突变概率(Pm:0.6-0.9)分别对算法收敛速度和精度的影响。结果表明,该算法的最优参数为:Ps:300;Pc:0.7;Pm:0.9,可以快速搜索到高精度的解。与精英遗传算法(EGA)相比,SEGA 的精度值提高了约 82%。此外,这项工作还进行了模拟振动平台来验证 SEGA,结果表明,在稳定转速为 1000、1500 和 2000 rpm 时,与分组排序相比,振动值分别降低了 4.19%、10.19% 和 2.99%。与 EGA 和分组分拣相比,本研究采用的新型 SEGA 可分别有效提高精度值和降低振动值。上述方法可减少航空发动机的残余不平衡,提高装配质量,并为叶片装配提供了新思路。
{"title":"Strengthened elitist genetic algorithm for aeroengine blade arrangement optimisation","authors":"Wuguo Wei, Chao Wu, Junjie Zhang","doi":"10.1177/09544089241262965","DOIUrl":"https://doi.org/10.1177/09544089241262965","url":null,"abstract":"Variations in mass moment of aeroengine blades can cause different residual unbalances, leading to exceeding vibration limit values. For this reason, an accurate and rapid selection of a suitable blade arrangement is essential for improving assembly quality and efficiency. This work innovatively applies the strengthened elitist genetic algorithm (SEGA) to the optimization of blade arrangement for aeroengine. This work investigates the effects of population size (Ps: 100–500), population crossover probability (Pc: 0.6–0.9), and population mutation probability (Pm: 0.6–0.9) on the convergence speed and accuracy of the algorithm, respectively. The obtained results indicate that the optimal parameters of the algorithm are 300 for Ps, 0.7 for Pc, and 0.9 for Pm, which can quickly search for high-precision solution. Compared to the elitist genetic algorithm (EGA), the accuracy value of SEGA is improved about 82%. In addition, this work conducted simulated vibration platform to verify SEGA, and the obtained results show that the vibration values are reduced by 4.19%, 10.19%, and 2.99% at stable speeds of 1000, 1500, and 2000 rpm, respectively, compared to that of group sorting. This work employs a novel SEGA that can effectively improve the accuracy value and reduce vibration values compared to EGA and group sorting, respectively. The above may reduce the residual unbalances of the aeroengine, improve the quality of assembly, and provide a new idea for the assembly of blades.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1177/09544089241264180
E Sivakumar, K K Saju
The demand for environmentally conscious materials has led the research on natural fiber composites as an alternative to synthetic materials in various industries. This study focuses on the optimization and preparation of alkali-treated Similax Zelanica/glass fiber and nanosilica-reinforced epoxy composites. The weight % of Similax Zelanica/glass and nanosilica was optimized using the grey relational analysis (GRA) multiparameter optimization technique and DOE of L9 orthogonal was used. Mechanical properties including tensile, flexural, impact, rock well hardness, and dynamic mechanical analysis were evaluated. Results indicate that increasing fiber volume fraction up to 30% enhances mechanical properties, with subsequent declines beyond this threshold. Tensile strength peaked at 30% fiber volume (75 MPa), while flexural strength also peaked at 30% substrate (140 MPa). The impact test showed a maximum of 1.84 kJ/m2 at 30% volume fraction. Maximum hardness of 85 RHN is observed for 30% S and 60% E specimens. Weibull distribution plots results, aligned well with the expected distribution pattern, indicating consistent and reliable mechanical behavior. Water absorption rates increase with fiber volume percentage increase, but optimal alkali treatment improves, absorption resistance to some extent. Dynamic mechanical analysis reveals reduced glass transition temperature Tg (97° C) for composite due to their better interaction nature between fiber/silica nanoparticles and matrix. Further characterization reveals thermal stability (374°C), crystalline properties (crystalline index: 56.87%, crystalline size: 21.23 nm), and functional group composition. Numerical analysis using ANSYS validates experimental results, giving confidence in repeatability. Scanning electron microscope analysis confirms good interfacial bonding, crack propagation details, and absence of impurities in the composite. These results like Mechanical properties, thermal stability, crystalline properties, and functional group composition of the composite confirm its suitability for various applications.
对环保材料的需求促使人们对天然纤维复合材料进行研究,以替代各行各业的合成材料。本研究的重点是优化和制备碱处理的泽兰/玻璃纤维和纳米二氧化硅增强环氧树脂复合材料。采用灰色关系分析(GRA)多参数优化技术和 L9 正交 DOE 方法优化了泽兰草/玻璃纤维和纳米二氧化硅的重量百分比。对拉伸、弯曲、冲击、岩井硬度和动态力学分析等力学性能进行了评估。结果表明,纤维体积分数增加到 30% 会提高机械性能,超过这一临界值后,机械性能会随之下降。拉伸强度在纤维体积占 30% 时达到峰值(75 兆帕),而弯曲强度也在纤维体积占 30% 时达到峰值(140 兆帕)。冲击试验显示,体积分数为 30% 时的最大值为 1.84 kJ/m2。30% S 和 60% E 试样的最大硬度为 85 RHN。Weibull 分布图结果与预期的分布模式非常吻合,表明机械性能一致可靠。吸水率随纤维体积百分比的增加而增加,但最佳碱处理可在一定程度上提高抗吸水性。动态机械分析表明,由于纤维/二氧化硅纳米颗粒与基体之间的相互作用性质更好,复合材料的玻璃化转变温度 Tg(97° C)有所降低。进一步的表征显示了热稳定性(374°C)、结晶特性(结晶指数:56.87%,结晶尺寸:21.23 nm)和官能团组成。使用 ANSYS 进行的数值分析验证了实验结果,使人们对可重复性充满信心。扫描电子显微镜分析证实了良好的界面结合、裂纹扩展细节以及复合材料中无杂质。这些结果,如复合材料的机械性能、热稳定性、结晶性能和官能团组成,证实了其适用于各种应用。
{"title":"Mechanical characteristics of optimized alkali-treated Similax Zelanica/glass fiber/nanosilica composites in an epoxy matrix: An experimental investigation and numerical study","authors":"E Sivakumar, K K Saju","doi":"10.1177/09544089241264180","DOIUrl":"https://doi.org/10.1177/09544089241264180","url":null,"abstract":"The demand for environmentally conscious materials has led the research on natural fiber composites as an alternative to synthetic materials in various industries. This study focuses on the optimization and preparation of alkali-treated Similax Zelanica/glass fiber and nanosilica-reinforced epoxy composites. The weight % of Similax Zelanica/glass and nanosilica was optimized using the grey relational analysis (GRA) multiparameter optimization technique and DOE of L9 orthogonal was used. Mechanical properties including tensile, flexural, impact, rock well hardness, and dynamic mechanical analysis were evaluated. Results indicate that increasing fiber volume fraction up to 30% enhances mechanical properties, with subsequent declines beyond this threshold. Tensile strength peaked at 30% fiber volume (75 MPa), while flexural strength also peaked at 30% substrate (140 MPa). The impact test showed a maximum of 1.84 kJ/m<jats:sup>2</jats:sup> at 30% volume fraction. Maximum hardness of 85 RHN is observed for 30% S and 60% E specimens. Weibull distribution plots results, aligned well with the expected distribution pattern, indicating consistent and reliable mechanical behavior. Water absorption rates increase with fiber volume percentage increase, but optimal alkali treatment improves, absorption resistance to some extent. Dynamic mechanical analysis reveals reduced glass transition temperature Tg (97° C) for composite due to their better interaction nature between fiber/silica nanoparticles and matrix. Further characterization reveals thermal stability (374°C), crystalline properties (crystalline index: 56.87%, crystalline size: 21.23 nm), and functional group composition. Numerical analysis using ANSYS validates experimental results, giving confidence in repeatability. Scanning electron microscope analysis confirms good interfacial bonding, crack propagation details, and absence of impurities in the composite. These results like Mechanical properties, thermal stability, crystalline properties, and functional group composition of the composite confirm its suitability for various applications.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"46 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1177/09544089241264088
Subham Jangid, Kaladhar Kolla
The study examined the natural convection flow of Williamson fluid through a vertical channel under the influence of the magnetic field, radiation, and joule heating effects. The governing partial differential equations are turned into ordinary differential equations using suitable transformations and solved by using the spectral quasi-linearization method (SQLM). The study explained a neural network algorithm called feed-forward back-propagation using the Levenberg–Marquardt technique (BPFF-LMT). Furthermore, a reference dataset is created for several parameters, including the magnetic parameter, Hall parameter, radiation parameter, Weissenberg number, Biot number, and Joule heating parameter. This dataset encompasses velocity and temperature profiles for different scenarios, employing the SQLM. The BPFF-LMT method’s accuracy was evaluated through a comprehensive analysis involving training, validation, and testing phases, along with mean squared error, error histograms, and performance and regression graphs. The artificial neural network’s result shows good accuracy when compared to the SQLM solution numerically. The results are presented visually through graphical representation and further analyzed quantitatively concerning the active parameters featured in the mathematical formulations. The result indicates that increasing values of the magnetic parameter result in decreased velocity and temperature profiles. Additionally, the heat transfer rate increases in the left channel. Both the radiation parameter and Weissenberg number contribute to higher velocity and temperature profiles, leading to increased skin friction in the left channel. The accuracy of the BPFF-LMT method is illustrated through graphs displaying the absolute error falling within the range of [Formula: see text] to [Formula: see text].
{"title":"Magnetic field, radiation, and Joule heating effects on natural convection Williamson fluid flow through a vertical channel using Levenberg–Marquardt algorithm","authors":"Subham Jangid, Kaladhar Kolla","doi":"10.1177/09544089241264088","DOIUrl":"https://doi.org/10.1177/09544089241264088","url":null,"abstract":"The study examined the natural convection flow of Williamson fluid through a vertical channel under the influence of the magnetic field, radiation, and joule heating effects. The governing partial differential equations are turned into ordinary differential equations using suitable transformations and solved by using the spectral quasi-linearization method (SQLM). The study explained a neural network algorithm called feed-forward back-propagation using the Levenberg–Marquardt technique (BPFF-LMT). Furthermore, a reference dataset is created for several parameters, including the magnetic parameter, Hall parameter, radiation parameter, Weissenberg number, Biot number, and Joule heating parameter. This dataset encompasses velocity and temperature profiles for different scenarios, employing the SQLM. The BPFF-LMT method’s accuracy was evaluated through a comprehensive analysis involving training, validation, and testing phases, along with mean squared error, error histograms, and performance and regression graphs. The artificial neural network’s result shows good accuracy when compared to the SQLM solution numerically. The results are presented visually through graphical representation and further analyzed quantitatively concerning the active parameters featured in the mathematical formulations. The result indicates that increasing values of the magnetic parameter result in decreased velocity and temperature profiles. Additionally, the heat transfer rate increases in the left channel. Both the radiation parameter and Weissenberg number contribute to higher velocity and temperature profiles, leading to increased skin friction in the left channel. The accuracy of the BPFF-LMT method is illustrated through graphs displaying the absolute error falling within the range of [Formula: see text] to [Formula: see text].","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"43 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1177/09544089241262481
Yasin Furkan Gorgulu
In this study, a novel approach was employed to enhance the performance of a Bowman brand EC-2028 shell-and-tube heat exchanger (STHE) by introducing perforated plates. The heat exchanger was first tested in a real system within a laboratory environment to establish baseline performance data. Computational fluid dynamics (CFD) analysis revealed that flow velocities in the middle tubes were higher due to their alignment with the main flow direction, resulting in decreased heat transfer efficiency. To address this issue, a perforated plate with concentric circles was introduced at the cold fluid entry. This plate, devoid of central holes, featured circles with radii of 9, 18, 27, 36, 45, 54, and 63 mm, each containing 6, 10, 17, 24, 30, 36, and 42 equidistant holes, respectively. The introduction of the perforated plate led to a decrease of approximately 0.33°C in the hot outlet temperatures, indicating an improvement in heat transfer efficiency. To further enhance performance, various configurations were tested by progressively closing holes from the innermost to the outermost circles. Eight different configurations, including the control, were evaluated under counterflow conditions. The CFD model was validated with experimental data before introducing the perforated plates, ensuring the accuracy of the simulations. The findings demonstrated significant improvements in heat transfer efficiency, with the optimized perforated plate configurations leading to more uniform flow distribution and reduced pressure drops. This study's novel approach of using perforated plates to modulate flow and enhance thermal performance highlights a new avenue for optimizing STHE designs, contributing to more efficient thermal management solutions in industrial processes.
{"title":"Thermal efficiency evaluation in shell-and-tube heat exchangers: A CFD-based parametric study","authors":"Yasin Furkan Gorgulu","doi":"10.1177/09544089241262481","DOIUrl":"https://doi.org/10.1177/09544089241262481","url":null,"abstract":"In this study, a novel approach was employed to enhance the performance of a Bowman brand EC-2028 shell-and-tube heat exchanger (STHE) by introducing perforated plates. The heat exchanger was first tested in a real system within a laboratory environment to establish baseline performance data. Computational fluid dynamics (CFD) analysis revealed that flow velocities in the middle tubes were higher due to their alignment with the main flow direction, resulting in decreased heat transfer efficiency. To address this issue, a perforated plate with concentric circles was introduced at the cold fluid entry. This plate, devoid of central holes, featured circles with radii of 9, 18, 27, 36, 45, 54, and 63 mm, each containing 6, 10, 17, 24, 30, 36, and 42 equidistant holes, respectively. The introduction of the perforated plate led to a decrease of approximately 0.33°C in the hot outlet temperatures, indicating an improvement in heat transfer efficiency. To further enhance performance, various configurations were tested by progressively closing holes from the innermost to the outermost circles. Eight different configurations, including the control, were evaluated under counterflow conditions. The CFD model was validated with experimental data before introducing the perforated plates, ensuring the accuracy of the simulations. The findings demonstrated significant improvements in heat transfer efficiency, with the optimized perforated plate configurations leading to more uniform flow distribution and reduced pressure drops. This study's novel approach of using perforated plates to modulate flow and enhance thermal performance highlights a new avenue for optimizing STHE designs, contributing to more efficient thermal management solutions in industrial processes.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1177/09544089241253083
Himanshu Mahesh Shukla, Mahendra M. Gupta
Productivity plays a pivotal role in profitability and success of business. In this study, the wood cutting activity in Indian sawmills is selected. This study replicates the novel approach by integrating spherical fuzzy DEMATEL (Decision Making Trial and Evaluation Laboratory) and artificial neural networks (ANN) to improve the wood cutting productivity in Indian sawmills. The measure of betterness is selected as net productivity rate (NPR), a time-based labor productivity measure. The methodology unfolds in two crucial steps. First, SF-DEMATEL is employed to unearth influential factors affecting wood cutting, delving into their interrelationships through fuzzy logic. This process provides relationships between key determinants and their interconnected dynamics. Secondly, an ANN, a machine learning algorithm, is harnessed to predict wood cutting performance based on these identified factors. The ANN is trained using historical or simulation data, paving the way for predictions under diverse scenarios. The novelty of this approach lies in its holistic precision. The results showcase that lifting index and log weight emerge as primary influencers on productivity, with NPR, occupational risk index, and perceived exertion ranking lower. In the grand tapestry of factors, the study unveils universal driving forces, such as the weight of the log and lifting index. The ANN model, attaining a remarkable RMSE = 0.0478 and R2 = 0.9783 for training set and for training data and RMSE = 0.0487 and R2 = 0.9727 for testing data. This contributes to the comprehensive ranking comparison of factors derived from both Fuzzy DEMATEL and ANN. In summation, the fusion of Fuzzy DEMATEL and ANN unravels the intricacies of wood cutting dynamics. By identifying key factors and predicting performance, this approach provides a transformative gateway to enhance wood cutting quality and efficiency, thereby elevating the overall productivity of the woodworking industry.
生产率对企业的盈利和成功起着举足轻重的作用。本研究选择了印度锯木厂的木材切割活动。本研究通过整合球形模糊 DEMATEL(决策试验和评估实验室)和人工神经网络(ANN),复制了一种新方法,以提高印度锯木厂的木材切割生产率。更好的衡量标准是净生产率(NPR),这是一种基于时间的劳动生产率衡量标准。该方法分为两个关键步骤。首先,采用 SF-DEMATEL 来发掘影响木材切割的因素,通过模糊逻辑深入研究这些因素之间的相互关系。这一过程提供了关键决定因素之间的关系及其相互关联的动态。其次,利用机器学习算法 ANN,根据这些确定的因素预测木材切割性能。使用历史数据或模拟数据对 ANN 进行训练,为在不同情况下进行预测铺平道路。这种方法的新颖之处在于其整体精确性。研究结果表明,提升指数和原木重量是影响生产率的主要因素,而全国人口普查指数、职业风险指数和体力消耗指数则排名靠后。在众多因素中,研究揭示了普遍的驱动力,如原木重量和提升指数。ANN 模型在训练集和训练数据中的 RMSE = 0.0478 和 R2 = 0.9783,以及在测试数据中的 RMSE = 0.0487 和 R2 = 0.9727,均达到了很高的水平。这有助于对模糊 DEMATEL 和 ANN 得出的因子进行综合排名比较。总之,模糊 DEMATEL 和 ANN 的融合揭示了木材切割动态的复杂性。通过识别关键因素和预测性能,该方法为提高木材切割质量和效率提供了一个变革性途径,从而提升了木材加工行业的整体生产力。
{"title":"A comprehensive approach to enhance wood cutting productivity: Integration of spherical fuzzy DEMATEL and artificial neural networks","authors":"Himanshu Mahesh Shukla, Mahendra M. Gupta","doi":"10.1177/09544089241253083","DOIUrl":"https://doi.org/10.1177/09544089241253083","url":null,"abstract":"Productivity plays a pivotal role in profitability and success of business. In this study, the wood cutting activity in Indian sawmills is selected. This study replicates the novel approach by integrating spherical fuzzy DEMATEL (Decision Making Trial and Evaluation Laboratory) and artificial neural networks (ANN) to improve the wood cutting productivity in Indian sawmills. The measure of betterness is selected as net productivity rate (NPR), a time-based labor productivity measure. The methodology unfolds in two crucial steps. First, SF-DEMATEL is employed to unearth influential factors affecting wood cutting, delving into their interrelationships through fuzzy logic. This process provides relationships between key determinants and their interconnected dynamics. Secondly, an ANN, a machine learning algorithm, is harnessed to predict wood cutting performance based on these identified factors. The ANN is trained using historical or simulation data, paving the way for predictions under diverse scenarios. The novelty of this approach lies in its holistic precision. The results showcase that lifting index and log weight emerge as primary influencers on productivity, with NPR, occupational risk index, and perceived exertion ranking lower. In the grand tapestry of factors, the study unveils universal driving forces, such as the weight of the log and lifting index. The ANN model, attaining a remarkable RMSE = 0.0478 and R<jats:sup>2</jats:sup> = 0.9783 for training set and for training data and RMSE = 0.0487 and R<jats:sup>2</jats:sup> = 0.9727 for testing data. This contributes to the comprehensive ranking comparison of factors derived from both Fuzzy DEMATEL and ANN. In summation, the fusion of Fuzzy DEMATEL and ANN unravels the intricacies of wood cutting dynamics. By identifying key factors and predicting performance, this approach provides a transformative gateway to enhance wood cutting quality and efficiency, thereby elevating the overall productivity of the woodworking industry.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, an erosion model of silicon carbide ceramics and YW3 was established by combining experimental and numerical simulation data. This model can be applied for the prediction of erosion in natural gas equipment and transportation systems and also provides ideas for the establishment of erosion models. The erosion model was established by using quartz sand, brown corundum, and glass beads as abrasive materials, and then the accuracy of the erosion model was confirmed by numerical simulations. The results showed that when the abrasive was quartz sand, brown corundum, or glass beads, the erosion angle at which the maximum erosion of silicon carbide and YW3 occurred was related to the type of abrasive. When the abrasive was quartz sand, brown corundum, and glass beads, the velocity index n of silicon carbide was 3.24, 3.66, and 3.32, respectively, and the model constant k was 4.1959 × 10−11, 3.6436 × 10−11, and 4.1838 × 10−11, respectively. The velocity index n of YW3 was 2.29, 2.41, and 1.87, respectively, and the model constant k was 2.6176 × 10−7, 3.0017 × 10−7, and 3.1040 × 10−7, respectively. When the test results were compared with the numerical simulation results, the maximum error for silicon carbide was 6.59%, 7.71%, and 9.25%, respectively, and the maximum error for YW3 was 8.78%, 9.51%, and 5.97%, respectively. Finally, the erosion model of silicon carbide ceramics and YW3 was established via a large number of experiments and numerical simulations. When the target material and abrasive material are the same, it can be directly used for erosion prediction and structure optimization of natural gas equipment. Meanwhile, this paper provides a new idea for the establishment of gas–solid two-phase erosion model, and when the abrasive material and target material change, a new erosion model can be established according to the idea of this paper.
{"title":"Erosion model of silicon carbide ceramics and YW3","authors":"Chunyu Feng, Zhen Wang, Yuelong Liu, Xuefeng Deng, Pei Xiong","doi":"10.1177/09544089241255926","DOIUrl":"https://doi.org/10.1177/09544089241255926","url":null,"abstract":"In this study, an erosion model of silicon carbide ceramics and YW3 was established by combining experimental and numerical simulation data. This model can be applied for the prediction of erosion in natural gas equipment and transportation systems and also provides ideas for the establishment of erosion models. The erosion model was established by using quartz sand, brown corundum, and glass beads as abrasive materials, and then the accuracy of the erosion model was confirmed by numerical simulations. The results showed that when the abrasive was quartz sand, brown corundum, or glass beads, the erosion angle at which the maximum erosion of silicon carbide and YW3 occurred was related to the type of abrasive. When the abrasive was quartz sand, brown corundum, and glass beads, the velocity index n of silicon carbide was 3.24, 3.66, and 3.32, respectively, and the model constant k was 4.1959 × 10<jats:sup>−11</jats:sup>, 3.6436 × 10<jats:sup>−11</jats:sup>, and 4.1838 × 10<jats:sup>−11</jats:sup>, respectively. The velocity index n of YW3 was 2.29, 2.41, and 1.87, respectively, and the model constant k was 2.6176 × 10<jats:sup>−7</jats:sup>, 3.0017 × 10<jats:sup>−7</jats:sup>, and 3.1040 × 10<jats:sup>−7</jats:sup>, respectively. When the test results were compared with the numerical simulation results, the maximum error for silicon carbide was 6.59%, 7.71%, and 9.25%, respectively, and the maximum error for YW3 was 8.78%, 9.51%, and 5.97%, respectively. Finally, the erosion model of silicon carbide ceramics and YW3 was established via a large number of experiments and numerical simulations. When the target material and abrasive material are the same, it can be directly used for erosion prediction and structure optimization of natural gas equipment. Meanwhile, this paper provides a new idea for the establishment of gas–solid two-phase erosion model, and when the abrasive material and target material change, a new erosion model can be established according to the idea of this paper.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"58 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}