Pub Date : 2024-07-26DOI: 10.1177/09544089241263456
Andrews Athisayam, Manisekar Kondal
Surface roughness plays a pivotal role in assessing machining quality, and numerous research efforts have been devoted to predicting surface roughness in turning processes primarily based on cutting parameters. However, it's important to recognize that surface roughness isn’t solely governed by cutting parameters; it is also influenced by tool characteristics, workpiece properties, and the prevailing machining conditions. Therefore, the accurate prediction of surface roughness during turning operations is of utmost importance for facilitating timely corrective measures. However, the accuracy of prediction is affected by the intense background noise and usage of manual feature extraction. To address these issues, this article proposes a novel method combining the complete ensemble empirical mode decomposition (CEEMD) and sequence long short-term memory (LSTM) networks. The CEEMD decomposes the measured vibration signals, and noise-free intrinsic mode functions (IMFs) are chosen based on cross-correlation. The noise-free IMFs are then reconstructed to get the denoised signal. The denoised signals are fed straight into the Sequence LSTM network, a deep learning-based prediction algorithm for accurate prediction. The network parameters are optimized to minimize the error. An experimental study was conducted to assess the suggested method, and the results show that it effectively predicts surface roughness during turning using vibration signals. Further, the proposed approach has proven effective compared with other denoising methods. The proposed method has significant applications in the manufacturing industry, where it can contribute to better quality control and process optimization.
{"title":"Surface roughness prediction in turning processes using CEEMD-based vibration signal denoising and LSTM networks","authors":"Andrews Athisayam, Manisekar Kondal","doi":"10.1177/09544089241263456","DOIUrl":"https://doi.org/10.1177/09544089241263456","url":null,"abstract":"Surface roughness plays a pivotal role in assessing machining quality, and numerous research efforts have been devoted to predicting surface roughness in turning processes primarily based on cutting parameters. However, it's important to recognize that surface roughness isn’t solely governed by cutting parameters; it is also influenced by tool characteristics, workpiece properties, and the prevailing machining conditions. Therefore, the accurate prediction of surface roughness during turning operations is of utmost importance for facilitating timely corrective measures. However, the accuracy of prediction is affected by the intense background noise and usage of manual feature extraction. To address these issues, this article proposes a novel method combining the complete ensemble empirical mode decomposition (CEEMD) and sequence long short-term memory (LSTM) networks. The CEEMD decomposes the measured vibration signals, and noise-free intrinsic mode functions (IMFs) are chosen based on cross-correlation. The noise-free IMFs are then reconstructed to get the denoised signal. The denoised signals are fed straight into the Sequence LSTM network, a deep learning-based prediction algorithm for accurate prediction. The network parameters are optimized to minimize the error. An experimental study was conducted to assess the suggested method, and the results show that it effectively predicts surface roughness during turning using vibration signals. Further, the proposed approach has proven effective compared with other denoising methods. The proposed method has significant applications in the manufacturing industry, where it can contribute to better quality control and process optimization.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The accurate acquisition of information regarding the state of a vehicle's driving is essential for the implementation of active safety control measures in vehicles. To tackle the challenge of accurately measuring the sideslip angle in distributed electric vehicles, this study proposes an optimized maximum correntropy square-root cubature Kalman filter based on African vulture optimization algorithm (AVOA-MCSCKF). This method aims to provide accurate estimation of the sideslip angle. The real-time estimation of the total vehicle mass is conducted through the application of forgetting factor recursive least squares method. Additionally, the African vulture algorithm is utilized to adaptively adjust MCSCKF. This adjustment aims to mitigate estimation inaccuracies stemming from the uncertain nature of the noise covariance matrix, ultimately leading to a more accurate estimation of the sideslip angle. In the collaborative simulation environment of Carsim/Simulink, the algorithm's accuracy and robustness are validated across various operational scenarios. The research findings indicate that AVOA-MCSCKF algorithm enhances the accuracy of sideslip angle estimation by a minimum of 51.8% when compared to both the standard covariance Kalman filter and square-root cubature Kalman filter filter. This approach effectively addresses the challenging estimation issue of the sideslip angle in distributed drive electric vehicles operating under complex conditions, thereby improving the vehicle's active safety.
{"title":"Distributed Drive Electric Vehicle Sideslip Angle Estimation Based on the AVOA-MCSCKF Algorithm","authors":"Qiping Chen, Binghao Yu, Hongyu Pang, Chengping Zhong, Daoliang You, Zhiqiang Jiang","doi":"10.1177/09544089241267150","DOIUrl":"https://doi.org/10.1177/09544089241267150","url":null,"abstract":"The accurate acquisition of information regarding the state of a vehicle's driving is essential for the implementation of active safety control measures in vehicles. To tackle the challenge of accurately measuring the sideslip angle in distributed electric vehicles, this study proposes an optimized maximum correntropy square-root cubature Kalman filter based on African vulture optimization algorithm (AVOA-MCSCKF). This method aims to provide accurate estimation of the sideslip angle. The real-time estimation of the total vehicle mass is conducted through the application of forgetting factor recursive least squares method. Additionally, the African vulture algorithm is utilized to adaptively adjust MCSCKF. This adjustment aims to mitigate estimation inaccuracies stemming from the uncertain nature of the noise covariance matrix, ultimately leading to a more accurate estimation of the sideslip angle. In the collaborative simulation environment of Carsim/Simulink, the algorithm's accuracy and robustness are validated across various operational scenarios. The research findings indicate that AVOA-MCSCKF algorithm enhances the accuracy of sideslip angle estimation by a minimum of 51.8% when compared to both the standard covariance Kalman filter and square-root cubature Kalman filter filter. This approach effectively addresses the challenging estimation issue of the sideslip angle in distributed drive electric vehicles operating under complex conditions, thereby improving the vehicle's active safety.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"59 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544089241266442
Sujoy Kumar Dolui, A. Veeresh Babu, T. Srinivas Reddy
Nanofluids, comprising colloidal suspensions of non-metallic or metallic nanoparticles dispersed in conventional base fluids, are crucial for augmenting heat transfer properties across numerous industrial sectors. Cleanroom facilities play a vital role in diverse industries by regulating contamination levels and environmental parameters to ensure optimal operational conditions. In this paper, thermophysical characteristics of mono nanofluids (Al2O3–water, CuO–water) and hybrid nanofluid (Al2O3–CuO–water) at various nanoparticle concentrations (1%, 1.5%, 2%, 2.5%, 3%, 3.5% and 4%) on a prototype cleanroom air handling chiller unit was investigated experimentally. An experimental investigation on the thermophysical characteristics of mono and hybrid nanofluids in a prototype cleanroom air handling chiller unit heat exchanger with an increasing nanoparticle volume concentration from 1% to 4% revealed that the density increased by 9.27%, 16.67% and 25.91%; specific heat decreased by 2.53%, 2.66% and 2.17%; thermal conductivity increased by 15.71%, 14.70% and 16.67%; and dynamic viscosity increased by 32.94%, 32.47% and 32.90% for Al2O3–water, CuO–water and hybrid (Al2O3–CuO–water) nanofluids, respectively, in comparison with water. The novelty of this research lies in its investigation of hybrid nanofluids tailored for cleanroom air handling units, aiming to enhance heat transfer efficiency, offering valuable insights by characterising thermophysical traits and assessing their performance for advancing cleanroom technology, addressing a significant research gap in the field.
{"title":"Thermophysical traits of hybrid nanofluids in cleanroom air handling unit: An experimental study","authors":"Sujoy Kumar Dolui, A. Veeresh Babu, T. Srinivas Reddy","doi":"10.1177/09544089241266442","DOIUrl":"https://doi.org/10.1177/09544089241266442","url":null,"abstract":"Nanofluids, comprising colloidal suspensions of non-metallic or metallic nanoparticles dispersed in conventional base fluids, are crucial for augmenting heat transfer properties across numerous industrial sectors. Cleanroom facilities play a vital role in diverse industries by regulating contamination levels and environmental parameters to ensure optimal operational conditions. In this paper, thermophysical characteristics of mono nanofluids (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–water, CuO–water) and hybrid nanofluid (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–CuO–water) at various nanoparticle concentrations (1%, 1.5%, 2%, 2.5%, 3%, 3.5% and 4%) on a prototype cleanroom air handling chiller unit was investigated experimentally. An experimental investigation on the thermophysical characteristics of mono and hybrid nanofluids in a prototype cleanroom air handling chiller unit heat exchanger with an increasing nanoparticle volume concentration from 1% to 4% revealed that the density increased by 9.27%, 16.67% and 25.91%; specific heat decreased by 2.53%, 2.66% and 2.17%; thermal conductivity increased by 15.71%, 14.70% and 16.67%; and dynamic viscosity increased by 32.94%, 32.47% and 32.90% for Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–water, CuO–water and hybrid (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–CuO–water) nanofluids, respectively, in comparison with water. The novelty of this research lies in its investigation of hybrid nanofluids tailored for cleanroom air handling units, aiming to enhance heat transfer efficiency, offering valuable insights by characterising thermophysical traits and assessing their performance for advancing cleanroom technology, addressing a significant research gap in the field.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One performance prediction method for an annular radiator that is a one neoteric heat exchanger is improved through using heat transfer unit efficiency to give consideration to both computational efficiency and accuracy, which can realize heat transfer capacity and air-side pressure drop calculation. Only one set of heat transfer unit simulation data is needed in the improved method, which can improve calculation efficiency by keeping a low numerical simulation workload. Compared with experimental data, the errors of heat transfer capacity are 2.20∼12.94% with an average deviation of 7.40%, and the errors of air-side pressure drop are 2.06∼4.75% with an average deviation of 3.19%. Based on the proposed performance prediction method, the influences of the number of fins in the axial direction (NFAD), number of fins in the circumferential direction (NFCD), and fin height (FH) on heat transfer capacity, air-side pressure drop, and weight are analyzed. An extreme learning machine (ELM) model is constructed to replace the proposed performance prediction method to calculate design indices in the Sobol’ method. Thus, the ELM-Sobol’ method is proposed to study the contribution degrees of the three configuration parameters on the three design indices. It indicates that whether the interaction between factors is considered or not, heat transfer capacity is the most sensitive to changes in FH, followed by NFCD and NFAD. The influences of NFCD on air-side pressure drop and weight are both the strongest, followed by FH and NFAD. Hence, when considering heat transfer capacity, air-side pressure drop, and weight simultaneously, NFCD and FH are suggested to be prioritized for adjustment among these configuration parameters. This research can provide valuable new thinking for heat exchanger design.
{"title":"Performance prediction and parametric study for annular radiator based on heat transfer unit efficiency and ELM-Sobol’ method","authors":"Zhe Xu, Yandong Hou, Xin Ning, Shunv Zhang, Xiuying Wan, Tianji Shi","doi":"10.1177/09544089241267140","DOIUrl":"https://doi.org/10.1177/09544089241267140","url":null,"abstract":"One performance prediction method for an annular radiator that is a one neoteric heat exchanger is improved through using heat transfer unit efficiency to give consideration to both computational efficiency and accuracy, which can realize heat transfer capacity and air-side pressure drop calculation. Only one set of heat transfer unit simulation data is needed in the improved method, which can improve calculation efficiency by keeping a low numerical simulation workload. Compared with experimental data, the errors of heat transfer capacity are 2.20∼12.94% with an average deviation of 7.40%, and the errors of air-side pressure drop are 2.06∼4.75% with an average deviation of 3.19%. Based on the proposed performance prediction method, the influences of the number of fins in the axial direction (NFAD), number of fins in the circumferential direction (NFCD), and fin height (FH) on heat transfer capacity, air-side pressure drop, and weight are analyzed. An extreme learning machine (ELM) model is constructed to replace the proposed performance prediction method to calculate design indices in the Sobol’ method. Thus, the ELM-Sobol’ method is proposed to study the contribution degrees of the three configuration parameters on the three design indices. It indicates that whether the interaction between factors is considered or not, heat transfer capacity is the most sensitive to changes in FH, followed by NFCD and NFAD. The influences of NFCD on air-side pressure drop and weight are both the strongest, followed by FH and NFAD. Hence, when considering heat transfer capacity, air-side pressure drop, and weight simultaneously, NFCD and FH are suggested to be prioritized for adjustment among these configuration parameters. This research can provide valuable new thinking for heat exchanger design.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"39 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The conventional approach to high-speed turning of AISI D4 hardened steel often encountered challenges, notably elevated temperatures at the tool–workpiece interface and resultant surface quality degradation, particularly when utilizing CBN and ceramic inserts at cutting speed exceeding 200 m/min. In response to these limitations, this study presents a novel methodology employing a coated tin layered insert comprised of aluminum oxide (Al2O3)-Ti (C, N) for dry machining of AISI D4 steel. A significant contribution of this work lies in establishing a quantitative relationship between process variables and response characteristics, alongside process optimization facilitated by the Taguchi method design of experiment approach. By employing a selected hybrid ceramic insert, the study achieves sustainable dry machining of AISI D4 steel. Multiresponse analysis reveals that optimal machining parameters include a cutting speed (Cs) of 170 m/min, feed rate of 0.03 mm/rev, and depth of cut (DoC) of 0.4 mm, resulting in a minimum surface roughness of 0.76 µm. Analysis of variance underscores the pivotal role of feed rate and DoC in shaping surface characteristics, with statistical significance ( p-value < .05), while cutting speed proves insignificant ( p-value > .05). Furthermore, SEM micrographic examination substantiates the superior performance of hardened D4 steel, renowned for its exceptional resistance to wear and oxidation, rendering it indispensable in the fabrication of various tools including dies, press tools, punches, and bushes, surpassing current machining methodologies.
{"title":"Breaking boundaries: Optimizing dry machining for AISI D4 hardened tool steel through hybrid ceramic tool inserts","authors":"Debabrata Rath, A. Alamry, Sudhir Kumar, Pratap Chandra Padhi, Pratyush Pattnaāik","doi":"10.1177/09544089241265036","DOIUrl":"https://doi.org/10.1177/09544089241265036","url":null,"abstract":"The conventional approach to high-speed turning of AISI D4 hardened steel often encountered challenges, notably elevated temperatures at the tool–workpiece interface and resultant surface quality degradation, particularly when utilizing CBN and ceramic inserts at cutting speed exceeding 200 m/min. In response to these limitations, this study presents a novel methodology employing a coated tin layered insert comprised of aluminum oxide (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>)-Ti (C, N) for dry machining of AISI D4 steel. A significant contribution of this work lies in establishing a quantitative relationship between process variables and response characteristics, alongside process optimization facilitated by the Taguchi method design of experiment approach. By employing a selected hybrid ceramic insert, the study achieves sustainable dry machining of AISI D4 steel. Multiresponse analysis reveals that optimal machining parameters include a cutting speed (C<jats:sub>s</jats:sub>) of 170 m/min, feed rate of 0.03 mm/rev, and depth of cut (DoC) of 0.4 mm, resulting in a minimum surface roughness of 0.76 µm. Analysis of variance underscores the pivotal role of feed rate and DoC in shaping surface characteristics, with statistical significance ( p-value < .05), while cutting speed proves insignificant ( p-value > .05). Furthermore, SEM micrographic examination substantiates the superior performance of hardened D4 steel, renowned for its exceptional resistance to wear and oxidation, rendering it indispensable in the fabrication of various tools including dies, press tools, punches, and bushes, surpassing current machining methodologies.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"73 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544089241265914
Danesh M-Rahmani, Faramarz Fereshteh-Saniee
High-performance seamless rings made from different alloys have widely been used in various applications. This study compares the effects of the radial–axial ring rolling (RARR) process at elevated temperatures on the mechanical properties of centrifugally cast Al6063 aluminum and AM60 magnesium rings. The cast rings of these two alloys were ring rolled at three temperatures of 200, 250, and 300 °C and three roll rotational speeds of 40, 60, and 80 rpm. The yield stress, ultimate strength and fracture strain of the cast and rolled Al and Mg rings were measured for different directions, namely, rolling direction (RD), transverse direction (TD), and normal direction (ND), as determined by their hardness and the average grain size (AGS). The grain sizes of both the materials after the RARR process were smaller than the cent-cast ones. Moreover, the higher the temperature and/or the main roll rotational speed, the greater the AGS and the lower the yield stress, ultimate strength and hardness of the finally rolled ring. Nevertheless, the AGS of the AM60 samples was much larger than the related Al6063 rings in all the experiments. The ultimate strength, fracture strain and toughness of the Al rolled rings were also larger than the similarly deformed Mg samples, although the specific strength of the latter was much superior to the former. The deformed Mg rings characterized a more isotropic behavior compared to the Al specimens. The effects of the process temperature on the strain-hardening behaviors of these two alloys were also dissimilar. The numerical simulations of the RARR process also illustrated that the maximum, moderate, and minimum equivalent strains in the radial direction were created at the outer, inner, and middle regions, respectively, of the deformed ring, which is in agreement with the experimental findings for the AGSes at these areas.
{"title":"An inclusive comparative study on the influences of the ring rolling process at elevated temperatures on the mechanical properties and microstructures of two centrifugally cast light alloys","authors":"Danesh M-Rahmani, Faramarz Fereshteh-Saniee","doi":"10.1177/09544089241265914","DOIUrl":"https://doi.org/10.1177/09544089241265914","url":null,"abstract":"High-performance seamless rings made from different alloys have widely been used in various applications. This study compares the effects of the radial–axial ring rolling (RARR) process at elevated temperatures on the mechanical properties of centrifugally cast Al6063 aluminum and AM60 magnesium rings. The cast rings of these two alloys were ring rolled at three temperatures of 200, 250, and 300 °C and three roll rotational speeds of 40, 60, and 80 rpm. The yield stress, ultimate strength and fracture strain of the cast and rolled Al and Mg rings were measured for different directions, namely, rolling direction (RD), transverse direction (TD), and normal direction (ND), as determined by their hardness and the average grain size (AGS). The grain sizes of both the materials after the RARR process were smaller than the cent-cast ones. Moreover, the higher the temperature and/or the main roll rotational speed, the greater the AGS and the lower the yield stress, ultimate strength and hardness of the finally rolled ring. Nevertheless, the AGS of the AM60 samples was much larger than the related Al6063 rings in all the experiments. The ultimate strength, fracture strain and toughness of the Al rolled rings were also larger than the similarly deformed Mg samples, although the specific strength of the latter was much superior to the former. The deformed Mg rings characterized a more isotropic behavior compared to the Al specimens. The effects of the process temperature on the strain-hardening behaviors of these two alloys were also dissimilar. The numerical simulations of the RARR process also illustrated that the maximum, moderate, and minimum equivalent strains in the radial direction were created at the outer, inner, and middle regions, respectively, of the deformed ring, which is in agreement with the experimental findings for the AGSes at these areas.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"41 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joint damage could reduce component reliability and safety. In this paper, a simple and convenient reconditioning process for flat-clinching joints was proposed. The damaged joint was compressed by applying reconditioned force through the upper and lower flat dies to improve the mechanical properties. Compared to other exiting research, the process is easy to operate and requires no additional attachments. Meanwhile, the damage status of the loaded joint, material flow and the causes of improving mechanical properties were illustrated. In addition, the effect law of various reconditioned forces on the mechanical properties of the joints was also investigated. The results show that the flat-clinching joints are damaged when loaded beyond the shear load. However, the mechanical properties can be reconditioned when the interlocking structure remains unbroken. The main reason is that the reconditioning process reconstructs the interlocking structure and increases the neck thickness. Besides, the joint bulge height is also reduced by the reconditioning process. With increased reconditioning forces, the mechanical properties improve. The best mechanical properties are obtained at the recondition force of 40 kN. Compared to the original damaged joints, the shear force and energy absorption of the 40 kN reconditioned joints increased by 33.5% and 70.2%. This is important to promote the development of reconditioning processes and ensure part safety.
{"title":"Investigation to enhance the mechanical properties of damaged flat-clinching joints by reconditioning processes","authors":"Xiao Ouyang, Huiyang Zhang, Yongfei Wang, Qinghui He, Chao Chen","doi":"10.1177/09544089241263152","DOIUrl":"https://doi.org/10.1177/09544089241263152","url":null,"abstract":"Joint damage could reduce component reliability and safety. In this paper, a simple and convenient reconditioning process for flat-clinching joints was proposed. The damaged joint was compressed by applying reconditioned force through the upper and lower flat dies to improve the mechanical properties. Compared to other exiting research, the process is easy to operate and requires no additional attachments. Meanwhile, the damage status of the loaded joint, material flow and the causes of improving mechanical properties were illustrated. In addition, the effect law of various reconditioned forces on the mechanical properties of the joints was also investigated. The results show that the flat-clinching joints are damaged when loaded beyond the shear load. However, the mechanical properties can be reconditioned when the interlocking structure remains unbroken. The main reason is that the reconditioning process reconstructs the interlocking structure and increases the neck thickness. Besides, the joint bulge height is also reduced by the reconditioning process. With increased reconditioning forces, the mechanical properties improve. The best mechanical properties are obtained at the recondition force of 40 kN. Compared to the original damaged joints, the shear force and energy absorption of the 40 kN reconditioned joints increased by 33.5% and 70.2%. This is important to promote the development of reconditioning processes and ensure part safety.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"73 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544089241263455
Biju Theruvil Sayed, Arif Sari, Wade Ghribi, Ahmed AH Alkurdi, Shavan Askar, Karrar Hatif Mohmmed
This paper presents a novel machine learning model designed to predict residual stress and equivalent plastic deformation in metallic alloys undergoing surface mechanical attrition treatment. The dataset used for training was generated by numerically simulating surface mechanical attrition treatment on various alloys, such as SS316L, NiTi, Ti64, Al7075, and AZ31. The regression analysis of the proposed model exhibits exceptional predictive capabilities, with high R² values of 0.959 for residual stress and 0.911 for average equivalent plastic strain, alongside low root mean square error values of 0.035 and 0.088, respectively. Furthermore, the detailed examination of the correlation between input features and output targets revealed that the increase in values of residual stress and plastic strain in treated samples corresponded with heightened weight functions of processing parameters and material properties, respectively, within the machine learning model. A case study focusing on Al7075 was also provided, demonstrating the model's ability to adjust parameters effectively to achieve specific surface residual stress and plastic strain outcomes. Ultimately, the proposed model not only serves as a reliable predictor for the output targets but also functions as a valuable tool for characterizing the complex input–output relationships, thereby reducing the need for trial and error experimentation in real-world scenarios.
{"title":"Finite element method-enabled machine learning for analysing residual stress and plastic deformation in surface mechanical attrition-treated alloys","authors":"Biju Theruvil Sayed, Arif Sari, Wade Ghribi, Ahmed AH Alkurdi, Shavan Askar, Karrar Hatif Mohmmed","doi":"10.1177/09544089241263455","DOIUrl":"https://doi.org/10.1177/09544089241263455","url":null,"abstract":"This paper presents a novel machine learning model designed to predict residual stress and equivalent plastic deformation in metallic alloys undergoing surface mechanical attrition treatment. The dataset used for training was generated by numerically simulating surface mechanical attrition treatment on various alloys, such as SS316L, NiTi, Ti64, Al7075, and AZ31. The regression analysis of the proposed model exhibits exceptional predictive capabilities, with high R² values of 0.959 for residual stress and 0.911 for average equivalent plastic strain, alongside low root mean square error values of 0.035 and 0.088, respectively. Furthermore, the detailed examination of the correlation between input features and output targets revealed that the increase in values of residual stress and plastic strain in treated samples corresponded with heightened weight functions of processing parameters and material properties, respectively, within the machine learning model. A case study focusing on Al7075 was also provided, demonstrating the model's ability to adjust parameters effectively to achieve specific surface residual stress and plastic strain outcomes. Ultimately, the proposed model not only serves as a reliable predictor for the output targets but also functions as a valuable tool for characterizing the complex input–output relationships, thereby reducing the need for trial and error experimentation in real-world scenarios.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"42 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, an attempt is made to analyze the influence of heat input in double-pulse metal inert gas (DP MIG) welding of Inconel 617 (IN 617). IN 617 plates were joined in the butt joint configuration with 1.2 mm diameter IN 617 filler wire. Three welding trials were conducted at different heat input, viz. 31.3, 37.1, and 41.5 J/mm. Weld quality was assessed using bead geometry, tensile strength, toughness, and hardness. The changes in mechanical properties were discussed using the optical microscope, scanning electron microscope with energy dispersion spectroscopy, and backscattered energy diffraction. Substantial changes were observed in the weld tensile strength for a small variation in heat input. Molybdenum segregation was observed in all the weld samples. At lower heat input, the tensile test was reduced by 31.62% compared with base metal. Similarly, for the medium and high heat input, the tensile strength was reduced by 25.13% and 49.59%, respectively. Weld had lower toughness compared with the base metal and no significant variation was observed in toughness to changes in heat input. Hardness of the weld at all three heat inputs was almost similar to base metal. Liquation cracks were seen in the partially melted zone. At higher heat input, the lack of sidewall fusion was observed along with liquation crack.
本文试图分析输入热量对铬镍铁合金 617(IN 617)双脉冲金属惰性气体(DP MIG)焊接的影响。用直径为 1.2 mm 的 IN 617 焊丝以对接方式焊接 IN 617 板材。在 31.3、37.1 和 41.5 J/mm 的不同热输入条件下进行了三次焊接试验。焊接质量通过焊缝几何形状、拉伸强度、韧性和硬度进行评估。使用光学显微镜、扫描电子显微镜、能量色散光谱仪和背散射能量衍射仪讨论了机械性能的变化。在输入热量发生微小变化的情况下,焊缝拉伸强度发生了显著变化。在所有焊接样品中都观察到了钼偏析现象。在较低的热输入下,拉伸测试结果比母材降低了 31.62%。同样,在中高热量输入时,拉伸强度分别降低了 25.13% 和 49.59%。与母材相比,焊缝的韧性较低,而且没有观察到韧性随热量输入变化而有明显变化。在所有三种热输入条件下,焊缝的硬度几乎与母材相似。部分熔化区出现液化裂纹。在较高的热输入下,观察到侧壁熔化不足,同时出现液化裂纹。
{"title":"Effect of heat input on the mechanical and metallurgical aspects of double-pulse MIG welded IN 617","authors":"Thayumanavan Singaravel, Santhankrishnan Radhakrishnan, Deepan Bharathi Kannan Thangaraju","doi":"10.1177/09544089241263448","DOIUrl":"https://doi.org/10.1177/09544089241263448","url":null,"abstract":"In this article, an attempt is made to analyze the influence of heat input in double-pulse metal inert gas (DP MIG) welding of Inconel 617 (IN 617). IN 617 plates were joined in the butt joint configuration with 1.2 mm diameter IN 617 filler wire. Three welding trials were conducted at different heat input, viz. 31.3, 37.1, and 41.5 J/mm. Weld quality was assessed using bead geometry, tensile strength, toughness, and hardness. The changes in mechanical properties were discussed using the optical microscope, scanning electron microscope with energy dispersion spectroscopy, and backscattered energy diffraction. Substantial changes were observed in the weld tensile strength for a small variation in heat input. Molybdenum segregation was observed in all the weld samples. At lower heat input, the tensile test was reduced by 31.62% compared with base metal. Similarly, for the medium and high heat input, the tensile strength was reduced by 25.13% and 49.59%, respectively. Weld had lower toughness compared with the base metal and no significant variation was observed in toughness to changes in heat input. Hardness of the weld at all three heat inputs was almost similar to base metal. Liquation cracks were seen in the partially melted zone. At higher heat input, the lack of sidewall fusion was observed along with liquation crack.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544089241259642
B. Chandra Sekhar, P. Vijaya Kumar, M. Veera Krishna
In the energy transport field, the non-Newtonian fluid flows have a comprehensive series of applications in association with biological fluids, oceanography, covering energy exchanger technology, melt-spinning, and the freezing of metallic plates and suspensions. Therefore, the chemical reaction, heat generation, Soret and Dufour consequences on magneto-hydrodynamic unsteady chemically reactive Casson fluid have been considered. It is due to an exponentially accelerated vertical permeable plate embedded into a porous medium by captivating ramped surface temperature and concentration in the endurances of thermal radiation. The basic governing sets of equations are converted into non-dimensional forms by putting the appropriate non-dimensional variables and the resultant equations are computationally solved by the proficient Crank–Nicolson implicit finite difference methodology. The influences of numerous imperative considerable parameters on the velocity, temperature along with concentration of the fluids, and the skin friction coefficients, Nusselt and Sherwood numbers for the together thermal situations have been explored and discussed powerfully by making utilization of graphical profiles in addition to tables. It is found that by the increasing quantities of the Dufour, temperature generation and thermal radiation parameter, the fluid temperature and velocity are enhanced. Similarly, it is found that an increase in the Soret parameter, then the fluid velocity and concentration are enhanced, while opposite results are obtained by increasing in the chemical reaction parameter.
{"title":"Chemical reaction, Soret and Dufour impacts on magneto-hydrodynamic (MHD) convective Casson fluid over a vertical absorbent plate with ramped wall temperature and ramped surface concentration","authors":"B. Chandra Sekhar, P. Vijaya Kumar, M. Veera Krishna","doi":"10.1177/09544089241259642","DOIUrl":"https://doi.org/10.1177/09544089241259642","url":null,"abstract":"In the energy transport field, the non-Newtonian fluid flows have a comprehensive series of applications in association with biological fluids, oceanography, covering energy exchanger technology, melt-spinning, and the freezing of metallic plates and suspensions. Therefore, the chemical reaction, heat generation, Soret and Dufour consequences on magneto-hydrodynamic unsteady chemically reactive Casson fluid have been considered. It is due to an exponentially accelerated vertical permeable plate embedded into a porous medium by captivating ramped surface temperature and concentration in the endurances of thermal radiation. The basic governing sets of equations are converted into non-dimensional forms by putting the appropriate non-dimensional variables and the resultant equations are computationally solved by the proficient Crank–Nicolson implicit finite difference methodology. The influences of numerous imperative considerable parameters on the velocity, temperature along with concentration of the fluids, and the skin friction coefficients, Nusselt and Sherwood numbers for the together thermal situations have been explored and discussed powerfully by making utilization of graphical profiles in addition to tables. It is found that by the increasing quantities of the Dufour, temperature generation and thermal radiation parameter, the fluid temperature and velocity are enhanced. Similarly, it is found that an increase in the Soret parameter, then the fluid velocity and concentration are enhanced, while opposite results are obtained by increasing in the chemical reaction parameter.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"55 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}