Abstract Planets open deep gaps in protoplanetary discs when their mass exceeds a gap opening mass, Mgap. We use one- and two-dimensional simulations to study planet gap opening in discs with angular momentum transport powered by MHD disc winds. We parameterise the efficiency of the MHD disc wind angular momentum transport through a dimensionless parameter αdw, which is an analogue to the turbulent viscosity αv. We find that magnetised winds are much less efficient in counteracting planet tidal torques than turbulence is. For discs with astrophysically realistic values of αdw, Mgap is always determined by the residual disc turbulence, and is a factor of a few to ten smaller than usually obtained for viscous discs. We introduce a gap opening criterion applicable for any values of αv and αdw that may be useful for planet formation population synthesis.
{"title":"Gap opening by planets in discs with magnetised winds","authors":"V. Elbakyan, Yinhao Wu, S. Nayakshin, G. Rosotti","doi":"10.1093/mnras/stac1774","DOIUrl":"https://doi.org/10.1093/mnras/stac1774","url":null,"abstract":"Abstract Planets open deep gaps in protoplanetary discs when their mass exceeds a gap opening mass, Mgap. We use one- and two-dimensional simulations to study planet gap opening in discs with angular momentum transport powered by MHD disc winds. We parameterise the efficiency of the MHD disc wind angular momentum transport through a dimensionless parameter αdw, which is an analogue to the turbulent viscosity αv. We find that magnetised winds are much less efficient in counteracting planet tidal torques than turbulence is. For discs with astrophysically realistic values of αdw, Mgap is always determined by the residual disc turbulence, and is a factor of a few to ten smaller than usually obtained for viscous discs. We introduce a gap opening criterion applicable for any values of αv and αdw that may be useful for planet formation population synthesis.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"PP 1","pages":"194 - 195"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84332473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322003775
F. Maeda
Abstract Whether the star formation efficiency (SFE) in the bar region is lower than those in the other regions in a barred galaxy has recently been debated. We statistically investigate the SFEs along the bars in nearby gas-rich massive star-forming barred galaxies by distinguishing the center, bar-end, and bar regions for the first time. The molecular gas surface density is derived from archival CO(1–0) and/or CO(2–1) data and the star formation rate surface density is derived from a linear combination of far-ultraviolet and mid-infrared intensities. To distinguish the three regions, we targeted 18 galaxies with a large apparent bar length (≥ 75"). The resulting SFE in the bars is about 0.6 – 0.8 times lower than that in the disks, which suggests the star formation in the bars tends to be systematically suppressed.
{"title":"Is star formation in gas-rich bars suppressed?","authors":"F. Maeda","doi":"10.1017/S1743921322003775","DOIUrl":"https://doi.org/10.1017/S1743921322003775","url":null,"abstract":"Abstract Whether the star formation efficiency (SFE) in the bar region is lower than those in the other regions in a barred galaxy has recently been debated. We statistically investigate the SFEs along the bars in nearby gas-rich massive star-forming barred galaxies by distinguishing the center, bar-end, and bar regions for the first time. The molecular gas surface density is derived from archival CO(1–0) and/or CO(2–1) data and the star formation rate surface density is derived from a linear combination of far-ultraviolet and mid-infrared intensities. To distinguish the three regions, we targeted 18 galaxies with a large apparent bar length (≥ 75\"). The resulting SFE in the bars is about 0.6 – 0.8 times lower than that in the disks, which suggests the star formation in the bars tends to be systematically suppressed.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"6 1 1","pages":"207 - 209"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79755607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S174392132200360X
A. Ibraimova, M. Minglibayev
Abstract We studied the problem of two spherical celestial bodies in the general case when the masses of the bodies change non-isotropically at different rates in the presence of reactive forces. The problem was investigated by methods of perturbation theory based on aperiodic motion along a quasi-conic section, using the equation of perturbed motion in the form of Newton’s equations. The problem is described by the variables a, e, i, π, ω, λ, which are analogs of the corresponding Keplerian elements and the equations of motion in these variables are obtained. Averaging over the mean longitude, we obtained the evolution equations of the two-body problem with variable masses in the presence of reactive forces. The obtained evolution equations have the exact analytic integral ${a^3 e^4 = a^3_0 e^4_0} = {const}$ .
{"title":"To the dynamics of the two-body problem with variable masses in the presence of reactive forces","authors":"A. Ibraimova, M. Minglibayev","doi":"10.1017/S174392132200360X","DOIUrl":"https://doi.org/10.1017/S174392132200360X","url":null,"abstract":"Abstract We studied the problem of two spherical celestial bodies in the general case when the masses of the bodies change non-isotropically at different rates in the presence of reactive forces. The problem was investigated by methods of perturbation theory based on aperiodic motion along a quasi-conic section, using the equation of perturbed motion in the form of Newton’s equations. The problem is described by the variables a, e, i, π, ω, λ, which are analogs of the corresponding Keplerian elements and the equations of motion in these variables are obtained. Averaging over the mean longitude, we obtained the evolution equations of the two-body problem with variable masses in the presence of reactive forces. The obtained evolution equations have the exact analytic integral ${a^3 e^4 = a^3_0 e^4_0} = {const}$ .","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"2 1","pages":"281 - 282"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82554680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322004823
M. Noguchi
Abstract Existence of the cold-mode gas accretion along with the hot-mode accretion can explain the diversity in the galactic star formation history across galaxy mass. We examine the role of various physical processes in producing the observed diversity.
{"title":"Anatomy of Galactic Star Formation: Roles of Different Modes of Gas Accretion, Feedback, and Recycling","authors":"M. Noguchi","doi":"10.1017/S1743921322004823","DOIUrl":"https://doi.org/10.1017/S1743921322004823","url":null,"abstract":"Abstract Existence of the cold-mode gas accretion along with the hot-mode accretion can explain the diversity in the galactic star formation history across galaxy mass. We examine the role of various physical processes in producing the observed diversity.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"10 1","pages":"325 - 327"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91048342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322004914
Mahtab Gholami, A. Javadi, J. V. van Loon, H. Khosroshahi, E. Saremi
Abstract IC 10 as a starburst dwarf galaxy in the Local Group (LG) has a large population of newly formed stars that are massive and intrinsically very bright in comparison with other LG galaxies. Using the Isaac Newton Telescope (INT) with the Wide Field Camera (WFC) in the i-band and V-band, we performed an optical monitoring survey to identify the most evolved asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs) in this star-forming galaxy, which can be used to determine the star formation history (SFH). The E(B - V) as an effective factor for obtaining the precise magnitude of stars is measured for each star using a 2D dust map (SFD98) to obtain a total extinction for each star in both the i-band and V-band. We obtained the photometric catalog for 53579 stars within the area of 0.07 deg2 (13.5 kpc2), of which 762 stars are classified as variable candidates after removing the foreground stars and saturated ones from our catalog. To reconstruct the SFH for IC 10, we first identified 424 long-period variable (LPV) candidates within the area of two half-light radii (2r h ) from the center of the galaxy. We estimated the recent star formation rate (SFR) at ∼ 0.32 yr-1 for a constant metallicity Z = 0.0008, showing the galaxy is currently undergoing high levels of star formation. Also, a total stellar mass of is obtained within 2r h for that metallicity.
{"title":"Star formation history for the starburst dwarf galaxy in the Local Group, IC 10","authors":"Mahtab Gholami, A. Javadi, J. V. van Loon, H. Khosroshahi, E. Saremi","doi":"10.1017/S1743921322004914","DOIUrl":"https://doi.org/10.1017/S1743921322004914","url":null,"abstract":"Abstract IC 10 as a starburst dwarf galaxy in the Local Group (LG) has a large population of newly formed stars that are massive and intrinsically very bright in comparison with other LG galaxies. Using the Isaac Newton Telescope (INT) with the Wide Field Camera (WFC) in the i-band and V-band, we performed an optical monitoring survey to identify the most evolved asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs) in this star-forming galaxy, which can be used to determine the star formation history (SFH). The E(B - V) as an effective factor for obtaining the precise magnitude of stars is measured for each star using a 2D dust map (SFD98) to obtain a total extinction for each star in both the i-band and V-band. We obtained the photometric catalog for 53579 stars within the area of 0.07 deg2 (13.5 kpc2), of which 762 stars are classified as variable candidates after removing the foreground stars and saturated ones from our catalog. To reconstruct the SFH for IC 10, we first identified 424 long-period variable (LPV) candidates within the area of two half-light radii (2r h ) from the center of the galaxy. We estimated the recent star formation rate (SFR) at ∼ 0.32 yr-1 for a constant metallicity Z = 0.0008, showing the galaxy is currently undergoing high levels of star formation. Also, a total stellar mass of is obtained within 2r h for that metallicity.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"25 1","pages":"117 - 120"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79080451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322003970
P. Gu, Matsumoto Yuji, Kokubo Eiichiro, Kurosaki Kenji
Abstract The KEPLER transit survey with follow-up spectroscopic observations has discovered numerous small planets (super-Earths/sub-Neptunes) and revealed intriguing features of their sizes, orbital periods, and their relations between adjacent planets. The planet size distribution exhibits a bimodal distribution separated by a radius gap at around 1.8 Earth radii. Besides, these small planets within multiple planetary systems show that adjacent planets are similar in size and their period ratios of adjacent planet pairs are similar as well, a phenomenon often dubbed as peas-in-a-pod in the exoplanet community. While the radius gap has been predicted and theorized for years, whether it can be relevant to the orbital architecture peas-in-a-pod is physically unknown. For the first time, we attempted to model both features together through planet formation and evolution processes involving giant impacts and photoevaporation. We showed that our model is generally consistent with the KEPLER results but with a smaller radius gap. The impact of Kubyshikina’s model for photoevaporation on our model is discussed.
{"title":"Size Evolution and Orbital Architecture of KEPLER Small Planets through Giant Impacts and Photoevaporation","authors":"P. Gu, Matsumoto Yuji, Kokubo Eiichiro, Kurosaki Kenji","doi":"10.1017/S1743921322003970","DOIUrl":"https://doi.org/10.1017/S1743921322003970","url":null,"abstract":"Abstract The KEPLER transit survey with follow-up spectroscopic observations has discovered numerous small planets (super-Earths/sub-Neptunes) and revealed intriguing features of their sizes, orbital periods, and their relations between adjacent planets. The planet size distribution exhibits a bimodal distribution separated by a radius gap at around 1.8 Earth radii. Besides, these small planets within multiple planetary systems show that adjacent planets are similar in size and their period ratios of adjacent planet pairs are similar as well, a phenomenon often dubbed as peas-in-a-pod in the exoplanet community. While the radius gap has been predicted and theorized for years, whether it can be relevant to the orbital architecture peas-in-a-pod is physically unknown. For the first time, we attempted to model both features together through planet formation and evolution processes involving giant impacts and photoevaporation. We showed that our model is generally consistent with the KEPLER results but with a smaller radius gap. The impact of Kubyshikina’s model for photoevaporation on our model is discussed.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"5 1","pages":"251 - 256"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73613422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322003738
Jaeyeon Kim, M. Chevance, J. M. Diederik Kruijssen, A. Leroy
Abstract The processes of star formation and feedback take place on the scales of giant molecular clouds (GMCs; ~ 100 pc) within galaxies and play a major role in governing galaxy evolution. By applying a robust statistical method to PHANGS observations, we systematically measure the evolutionary timeline from molecular clouds to exposed young stellar regions, across an unprecedented sample of 54 galaxies. These timescales depend on galaxy environment, revealing the role of galactic-scale dynamical processes in the small-scale GMC evolution. Furthermore, in the 5 nearest galaxies of our sample, we have refined the GMC timeline further and established the duration of the heavily obscured phase, using 24 μm emission. These results represent a major first step towards a comprehensive picture of cloud assembly and feedback, which will be extended to 19 more galaxies with our ongoing JWST Large Program.
{"title":"Variation of the molecular cloud lifecycle across the nearby galaxy population","authors":"Jaeyeon Kim, M. Chevance, J. M. Diederik Kruijssen, A. Leroy","doi":"10.1017/S1743921322003738","DOIUrl":"https://doi.org/10.1017/S1743921322003738","url":null,"abstract":"Abstract The processes of star formation and feedback take place on the scales of giant molecular clouds (GMCs; ~ 100 pc) within galaxies and play a major role in governing galaxy evolution. By applying a robust statistical method to PHANGS observations, we systematically measure the evolutionary timeline from molecular clouds to exposed young stellar regions, across an unprecedented sample of 54 galaxies. These timescales depend on galaxy environment, revealing the role of galactic-scale dynamical processes in the small-scale GMC evolution. Furthermore, in the 5 nearest galaxies of our sample, we have refined the GMC timeline further and established the duration of the heavily obscured phase, using 24 μm emission. These results represent a major first step towards a comprehensive picture of cloud assembly and feedback, which will be extended to 19 more galaxies with our ongoing JWST Large Program.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"1 1","pages":"299 - 305"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75532684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322004379
T. Murase, T. Handa, Ren Matsusaka, Y. Shimajiri, Masato I. N. Kobayashi, M. Kohno, J. Nishi, N. Takeba, Yosuke Shibata
Abstract We studied the probability distribution function of the column density (N-PDF) of molecular clouds based on a fit with a multi-log-normal function using the Nobeyama 45-m Cygnus X CO survey data. We identified 124 molecular clouds in 13CO data using the DENDROGRAM and SCIMES algorithms. The N-PDF was constructed for 11 extended (≥ 0.4 deg2) molecular clouds of these identified clouds. We found that every N-PDF is well-fitted with one or two log-normal (LN) distributions. We investigated the distributions of the column density, C18O dense cores, and radio continuum source in each cloud and found that the N-PDF was less correlated with the star-forming activity. The LN N-PDF parameters showed two impressive features. First, the LN distribution at the low-density part had the same mean column density (∼1021.5 cm−2 ) for almost all the molecular clouds. Second, the wider LN distribution tended to show the lower mean density of the structures.
摘要利用Nobeyama 45-m Cygnus X CO观测数据,基于多对数正态函数拟合,研究了分子云柱密度(N-PDF)的概率分布函数。我们使用dendprogram和SCIMES算法在13CO数据中识别出124个分子云。构建了这些云的11个扩展(≥0.4℃)分子云的N-PDF。我们发现每个N-PDF都很好地拟合了一个或两个对数正态(LN)分布。我们研究了各云的柱密度、C18O致密核和射电连续源的分布,发现N-PDF与恒星形成活动的相关性较小。LN N-PDF参数显示了两个令人印象深刻的特征。首先,对于几乎所有的分子云,低密度部分的LN分布具有相同的平均柱密度(~ 1021.5 cm−2)。其次,LN分布越宽,结构的平均密度越低。
{"title":"The density structure of molecular cloud scales: A fitting for N-PDF with multi log-normal functions","authors":"T. Murase, T. Handa, Ren Matsusaka, Y. Shimajiri, Masato I. N. Kobayashi, M. Kohno, J. Nishi, N. Takeba, Yosuke Shibata","doi":"10.1017/S1743921322004379","DOIUrl":"https://doi.org/10.1017/S1743921322004379","url":null,"abstract":"Abstract We studied the probability distribution function of the column density (N-PDF) of molecular clouds based on a fit with a multi-log-normal function using the Nobeyama 45-m Cygnus X CO survey data. We identified 124 molecular clouds in 13CO data using the DENDROGRAM and SCIMES algorithms. The N-PDF was constructed for 11 extended (≥ 0.4 deg2) molecular clouds of these identified clouds. We found that every N-PDF is well-fitted with one or two log-normal (LN) distributions. We investigated the distributions of the column density, C18O dense cores, and radio continuum source in each cloud and found that the N-PDF was less correlated with the star-forming activity. The LN N-PDF parameters showed two impressive features. First, the LN distribution at the low-density part had the same mean column density (∼1021.5 cm−2 ) for almost all the molecular clouds. Second, the wider LN distribution tended to show the lower mean density of the structures.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"220 1","pages":"45 - 48"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75622281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921323001783
K. Amada, S. Fukaya, H. Imai, P. Scicluna, N. Hirano, A. Trejo-Cruz, S. Zeegers, F. Kemper, S. Srinivasan, S. Wallström, T. Dharmawardena, H. Shinnaga
Abstract We conducted CO J=1→0 emission line observations for nearby AGB stars using the Nobeyama 45 m telescope. Comparing our results with those from CO J=3→2 observations with JCMT, the circumstellar envelopes observed in CO J=1→0 look more extended than J=3→2. Thus, we could trace the outer, cold parts of the envelopes. We also found four stars in which the CO/13CO ratio changes dramatically outward, but the change implies the effect of selective photodissociation by interstellar ultraviolet radiation, not the third dredge up in the stellar interior. We moreover found two unique stars with aspherical envelope morphology.
{"title":"Statistical properties of cold circumstellar envelops observed in NESS–NRO","authors":"K. Amada, S. Fukaya, H. Imai, P. Scicluna, N. Hirano, A. Trejo-Cruz, S. Zeegers, F. Kemper, S. Srinivasan, S. Wallström, T. Dharmawardena, H. Shinnaga","doi":"10.1017/S1743921323001783","DOIUrl":"https://doi.org/10.1017/S1743921323001783","url":null,"abstract":"Abstract We conducted CO J=1→0 emission line observations for nearby AGB stars using the Nobeyama 45 m telescope. Comparing our results with those from CO J=3→2 observations with JCMT, the circumstellar envelopes observed in CO J=1→0 look more extended than J=3→2. Thus, we could trace the outer, cold parts of the envelopes. We also found four stars in which the CO/13CO ratio changes dramatically outward, but the change implies the effect of selective photodissociation by interstellar ultraviolet radiation, not the third dredge up in the stellar interior. We moreover found two unique stars with aspherical envelope morphology.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"10 1","pages":"97 - 99"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75834384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1017/S1743921322003556
Hiroto Mitani, Riouhei Nakatani, N. Yoshida
Abstract The intense extreme ultraviolet radiation heats the upper atmosphere of close-in exoplanets and drives the atmospheric escape. The escaping process determines the planetary evolution of close-in planets. The mass loss rate depends on the UV flux at the planet. We introduce the relevant physical quantities which describe the dominant physics in the atmosphere. We find that the equilibrium temperature and the characteristic temperature determine whether the system becomes energy-limited or recombination-limited. We classify the observed close-in planets using the physical conditions. We also find that many of the Lyman-α absorptions detected planets receive intenser flux than the critical flux which can be determined from physical conditions. Our classification method can quantitatively reveal whether the EUV is not strong enough to drive the outflow or the Lyman- α absorption is not detected for some reason (e.g. stellar wind confinement). We also discuss the thermo-chemical structure of hydrodynamic simulations with the relevant physics.
{"title":"Physics of the atmospheric escape driven by EUV photoionization heating: Classification of the hydrodynamic escape in close-in planets","authors":"Hiroto Mitani, Riouhei Nakatani, N. Yoshida","doi":"10.1017/S1743921322003556","DOIUrl":"https://doi.org/10.1017/S1743921322003556","url":null,"abstract":"Abstract The intense extreme ultraviolet radiation heats the upper atmosphere of close-in exoplanets and drives the atmospheric escape. The escaping process determines the planetary evolution of close-in planets. The mass loss rate depends on the UV flux at the planet. We introduce the relevant physical quantities which describe the dominant physics in the atmosphere. We find that the equilibrium temperature and the characteristic temperature determine whether the system becomes energy-limited or recombination-limited. We classify the observed close-in planets using the physical conditions. We also find that many of the Lyman-α absorptions detected planets receive intenser flux than the critical flux which can be determined from physical conditions. Our classification method can quantitatively reveal whether the EUV is not strong enough to drive the outflow or the Lyman- α absorption is not detected for some reason (e.g. stellar wind confinement). We also discuss the thermo-chemical structure of hydrodynamic simulations with the relevant physics.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"86 1","pages":"155 - 160"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90391440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}