Modern transducers and actuators may have functional layers with multi-field coupling and some elastic layers. This paper considers a tubular bilayer system consisting of a thin dielectric tube coated with a thick elastic layer. We study the nonlinear electromechanical response and the linear axisymmetric vibration of the system subject to different applied voltages and inner/outer pressures within the framework of the general nonlinear theory of electro-elasticity, the related linear incremental theory, and by considering the continuity conditions at the interface. We investigate instability behaviour using the same basic formulae. The state-space method provides efficient and accurate free vibration analysis, considering the dynamic response at the lowest frequencies, so we can neglect the viscous and damping effects, which is well suited to this problem. New results indicate that the bilayer system improves its frequency capability and stability compared to the monolayer dielectric tube. The thick outer elastic layer stiffens the bilayer system against axisymmetric bifurcation, bulging and necking instabilities. It also performs better in front of axisymmetric instability, increasing the system’s capability to receive or produce higher voltages, especially for long waves.This work thoroughly explains bilayer functional systems’ behaviour when exposed to extreme environments such as high voltage or pressure.
{"title":"Axisymmetric vibration and stability of dielectric-elastic tubular bilayer system","authors":"Ahmad Almamo, Yipin Su, Weiqiu Chen, Huiming Wang","doi":"10.1098/rspa.2023.0727","DOIUrl":"https://doi.org/10.1098/rspa.2023.0727","url":null,"abstract":"<p>Modern transducers and actuators may have functional layers with multi-field coupling and some elastic layers. This paper considers a tubular bilayer system consisting of a thin dielectric tube coated with a thick elastic layer. We study the nonlinear electromechanical response and the linear axisymmetric vibration of the system subject to different applied voltages and inner/outer pressures within the framework of the general nonlinear theory of electro-elasticity, the related linear incremental theory, and by considering the continuity conditions at the interface. We investigate instability behaviour using the same basic formulae. The state-space method provides efficient and accurate free vibration analysis, considering the dynamic response at the lowest frequencies, so we can neglect the viscous and damping effects, which is well suited to this problem. New results indicate that the bilayer system improves its frequency capability and stability compared to the monolayer dielectric tube. The thick outer elastic layer stiffens the bilayer system against axisymmetric bifurcation, bulging and necking instabilities. It also performs better in front of axisymmetric instability, increasing the system’s capability to receive or produce higher voltages, especially for long waves.This work thoroughly explains bilayer functional systems’ behaviour when exposed to extreme environments such as high voltage or pressure.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"100 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Explicit solutions to the nonlinear field equations of some gravitational theories can be obtained, by means of a Riemann–Hilbert approach, from a canonical Wiener–Hopf factorization of certain matrix functions called monodromy matrices. In this paper, we describe other types of factorization from which solutions can be constructed in a similar way. Our approach is based on an invariance problem, which does not constitute a Riemann–Hilbert problem and allows to construct solutions that could not have been obtained by Wiener–Hopf factorization of a monodromy matrix. It gives rise to a novel solution generating method based on matrix multiplications. We show, in particular, that new solutions can be obtained by multiplicative deformation of the canonical Wiener–Hopf factorization, provided the latter exists, and that one can superpose such solutions. Examples of applications include Kasner, Einstein–Rosen wave and gravitational pulse wave solutions.
{"title":"Generating new gravitational solutions by matrix multiplication","authors":"M. Cristina Câmara, Gabriel Lopes Cardoso","doi":"10.1098/rspa.2023.0857","DOIUrl":"https://doi.org/10.1098/rspa.2023.0857","url":null,"abstract":"<p>Explicit solutions to the nonlinear field equations of some gravitational theories can be obtained, by means of a Riemann–Hilbert approach, from a canonical Wiener–Hopf factorization of certain matrix functions called monodromy matrices. In this paper, we describe other types of factorization from which solutions can be constructed in a similar way. Our approach is based on an invariance problem, which does not constitute a Riemann–Hilbert problem and allows to construct solutions that could not have been obtained by Wiener–Hopf factorization of a monodromy matrix. It gives rise to a novel solution generating method based on matrix multiplications. We show, in particular, that new solutions can be obtained by multiplicative deformation of the canonical Wiener–Hopf factorization, provided the latter exists, and that one can superpose such solutions. Examples of applications include Kasner, Einstein–Rosen wave and gravitational pulse wave solutions.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"68 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The literature about the asymptotic numerical method (ANM) is reviewed in this paper as well as its application to hyperelasticity and elastoplasticity. ANM is a generic continuation method based on the computation of Taylor series for solving nonlinear partial differential equations. Modern techniques of high-order differentiation provide simple tools for computing these power series, the corresponding algorithms for finite strain elasticity and elastoplasticity being summarized here. Taylor series is not only a computation tool, but it contains also useful information about the structure of the considered solution curve. The paper ends with a short historical account about the development of this numerical method.
{"title":"Asymptotic numerical method for hyperelasticity and elastoplasticity: a review","authors":"Michel Potier-Ferry","doi":"10.1098/rspa.2023.0714","DOIUrl":"https://doi.org/10.1098/rspa.2023.0714","url":null,"abstract":"<p>The literature about the asymptotic numerical method (ANM) is reviewed in this paper as well as its application to hyperelasticity and elastoplasticity. ANM is a generic continuation method based on the computation of Taylor series for solving nonlinear partial differential equations. Modern techniques of high-order differentiation provide simple tools for computing these power series, the corresponding algorithms for finite strain elasticity and elastoplasticity being summarized here. Taylor series is not only a computation tool, but it contains also useful information about the structure of the considered solution curve. The paper ends with a short historical account about the development of this numerical method.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"34 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In biochemical networks, complex dynamical features such as superlinear growth and oscillations are classically considered a consequence of autocatalysis. For the large class of parameter-rich kinetic models, which includes generalized mass action kinetics and Michaelis–Menten kinetics, we show that certain submatrices of the stoichiometric matrix, so-called unstable cores, are sufficient for a reaction network to admit instability and potentially give rise to such complex dynamical behaviour. The determinant of the submatrix distinguishes unstable-positive feedbacks, with a single real-positive eigenvalue, and unstable-negative feedbacks without real-positive eigenvalues. Autocatalytic cores turn out to be exactly the unstable-positive feedbacks that are Metzler matrices. Thus there are sources of dynamical instability in chemical networks that are unrelated to autocatalysis. We use such intuition to design non-autocatalytic biochemical networks with superlinear growth and oscillations.
{"title":"Unstable cores are the source of instability in chemical reaction networks","authors":"Nicola Vassena, Peter F. Stadler","doi":"10.1098/rspa.2023.0694","DOIUrl":"https://doi.org/10.1098/rspa.2023.0694","url":null,"abstract":"<p>In biochemical networks, complex dynamical features such as superlinear growth and oscillations are classically considered a consequence of autocatalysis. For the large class of parameter-rich kinetic models, which includes generalized mass action kinetics and Michaelis–Menten kinetics, we show that certain submatrices of the stoichiometric matrix, so-called unstable cores, are sufficient for a reaction network to admit instability and potentially give rise to such complex dynamical behaviour. The determinant of the submatrix distinguishes unstable-positive feedbacks, with a single real-positive eigenvalue, and unstable-negative feedbacks without real-positive eigenvalues. Autocatalytic cores turn out to be exactly the unstable-positive feedbacks that are Metzler matrices. Thus there are sources of dynamical instability in chemical networks that are unrelated to autocatalysis. We use such intuition to design non-autocatalytic biochemical networks with superlinear growth and oscillations.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geometries of eroding landscapes contain important information about geologic, climatic, biotic and geomorphic processes. They are also characterized by variability, which makes disentangling their origins challenging. Observations and physical models of fluvial processes, which set the pace of erosion on most continents, emphasize complexity and variability. By contrast, the spectral content of longitudinal river profiles and similarity of geometries at scales greater than approximately 100km highlight relatively simple emergent properties. A general challenge then, addressed in this manuscript, is development of a theory of landscape evolution that embraces such scale-dependent insights. We do so by incorporating randomness and probability into a theory of fluvial erosion. First, we explore the use of stochastic differential equations of the Langevin type, and the Fokker–Planck equation, for predicting migration of erosional fronts. Second, analytical approaches incorporating distributions of driving forces, critical thresholds and associated proxies are developed. Finally, a linear programming approach is introduced, that, at its core, treats evolution of longitudinal profiles as a Markovian stochastic problem. The theory is developed essentially from first principles and incorporates physics governing fluvial erosion. We explore predictions of this theory, including the natural growth of discontinuities and scale-dependent evolution, including local complexity and emergent simplicity.
{"title":"A theory of stochastic fluvial landscape evolution","authors":"G. G. Roberts, O. Wani","doi":"10.1098/rspa.2023.0456","DOIUrl":"https://doi.org/10.1098/rspa.2023.0456","url":null,"abstract":"Geometries of eroding landscapes contain important information about geologic, climatic, biotic and geomorphic processes. They are also characterized by variability, which makes disentangling their origins challenging. Observations and physical models of fluvial processes, which set the pace of erosion on most continents, emphasize complexity and variability. By contrast, the spectral content of longitudinal river profiles and similarity of geometries at scales greater than approximately <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi> </mml:mi> </mml:mrow> <mml:mn>100</mml:mn> <mml:mo> </mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">km</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> highlight relatively simple emergent properties. A general challenge then, addressed in this manuscript, is development of a theory of landscape evolution that embraces such scale-dependent insights. We do so by incorporating randomness and probability into a theory of fluvial erosion. First, we explore the use of stochastic differential equations of the Langevin type, and the Fokker–Planck equation, for predicting migration of erosional fronts. Second, analytical approaches incorporating distributions of driving forces, critical thresholds and associated proxies are developed. Finally, a linear programming approach is introduced, that, at its core, treats evolution of longitudinal profiles as a Markovian stochastic problem. The theory is developed essentially from first principles and incorporates physics governing fluvial erosion. We explore predictions of this theory, including the natural growth of discontinuities and scale-dependent evolution, including local complexity and emergent simplicity.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"29 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140026441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, a field representation of the conservation law of linear momentum is derived from the atomistic, using the theory of distributions as the mathematical tool, and expressed in terms of temperature field by defining temperature as a derived quantity as that in molecular kinetic theory and atomistic simulations. The formulation leads to a unified atomistic and continuum description of temperature and a new linear momentum equation that, supplemented by an interatomic potential, completely governs thermal and mechanical processes across scales from the atomic to the continuum. The conservation equation can be used to solve atomistic trajectories for systems at finite temperatures, as well as the evolution of field quantities in space and time, with atomic or multiscale resolution. Four sets of numerical examples are presented to demonstrate the efficacy of the formulation in capturing the effect of temperature and thermal fluctuations, including phonon density of states, thermally activated dislocation motion, dislocation formation during epitaxial processes, and attenuation of longitudinal acoustic waves as a result of their interaction with thermal phonons.
{"title":"Unifying temperature definition in atomistic and field representations of conservation laws","authors":"Youping Chen","doi":"10.1098/rspa.2023.0606","DOIUrl":"https://doi.org/10.1098/rspa.2023.0606","url":null,"abstract":"In this work, a field representation of the conservation law of linear momentum is derived from the atomistic, using the theory of distributions as the mathematical tool, and expressed in terms of temperature field by defining temperature as a derived quantity as that in molecular kinetic theory and atomistic simulations. The formulation leads to a unified atomistic and continuum description of temperature and a new linear momentum equation that, supplemented by an interatomic potential, completely governs thermal and mechanical processes across scales from the atomic to the continuum. The conservation equation can be used to solve atomistic trajectories for systems at finite temperatures, as well as the evolution of field quantities in space and time, with atomic or multiscale resolution. Four sets of numerical examples are presented to demonstrate the efficacy of the formulation in capturing the effect of temperature and thermal fluctuations, including phonon density of states, thermally activated dislocation motion, dislocation formation during epitaxial processes, and attenuation of longitudinal acoustic waves as a result of their interaction with thermal phonons.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"9 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140026486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander L. Kholmetskii, Oleg V. Missevitch, Tolga Yarman
We analyse the physical meaning of the Aharonov–Bohm (AB) phase based on its representation through electromagnetic (EM) potentials as a sum of four components, which, in addition to the known electric and magnetic phase components, contains two more terms recently disclosed by our team in the analysis of quantum phase effects for dipoles and charges, and which we named the complementary electric AB phase and the complementary magnetic AB phase. Using the complete expression for the AB phase, we reveal that the phase component, explicitly depending on time, is determined by the interactional electric energy, while the phase component, explicitly depending on the velocity of charge, is determined by the interactional EM momentum for an isolated system ‘source of EM field and charge’. These findings shed new light on the origin of the AB phase and, in particular, allow us to generalize the de Broglie relationship and the Heisenberg uncertainty relations for a charged particle in an EM field.
除了已知的电相分量和磁相分量之外,我们还分析了阿哈诺夫-玻姆(AB)相的物理意义,并将其通过电磁(EM)势表示为四个分量之和,其中还包含我们团队最近在分析偶极子和电荷的量子相位效应时发现的另外两个项,我们将其命名为互补电AB相和互补磁AB相。利用 AB 相的完整表达式,我们发现,对于一个孤立的系统 "电磁场和电荷源 "来说,明确取决于时间的相分量是由相互作用电能决定的,而明确取决于电荷速度的相分量是由相互作用电磁动量决定的。这些发现为我们揭示 AB 相的起源提供了新的思路,特别是使我们能够概括电磁场中带电粒子的德布罗格利关系和海森堡不确定性关系。
{"title":"Role of electromagnetic energy and momentum in the Aharonov–Bohm effect","authors":"Alexander L. Kholmetskii, Oleg V. Missevitch, Tolga Yarman","doi":"10.1098/rspa.2023.0286","DOIUrl":"https://doi.org/10.1098/rspa.2023.0286","url":null,"abstract":"We analyse the physical meaning of the Aharonov–Bohm (AB) phase based on its representation through electromagnetic (EM) potentials as a sum of four components, which, in addition to the known electric and magnetic phase components, contains two more terms recently disclosed by our team in the analysis of quantum phase effects for dipoles and charges, and which we named the complementary electric AB phase and the complementary magnetic AB phase. Using the complete expression for the AB phase, we reveal that the phase component, explicitly depending on time, is determined by the interactional electric energy, while the phase component, explicitly depending on the velocity of charge, is determined by the interactional EM momentum for an isolated system ‘source of EM field and charge’. These findings shed new light on the origin of the AB phase and, in particular, allow us to generalize the de Broglie relationship and the Heisenberg uncertainty relations for a charged particle in an EM field.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"3 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present a new model for heat transfer in compressible fluid flows. The model is derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a setting where the entropy conservation is recovered as an Euler–Lagrange equation. A sufficient criterion for the hyperbolicity of the model is formulated. The governing equations are asymptotically consistent with the Euler equations for compressible heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–Hugoniot conditions and Clausius–Duhem inequality is performed for a specific choice of the equation of state. In particular, this reveals that contact discontinuities cannot exist while expansion waves and compression fans are possible solutions to the governing equations. Evidence of these properties is provided on a set of numerical test cases.
{"title":"An Eulerian hyperbolic model for heat transfer derived via Hamilton’s principle: analytical and numerical study","authors":"Firas Dhaouadi, Sergey Gavrilyuk","doi":"10.1098/rspa.2023.0440","DOIUrl":"https://doi.org/10.1098/rspa.2023.0440","url":null,"abstract":"In this paper, we present a new model for heat transfer in compressible fluid flows. The model is derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a setting where the entropy conservation is recovered as an Euler–Lagrange equation. A sufficient criterion for the hyperbolicity of the model is formulated. The governing equations are asymptotically consistent with the Euler equations for compressible heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–Hugoniot conditions and Clausius–Duhem inequality is performed for a specific choice of the equation of state. In particular, this reveals that contact discontinuities cannot exist while expansion waves and compression fans are possible solutions to the governing equations. Evidence of these properties is provided on a set of numerical test cases.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"19 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bifurcations organize the dynamics of many natural and engineered systems. They induce qualitative and quantitative changes to a system’s dynamics, which can have catastrophic consequences if ignored during design. In this paper, we propose a general computational method to control the local bifurcations of dynamical systems by optimizing design parameters. We define an objective functional that enforces the appearance of local bifurcation points at targeted locations or even encourages their disappearance. The methodology is an efficient alternative to bifurcation tracking techniques capable of handling many design parameters ( >102 ). The method is demonstrated on a Duffing oscillator featuring a hardening cubic nonlinearity and an autonomous van der Pol-Duffing oscillator coupled to a nonlinear tuned vibration absorber. The finite-element model of a clamped-free Euler–Bernoulli beam, coupled with a reduced-order modelling technique, is also used to show the extension to the shape optimization of more complicated structures. Results demonstrate that several local bifurcations of various types can be handled simultaneously by the bifurcation control framework, with both parameter and state target values.
{"title":"Multi-parametric optimization for controlling bifurcation structures","authors":"A. Mélot, E. Denimal, L. Renson","doi":"10.1098/rspa.2023.0505","DOIUrl":"https://doi.org/10.1098/rspa.2023.0505","url":null,"abstract":"Bifurcations organize the dynamics of many natural and engineered systems. They induce qualitative and quantitative changes to a system’s dynamics, which can have catastrophic consequences if ignored during design. In this paper, we propose a general computational method to control the local bifurcations of dynamical systems by optimizing design parameters. We define an objective functional that enforces the appearance of local bifurcation points at targeted locations or even encourages their disappearance. The methodology is an efficient alternative to bifurcation tracking techniques capable of handling many design parameters ( <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>></mml:mo> </mml:mrow> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>2</mml:mn> </mml:msup> </mml:math> </jats:inline-formula> ). The method is demonstrated on a Duffing oscillator featuring a hardening cubic nonlinearity and an autonomous van der Pol-Duffing oscillator coupled to a nonlinear tuned vibration absorber. The finite-element model of a clamped-free Euler–Bernoulli beam, coupled with a reduced-order modelling technique, is also used to show the extension to the shape optimization of more complicated structures. Results demonstrate that several local bifurcations of various types can be handled simultaneously by the bifurcation control framework, with both parameter and state target values.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"47 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paolo Conti, Mengwu Guo, Andrea Manzoni, Attilio Frangi, Steven L. Brunton, J. Nathan Kutz
High-fidelity numerical simulations of partial differential equations (PDEs) given a restricted computational budget can significantly limit the number of parameter configurations considered and/or time window evaluated. Multi-fidelity surrogate modelling aims to leverage less accurate, lower-fidelity models that are computationally inexpensive in order to enhance predictive accuracy when high-fidelity data are scarce. However, low-fidelity models, while often displaying the qualitative solution behaviour, fail to accurately capture fine spatio-temporal and dynamic features of high-fidelity models. To address this shortcoming, we present a data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates. The key idea is to generate a spatial basis by applying proper orthogonal decomposition (POD) to high-fidelity solution snapshots, and approximate the dynamics of the reduced states—time-parameter-dependent expansion coefficients of the POD basis—using a multi-fidelity long short-term memory network. By mapping low-fidelity reduced states to their high-fidelity counterpart, the proposed reduced-order surrogate model enables the efficient recovery of full solution fields over time and parameter variations in a non-intrusive manner. The generality of this method is demonstrated by a collection of PDE problems where the low-fidelity model can be defined by coarser meshes and/or time stepping, as well as by misspecified physical features.
{"title":"Multi-fidelity reduced-order surrogate modelling","authors":"Paolo Conti, Mengwu Guo, Andrea Manzoni, Attilio Frangi, Steven L. Brunton, J. Nathan Kutz","doi":"10.1098/rspa.2023.0655","DOIUrl":"https://doi.org/10.1098/rspa.2023.0655","url":null,"abstract":"High-fidelity numerical simulations of partial differential equations (PDEs) given a restricted computational budget can significantly limit the number of parameter configurations considered and/or time window evaluated. Multi-fidelity surrogate modelling aims to leverage less accurate, lower-fidelity models that are computationally inexpensive in order to enhance predictive accuracy when high-fidelity data are scarce. However, low-fidelity models, while often displaying the qualitative solution behaviour, fail to accurately capture fine spatio-temporal and dynamic features of high-fidelity models. To address this shortcoming, we present a data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates. The key idea is to generate a spatial basis by applying proper orthogonal decomposition (POD) to high-fidelity solution snapshots, and approximate the dynamics of the reduced states—time-parameter-dependent expansion coefficients of the POD basis—using a multi-fidelity <jats:italic>long short-term memory</jats:italic> network. By mapping low-fidelity reduced states to their high-fidelity counterpart, the proposed reduced-order surrogate model enables the efficient recovery of full solution fields over time and parameter variations in a non-intrusive manner. The generality of this method is demonstrated by a collection of PDE problems where the low-fidelity model can be defined by coarser meshes and/or time stepping, as well as by misspecified physical features.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"264 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}