首页 > 最新文献

Psychological methods最新文献

英文 中文
Supplemental Material for Estimating Ordinal Factor Analysis and Item Response Theory Models: A Comparison of Full- and Limited-Information Techniques 估计顺序因子分析和项目反应理论模型的补充材料:充分信息技术和有限信息技术的比较
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-11-03 DOI: 10.1037/met0000802.supp
{"title":"Supplemental Material for Estimating Ordinal Factor Analysis and Item Response Theory Models: A Comparison of Full- and Limited-Information Techniques","authors":"","doi":"10.1037/met0000802.supp","DOIUrl":"https://doi.org/10.1037/met0000802.supp","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"30 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of latent growth curves: A parameter constancy test. 潜在生长曲线的比较:参数常数检验。
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-11-03 DOI: 10.1037/met0000788
Jesús F. Rosel, Sara Puchol, Marcel Elipe, Patricia Flor, Francisco H. Machancoses, Juan J. Canales
{"title":"Comparison of latent growth curves: A parameter constancy test.","authors":"Jesús F. Rosel, Sara Puchol, Marcel Elipe, Patricia Flor, Francisco H. Machancoses, Juan J. Canales","doi":"10.1037/met0000788","DOIUrl":"https://doi.org/10.1037/met0000788","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"79 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to analyze visual data using zero-shot learning: An overview and tutorial. 如何使用零射击学习分析视觉数据:概述和教程。
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-11-03 DOI: 10.1037/met0000801
Benjamin Riordan, Joshua Millward, Zhen He, Dan Anderson-Luxford, Samatha Pararath Salim, Maree Patsouras, Emmanuel Kuntsche
{"title":"How to analyze visual data using zero-shot learning: An overview and tutorial.","authors":"Benjamin Riordan, Joshua Millward, Zhen He, Dan Anderson-Luxford, Samatha Pararath Salim, Maree Patsouras, Emmanuel Kuntsche","doi":"10.1037/met0000801","DOIUrl":"https://doi.org/10.1037/met0000801","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"9 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supplemental Material for Comparison of Latent Growth Curves: A Parameter Constancy Test 潜在生长曲线比较补充材料:参数恒常性检验
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-30 DOI: 10.1037/met0000788.supp
{"title":"Supplemental Material for Comparison of Latent Growth Curves: A Parameter Constancy Test","authors":"","doi":"10.1037/met0000788.supp","DOIUrl":"https://doi.org/10.1037/met0000788.supp","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"21 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145397024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A factored regression approach to modeling latent variable interactions and nonlinear effects. 潜在变量相互作用和非线性效应建模的因子回归方法。
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-30 DOI: 10.1037/met0000777
Brian T. Keller
{"title":"A factored regression approach to modeling latent variable interactions and nonlinear effects.","authors":"Brian T. Keller","doi":"10.1037/met0000777","DOIUrl":"https://doi.org/10.1037/met0000777","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"81 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145397025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of missing data analytical techniques in longitudinal research: Traditional and machine learning approaches. 纵向研究中缺失数据分析技术的评估:传统和机器学习方法。
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-30 DOI: 10.1037/met0000765
Dandan Tang, Xin Tong
{"title":"Evaluation of missing data analytical techniques in longitudinal research: Traditional and machine learning approaches.","authors":"Dandan Tang, Xin Tong","doi":"10.1037/met0000765","DOIUrl":"https://doi.org/10.1037/met0000765","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"27 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145397023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A gain-probability way to interpret correlation coefficients: A tutorial. 解释相关系数的增益概率方法:教程。
IF 7.8 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-27 DOI: 10.1037/met0000798
David Trafimow

The interpretation of correlation coefficients has invoked considerable discussion over many decades. One interpretive procedure is to use the coefficient of determination-the squared correlation coefficient-to index variance accounted for in one variable by variance in the other variable. A second interpretive procedure is to construct binomial effect size displays that involve dichotomizing continuous dependent variables. The present goal is to present a third interpretive procedure, with tutorial, to estimate probabilistic (dis)advantages implied by correlation coefficients and construct gain-probability diagrams. The proposed procedure does not involve dichotomizing continuous dependent variables, thereby losing information. In addition, the proposed procedure extends well to comparing correlation coefficients and facilitates subtle and nuanced implications that can enhance theoretical specificity. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

几十年来,相关系数的解释引起了相当多的讨论。一种解释方法是使用决定系数——相关系数的平方——用另一个变量的方差来表示一个变量的方差。第二个解释程序是构建二项效应大小显示,其中涉及对连续因变量进行二分类。目前的目标是提出第三种解释程序,并附有教程,以估计相关系数所隐含的概率(dis)优势并构建增益-概率图。所提出的程序不涉及二分类连续因变量,从而丢失信息。此外,所提出的程序可以很好地扩展到比较相关系数,并促进可以增强理论特异性的微妙和微妙的含义。(PsycInfo Database Record (c) 2025 APA,版权所有)。
{"title":"A gain-probability way to interpret correlation coefficients: A tutorial.","authors":"David Trafimow","doi":"10.1037/met0000798","DOIUrl":"https://doi.org/10.1037/met0000798","url":null,"abstract":"<p><p>The interpretation of correlation coefficients has invoked considerable discussion over many decades. One interpretive procedure is to use the coefficient of determination-the squared correlation coefficient-to index variance accounted for in one variable by variance in the other variable. A second interpretive procedure is to construct binomial effect size displays that involve dichotomizing continuous dependent variables. The present goal is to present a third interpretive procedure, with tutorial, to estimate probabilistic (dis)advantages implied by correlation coefficients and construct gain-probability diagrams. The proposed procedure does not involve dichotomizing continuous dependent variables, thereby losing information. In addition, the proposed procedure extends well to comparing correlation coefficients and facilitates subtle and nuanced implications that can enhance theoretical specificity. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145378569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supplemental Material for How to Analyze Visual Data Using Zero-Shot Learning: An Overview and Tutorial 如何使用零射击学习分析视觉数据的补充材料:概述和教程
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-27 DOI: 10.1037/met0000801.supp
{"title":"Supplemental Material for How to Analyze Visual Data Using Zero-Shot Learning: An Overview and Tutorial","authors":"","doi":"10.1037/met0000801.supp","DOIUrl":"https://doi.org/10.1037/met0000801.supp","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"1 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145396696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causal decomposition analysis with synergistic interventions: A triply robust machine-learning approach to addressing multiple dimensions of social disparities. 协同干预的因果分解分析:一种三重鲁棒的机器学习方法来解决社会差异的多个维度。
IF 7.8 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-27 DOI: 10.1037/met0000803
Soojin Park, Su Yeon Kim, Xinyao Zheng, Chioun Lee

Educational disparities are rooted in, and perpetuate, social inequalities across multiple dimensions such as race, socioeconomic status, and geography. To reduce disparities, most intervention strategies focus on a single domain and frequently evaluate their effectiveness by using causal decomposition analysis. However, a growing body of research suggests that single-domain interventions may be insufficient for individuals marginalized on multiple fronts. While interventions across multiple domains are increasingly proposed, there is limited guidance on appropriate methods for evaluating their effectiveness. To address this gap, we develop an extended causal decomposition analysis that simultaneously targets multiple causally ordered intervening factors, allowing for the assessment of their synergistic effects. These scenarios often involve challenges related to model misspecification because of complex interactions among group categories, intervening factors, and their confounders with the outcome. To mitigate these challenges, we introduce a triply robust estimator that leverages machine-learning techniques to address potential model misspecification. We apply our method to a cohort of students from the High School Longitudinal Study (HSLS:09), focusing on math achievement disparities between Black, Hispanic, and White high schoolers. Specifically, we examine how two sequential interventions-equalizing the proportion of students who attend high-performing schools and equalizing enrollment in Algebra I by ninth grade across racial groups-may reduce these disparities. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

教育差异根植于种族、社会经济地位和地理等多个维度的社会不平等,并使其永久化。为了减少差异,大多数干预策略都侧重于单一领域,并经常使用因果分解分析来评估其有效性。然而,越来越多的研究表明,单一领域的干预措施可能不足以满足在多个方面被边缘化的个体。虽然越来越多地提出跨多个领域的干预措施,但关于评估其有效性的适当方法的指导有限。为了解决这一差距,我们开发了一种扩展的因果分解分析,同时针对多个因果有序的干预因素,允许评估它们的协同效应。这些场景通常涉及与模型错误规范相关的挑战,因为组类别、干预因素以及它们与结果的混杂因素之间存在复杂的相互作用。为了缓解这些挑战,我们引入了一个三重鲁棒估计器,它利用机器学习技术来解决潜在的模型错误规范。我们将我们的方法应用于高中纵向研究(HSLS:09)的一组学生,重点关注黑人,西班牙裔和白人高中生之间的数学成绩差异。具体地说,我们研究了两个连续的干预措施——在高绩效学校就读的学生比例均等和在种族群体中在九年级时均等代数I的入学率——如何减少这些差异。(PsycInfo Database Record (c) 2025 APA,版权所有)。
{"title":"Causal decomposition analysis with synergistic interventions: A triply robust machine-learning approach to addressing multiple dimensions of social disparities.","authors":"Soojin Park, Su Yeon Kim, Xinyao Zheng, Chioun Lee","doi":"10.1037/met0000803","DOIUrl":"10.1037/met0000803","url":null,"abstract":"<p><p>Educational disparities are rooted in, and perpetuate, social inequalities across multiple dimensions such as race, socioeconomic status, and geography. To reduce disparities, most intervention strategies focus on a single domain and frequently evaluate their effectiveness by using causal decomposition analysis. However, a growing body of research suggests that single-domain interventions may be insufficient for individuals marginalized on multiple fronts. While interventions across multiple domains are increasingly proposed, there is limited guidance on appropriate methods for evaluating their effectiveness. To address this gap, we develop an extended causal decomposition analysis that simultaneously targets multiple causally ordered intervening factors, allowing for the assessment of their synergistic effects. These scenarios often involve challenges related to model misspecification because of complex interactions among group categories, intervening factors, and their confounders with the outcome. To mitigate these challenges, we introduce a triply robust estimator that leverages machine-learning techniques to address potential model misspecification. We apply our method to a cohort of students from the High School Longitudinal Study (HSLS:09), focusing on math achievement disparities between Black, Hispanic, and White high schoolers. Specifically, we examine how two sequential interventions-equalizing the proportion of students who attend high-performing schools and equalizing enrollment in Algebra I by ninth grade across racial groups-may reduce these disparities. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12616418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145372978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supplemental Material for Causal Decomposition Analysis With Synergistic Interventions: A Triply Robust Machine-Learning Approach to Addressing Multiple Dimensions of Social Disparities 补充材料与协同干预因果分解分析:三重鲁棒机器学习方法来解决社会差异的多个维度
IF 7 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Pub Date : 2025-10-23 DOI: 10.1037/met0000803.supp
{"title":"Supplemental Material for Causal Decomposition Analysis With Synergistic Interventions: A Triply Robust Machine-Learning Approach to Addressing Multiple Dimensions of Social Disparities","authors":"","doi":"10.1037/met0000803.supp","DOIUrl":"https://doi.org/10.1037/met0000803.supp","url":null,"abstract":"","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"4 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Psychological methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1