首页 > 最新文献

Radiology. Imaging cancer最新文献

英文 中文
Breast Cancer Detection Using a Low-Dose Positron Emission Digital Mammography System. 使用低剂量正电子发射数字乳腺 X 射线摄影系统检测乳腺癌。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-03-01 DOI: 10.1148/rycan.230020
Vivianne Freitas, Xuan Li, Anabel Scaranelo, Frederick Au, Supriya Kulkarni, Sandeep Ghai, Samira Taeb, Oleksandr Bubon, Brandon Baldassi, Borys Komarov, Shayna Parker, Craig A Macsemchuk, Michael Waterston, Kenneth O Olsen, Alla Reznik

Purpose To investigate the feasibility of low-dose positron emission mammography (PEM) concurrently to MRI to identify breast cancer and determine its local extent. Materials and Methods In this research ethics board-approved prospective study, participants newly diagnosed with breast cancer with concurrent breast MRI acquisitions were assigned independently of breast density, tumor size, and histopathologic cancer subtype to undergo low-dose PEM with up to 185 MBq of fluorine 18-labeled fluorodeoxyglucose (18F-FDG). Two breast radiologists, unaware of the cancer location, reviewed PEM images taken 1 and 4 hours following 18F-FDG injection. Findings were correlated with histopathologic results. Detection accuracy and participant details were examined using logistic regression and summary statistics, and a comparative analysis assessed the efficacy of PEM and MRI additional lesions detection (ClinicalTrials.gov: NCT03520218). Results Twenty-five female participants (median age, 52 years; range, 32-85 years) comprised the cohort. Twenty-four of 25 (96%) cancers (19 invasive cancers and five in situ diseases) were identified with PEM from 100 sets of bilateral images, showcasing comparable performance even after 3 hours of radiotracer uptake. The median invasive cancer size was 31 mm (range, 10-120). Three additional in situ grade 2 lesions were missed at PEM. While not significant, PEM detected fewer false-positive additional lesions compared with MRI (one of six [16%] vs eight of 13 [62%]; P = .14). Conclusion This study suggests the feasibility of a low-dose PEM system in helping to detect invasive breast cancer. Though large-scale clinical trials are essential to confirm these preliminary results, this study underscores the potential of this low-dose PEM system as a promising imaging tool in breast cancer diagnosis. ClinicalTrials.gov registration no. NCT03520218 Keywords: Positron Emission Digital Mammography, Invasive Breast Cancer, Oncology, MRI Supplemental material is available for this article. © RSNA, 2024 See also commentary by Barreto and Rapelyea in this issue.

目的 探讨低剂量正电子发射乳腺放射摄影(PEM)与核磁共振成像(MRI)同时进行以识别乳腺癌并确定其局部范围的可行性。材料和方法 在这项经研究伦理委员会批准的前瞻性研究中,新诊断为乳腺癌并同时进行了乳腺核磁共振成像检查的参试者被独立分配到不同的乳腺密度、肿瘤大小和组织病理学癌症亚型中,接受最多 185 MBq 氟 18 标记的氟脱氧葡萄糖(18F-FDG)的低剂量正电子发射乳腺放射摄影检查。两名乳腺放射科医生在不知道癌症位置的情况下,分别查看了注射 18F-FDG 1 小时和 4 小时后的 PEM 图像。检查结果与组织病理学结果相互关联。使用逻辑回归和汇总统计对检测准确性和参与者的详细信息进行了检查,并通过比较分析评估了 PEM 和 MRI 额外病灶检测的效果(ClinicalTrials.gov:NCT03520218)。结果 组群中有 25 名女性参与者(中位年龄 52 岁;范围 32-85 岁)。PEM从100组双侧图像中识别出了25个癌症中的24个(96%)(19个浸润性癌症和5个原位疾病),即使在放射性示踪剂吸收3小时后仍能显示出相当的性能。浸润性癌症的中位尺寸为 31 毫米(范围为 10-120)。PEM 还漏检了另外三个 2 级原位病变。与磁共振成像相比,PEM 发现的假阳性病变更少(6 例中 1 例 [16%] 对 13 例中 8 例 [62%];P = .14),但意义不大。结论 这项研究表明,低剂量 PEM 系统在帮助检测浸润性乳腺癌方面是可行的。尽管大规模临床试验对于证实这些初步结果至关重要,但本研究强调了低剂量 PEM 系统作为乳腺癌诊断成像工具的潜力。ClinicalTrials.gov 注册号:NCT03520218NCT03520218 关键词正电子发射数字乳腺 X 线照相术 浸润性乳腺癌 肿瘤学 MRI 这篇文章有补充材料。© RSNA, 2024 另请参阅本期 Barreto 和 Rapelyea 的评论。
{"title":"Breast Cancer Detection Using a Low-Dose Positron Emission Digital Mammography System.","authors":"Vivianne Freitas, Xuan Li, Anabel Scaranelo, Frederick Au, Supriya Kulkarni, Sandeep Ghai, Samira Taeb, Oleksandr Bubon, Brandon Baldassi, Borys Komarov, Shayna Parker, Craig A Macsemchuk, Michael Waterston, Kenneth O Olsen, Alla Reznik","doi":"10.1148/rycan.230020","DOIUrl":"10.1148/rycan.230020","url":null,"abstract":"<p><p>Purpose To investigate the feasibility of low-dose positron emission mammography (PEM) concurrently to MRI to identify breast cancer and determine its local extent. Materials and Methods In this research ethics board-approved prospective study, participants newly diagnosed with breast cancer with concurrent breast MRI acquisitions were assigned independently of breast density, tumor size, and histopathologic cancer subtype to undergo low-dose PEM with up to 185 MBq of fluorine 18-labeled fluorodeoxyglucose (<sup>18</sup>F-FDG). Two breast radiologists, unaware of the cancer location, reviewed PEM images taken 1 and 4 hours following <sup>18</sup>F-FDG injection. Findings were correlated with histopathologic results. Detection accuracy and participant details were examined using logistic regression and summary statistics, and a comparative analysis assessed the efficacy of PEM and MRI additional lesions detection (ClinicalTrials.gov: NCT03520218). Results Twenty-five female participants (median age, 52 years; range, 32-85 years) comprised the cohort. Twenty-four of 25 (96%) cancers (19 invasive cancers and five in situ diseases) were identified with PEM from 100 sets of bilateral images, showcasing comparable performance even after 3 hours of radiotracer uptake. The median invasive cancer size was 31 mm (range, 10-120). Three additional in situ grade 2 lesions were missed at PEM. While not significant, PEM detected fewer false-positive additional lesions compared with MRI (one of six [16%] vs eight of 13 [62%]; <i>P</i> = .14). Conclusion This study suggests the feasibility of a low-dose PEM system in helping to detect invasive breast cancer. Though large-scale clinical trials are essential to confirm these preliminary results, this study underscores the potential of this low-dose PEM system as a promising imaging tool in breast cancer diagnosis. ClinicalTrials.gov registration no. NCT03520218 <b>Keywords:</b> Positron Emission Digital Mammography, Invasive Breast Cancer, Oncology, MRI <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also commentary by Barreto and Rapelyea in this issue.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 2","pages":"e230020"},"PeriodicalIF":5.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary Osteosarcoma of the Sternum with Lung Metastases. 胸骨原发性骨肉瘤伴肺部转移。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-03-01 DOI: 10.1148/rycan.230199
Anitha Mandava, Sanath Kandem, Rakesh Juluri, Arvind K Reddy, Veeraiah Koppula
{"title":"Primary Osteosarcoma of the Sternum with Lung Metastases.","authors":"Anitha Mandava, Sanath Kandem, Rakesh Juluri, Arvind K Reddy, Veeraiah Koppula","doi":"10.1148/rycan.230199","DOIUrl":"10.1148/rycan.230199","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 2","pages":"e230199"},"PeriodicalIF":5.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139932639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calvarial Epithelioid Hemangioendothelioma Mimicking Osteosarcoma. 模仿骨肉瘤的钙化上皮样血管内皮瘤
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-03-01 DOI: 10.1148/rycan.230198
Yashaswi Singh, Amit Gupta, Asit Ranjan Mridha, Krithika Rangarajan
{"title":"Calvarial Epithelioid Hemangioendothelioma Mimicking Osteosarcoma.","authors":"Yashaswi Singh, Amit Gupta, Asit Ranjan Mridha, Krithika Rangarajan","doi":"10.1148/rycan.230198","DOIUrl":"10.1148/rycan.230198","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 2","pages":"e230198"},"PeriodicalIF":5.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge. 用于预测乳腺癌新辅助化疗反应的乳腺多参数磁共振成像:BMMR2 挑战赛
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.230033
Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton

Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 Keywords: MRI, Breast, Tumor Response Supplemental material is available for this article. © RSNA, 2024.

目的 描述用于预测新辅助化疗反应的乳腺多参数磁共振成像(BMMR2)挑战赛的设计、实施和结果。材料和方法 BMMR2计算挑战赛于2021年5月28日开始,2021年12月21日结束。该挑战赛的目标是识别基于图像的标记,这些标记来自多参数乳腺 MRI,包括弥散加权成像(DWI)和动态对比增强(DCE)MRI,以及用于预测新辅助治疗后病理完全反应(pCR)的临床数据。数据包括I-SPY 2/美国放射学会成像网络(ACRIN)6698试验(ClinicalTrials.gov:NCT01042379)中191名妇女(平均年龄[±SD],48.9岁±10.56岁)的573项乳腺MRI研究。挑战队列分为训练集(60%)和测试集(40%),团队对测试集的 pCR 结果保密。预测结果通过接收者操作特征曲线下面积(AUC)进行评估,并与 ACRIN 6698 主要分析所确定的基准进行比较。结果 八支团队提交了最终预测结果。三个团队的 AUC 点估计值高于基准值(AUC 为 0.782 [95% CI: 0.670, 0.893],AUC 分别为 0.803 [95% CI: 0.702, 0.904]、0.838 [95% CI: 0.748, 0.928] 和 0.840 [95% CI: 0.748, 0.932])。所使用的方法多种多样,从提取单个特征到深度学习和人工智能方法,将 DCE 和 DWI 单独或结合使用。结论 BMMR2 挑战赛确定了几个具有较高预测性能的模型,这可能会进一步扩大多参数乳腺 MRI 作为治疗反应早期标志物的价值。临床试验注册号NCT01042379 关键词MRI、乳腺、肿瘤反应 本文有补充材料。© RSNA, 2024.
{"title":"Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge.","authors":"Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton","doi":"10.1148/rycan.230033","DOIUrl":"10.1148/rycan.230033","url":null,"abstract":"<p><p>Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 <b>Keywords:</b> MRI, Breast, Tumor Response <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230033"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging of the Posttreatment Head and Neck: Expected Findings and Potential Complications. 治疗后的头颈部成像:预期结果和潜在并发症。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.230155
Sneh Brahmbhatt, Cameron J Overfield, Patricia A Rhyner, Alok A Bhatt

Interpretation of posttreatment imaging findings in patients with head and neck cancer can pose a substantial challenge. Malignancies in this region are often managed through surgery, radiation therapy, chemotherapy, and newer approaches like immunotherapy. After treatment, patients may experience various expected changes, including mucositis, soft-tissue inflammation, laryngeal edema, and salivary gland inflammation. Imaging techniques such as CT, MRI, and PET scans help differentiate these changes from tumor recurrence. Complications such as osteoradionecrosis, chondroradionecrosis, and radiation-induced vasculopathy can arise because of radiation effects. Radiation-induced malignancies may occur in the delayed setting. This review article emphasizes the importance of posttreatment surveillance imaging to ensure proper care of patients with head and neck cancer and highlights the complexities in distinguishing between expected treatment effects and potential complications. Keywords: CT, MR Imaging, Radiation Therapy, Ear/Nose/Throat, Head/Neck, Nervous-Peripheral, Bone Marrow, Calvarium, Carotid Arteries, Jaw, Face, Larynx © RSNA, 2024.

对头颈部癌症患者治疗后的成像结果进行解读是一项巨大的挑战。该区域的恶性肿瘤通常通过手术、放疗、化疗和免疫疗法等新方法进行治疗。治疗后,患者可能会出现各种预期变化,包括粘膜炎、软组织炎症、喉头水肿和唾液腺炎症。CT、MRI 和 PET 扫描等成像技术有助于将这些变化与肿瘤复发区分开来。辐射效应可能导致骨软化症、软骨软化症和辐射诱发血管病变等并发症。辐射诱发的恶性肿瘤可能会在延迟的情况下发生。这篇综述文章强调了治疗后监测成像对确保头颈部癌症患者得到适当护理的重要性,并突出了区分预期治疗效果和潜在并发症的复杂性。关键词CT、MR 成像、放射治疗、耳鼻喉、头颈部、神经-外周、骨髓、颅骨、颈动脉、下颌、面部、喉部 © RSNA, 2024.
{"title":"Imaging of the Posttreatment Head and Neck: Expected Findings and Potential Complications.","authors":"Sneh Brahmbhatt, Cameron J Overfield, Patricia A Rhyner, Alok A Bhatt","doi":"10.1148/rycan.230155","DOIUrl":"10.1148/rycan.230155","url":null,"abstract":"<p><p>Interpretation of posttreatment imaging findings in patients with head and neck cancer can pose a substantial challenge. Malignancies in this region are often managed through surgery, radiation therapy, chemotherapy, and newer approaches like immunotherapy. After treatment, patients may experience various expected changes, including mucositis, soft-tissue inflammation, laryngeal edema, and salivary gland inflammation. Imaging techniques such as CT, MRI, and PET scans help differentiate these changes from tumor recurrence. Complications such as osteoradionecrosis, chondroradionecrosis, and radiation-induced vasculopathy can arise because of radiation effects. Radiation-induced malignancies may occur in the delayed setting. This review article emphasizes the importance of posttreatment surveillance imaging to ensure proper care of patients with head and neck cancer and highlights the complexities in distinguishing between expected treatment effects and potential complications. <b>Keywords:</b> CT, MR Imaging, Radiation Therapy, Ear/Nose/Throat, Head/Neck, Nervous-Peripheral, Bone Marrow, Calvarium, Carotid Arteries, Jaw, Face, Larynx © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230155"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Evolution of AI in Predicting Response to Minimally Invasive Image-guided Therapies. 人工智能在预测微创图像引导疗法反应方面的发展。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.249004
Nariman Nezami, Mohammad Mirza-Aghazadeh-Attari
{"title":"The Evolution of AI in Predicting Response to Minimally Invasive Image-guided Therapies.","authors":"Nariman Nezami, Mohammad Mirza-Aghazadeh-Attari","doi":"10.1148/rycan.249004","DOIUrl":"10.1148/rycan.249004","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e249004"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-Renal Transplant Lymphoproliferative Disorder. 肾移植后淋巴组织增生性疾病。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.230075
Yash Jain, Nilendu Purandare, Archi Agrawal, Sneha Shah, Ameya Puranik, Venkatesh Rangarajan
{"title":"Post-Renal Transplant Lymphoproliferative Disorder.","authors":"Yash Jain, Nilendu Purandare, Archi Agrawal, Sneha Shah, Ameya Puranik, Venkatesh Rangarajan","doi":"10.1148/rycan.230075","DOIUrl":"10.1148/rycan.230075","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230075"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
White Fat Uptake: A Rare Confounder of Pediatric 18F-FDG PET/CT. 白色脂肪摄取:小儿 18F-FDG PET/CT 的罕见干扰因素。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.230148
Lance Zimmerman, Hassan Aboughalia
{"title":"White Fat Uptake: A Rare Confounder of Pediatric <sup>18</sup>F-FDG PET/CT.","authors":"Lance Zimmerman, Hassan Aboughalia","doi":"10.1148/rycan.230148","DOIUrl":"10.1148/rycan.230148","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230148"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carcinoid Heart Disease. 类癌性心脏病
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.230164
Sean Johnson, Matthias R Benz, Kathleen Ruchalski
{"title":"Carcinoid Heart Disease.","authors":"Sean Johnson, Matthias R Benz, Kathleen Ruchalski","doi":"10.1148/rycan.230164","DOIUrl":"10.1148/rycan.230164","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230164"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution 31P MR Spectroscopic Imaging at 7.0 T. 利用 7.0 T 的高分辨率 31P MR 光谱成像绘制胶质瘤的全脑细胞内 pH 图。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-01-01 DOI: 10.1148/rycan.220127
Daniel Paech, Nina Weckesser, Vanessa L Franke, Johannes Breitling, Steffen Görke, Katerina Deike-Hofmann, Antje Wick, Moritz Scherer, Andreas Unterberg, Wolfgang Wick, Martin Bendszus, Peter Bachert, Mark E Ladd, Heinz-Peter Schlemmer, Andreas Korzowski

Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.

与正常组织相比,恶性肿瘤通常表现出相反的 pH 梯度,细胞外 pH 值偏酸性,而细胞内 pH 值(pHi)偏碱性。在这项前瞻性研究中,采用 7.0 T 高分辨率磷 31 (31P) 光谱核磁共振成像技术对胶质瘤中的 pHi 值进行了量化,并将 pHi 变化与组织病理学发现联系起来。2018年9月至2019年11月期间,共纳入了12名经组织病理学证实的新诊断胶质瘤患者(平均年龄为58岁±18岁[SD];男性7名,女性5名)。31P光谱核磁共振成像扫描是使用双共振31P/1H相控阵头线圈和三维(3D)31P化学位移成像序列(5.7 mL体素体积)采集的,并在7.0-T全身系统上执行。对整个肿瘤体积(WTV)、坏死、钆增强和非增强 T2(NCE T2)高密度的肿瘤亚区以及正常显示的白质(NAWM)进行了三维容积分割,并比较了 pHi 值。Spearman 相关性用于评估 pHi 与增殖指数 Ki-67 之间的关系。在所有研究参与者中,WTV的平均pHi值(7.057 ± 0.024)高于NAWM(7.006 ± 0.012;P < .001)。在 8 名患有高级别胶质瘤的参与者中,与 NAWM(7.004 ± 0.014;所有 P <.01)相比,所有肿瘤亚分区(坏死,7.075 ± 0.033;钆增强,7.075 ± 0.024;NCE T2 高密度,7.043 ± 0.015)的 pHi 值均升高。WTV 的 pHi 值与 Ki-67 呈正相关(R2 = 0.74,r = 0.78,P = .001)。总之,7.0 T 的 31P 光谱核磁共振成像可高分辨率地量化胶质瘤的 pHi 值,pHi 值的改变与 Ki-67 增殖指数相关,有助于诊断和治疗监测。关键词31P MRSI pH值 胶质瘤 胶母细胞瘤 超高场磁共振成像 成像生物标志物 7特斯拉 本文有补充材料。© RSNA, 2023.
{"title":"Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution <sup>31</sup>P MR Spectroscopic Imaging at 7.0 T.","authors":"Daniel Paech, Nina Weckesser, Vanessa L Franke, Johannes Breitling, Steffen Görke, Katerina Deike-Hofmann, Antje Wick, Moritz Scherer, Andreas Unterberg, Wolfgang Wick, Martin Bendszus, Peter Bachert, Mark E Ladd, Heinz-Peter Schlemmer, Andreas Korzowski","doi":"10.1148/rycan.220127","DOIUrl":"10.1148/rycan.220127","url":null,"abstract":"<p><p>Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pH<sub>i</sub>). In this prospective study, pH<sub>i</sub> values in gliomas were quantified using high-resolution phosphorous 31 (<sup>31</sup>P) spectroscopic MRI at 7.0 T and were used to correlate pH<sub>i</sub> alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The <sup>31</sup>P spectroscopic MRI scans were acquired using a double-resonant <sup>31</sup>P/<sup>1</sup>H phased-array head coil together with a three-dimensional (3D) <sup>31</sup>P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pH<sub>i</sub> values were compared. Spearman correlation was used to assess association between pH<sub>i</sub> and the proliferation index Ki-67. For all study participants, mean pH<sub>i</sub> values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; <i>P</i> < .001). In eight participants with high-grade gliomas, pH<sub>i</sub> was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all <i>P</i> < .01). The pH<sub>i</sub> values of WTV positively correlated with Ki-67 (<i>R</i><sup>2</sup> = 0.74, <i>r</i> = 0.78, <i>P</i> = .001). In conclusion, <sup>31</sup>P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pH<sub>i</sub> in gliomas, with pH<sub>i</sub> alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. <b>Keywords:</b> <sup>31</sup>P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e220127"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiology. Imaging cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1