首页 > 最新文献

Radiology. Imaging cancer最新文献

英文 中文
Improving Clinically Significant Prostate Cancer Detection with a Multimodal Machine Learning Approach: A Large-Scale Multicenter Study. 用多模态机器学习方法改善临床意义的前列腺癌检测:一项大规模的多中心研究。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.240507
Ana Carolina Rodrigues, José Guilherme de Almeida, Nuno Rodrigues, Raquel Moreno, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Sara Silva, Inês Domingues, Manolis Tsiknakis, Konstantinos Marias, Daniele Regge, Nikolaos Papanikolaou

Purpose To develop and prospectively validate a clinical and radiologic model to predict clinically significant prostate cancer (csPCa) using biparametric MRI (bpMRI). Materials and Methods Retrospective data (acquired before March 31, 2022) from 12 medical centers were collected. Radiomic features were extracted from the whole prostate gland using segmentations generated by an automatic deep learning algorithm. A model incorporating bpMRI radiomics, age, prostate-specific antigens, the Prostate Imaging Reporting and Data System (PI-RADS), and the prostate zone lesion location was trained. A retrospective validation set and prospective data (acquired after March 31, 2022) were used to compare PI-RADS scoring (area under the receiver operating characteristic curve [AUC] and specificity at PI-RADS >3). Sensitivity analyses for sequence (T2-weighted, apparent diffusion coefficient, diffusion-weighted imaging) and scanner vendor (GE, Philips, Siemens) were performed, in addition to fairness analyses for relevant categories. Results The retrospective dataset for model development included 7157 male patients (mean age, 64.78 years; 3342 [46.7%] with csPCa), and the prospective dataset for model validation included 1629 patients (mean age, 66.19 years; 592 [36.3%] with csPCa). The multimodal model outperformed PI-RADS in the retrospective (AUC, 0.88 vs 0.80, P = .005; specificity of 71% vs 58%, P = .002) and prospective validation sets (AUC, 0.91 vs 0.85, P < .001; specificity of 77% vs 66%, P < .001), leading to 22.7% fewer biopsies compared with PI-RADS. Sensitivity analyses showed the importance of multiple sequences and vendors in achieving model generalization, as using specific sequences or vendors alone led to worse performance. Fairness analysis showed generalizability across different categories but highlighted increased sensitivity with higher PI-RADS and reduced performance in one medical center. Conclusion A multimodal model provided a temporally generalizable predictor of csPCa that outperformed PI-RADS. Keywords: Algorithm Development, Machine Learning, Model Validation, Model Training, Genital/Reproductive, Neoplasms-Primary, Oncology, Comparative Studies, Technology Assessment Supplemental material is available for this article. © RSNA, 2025.

目的建立并前瞻性验证双参数磁共振成像(bpMRI)预测临床显著性前列腺癌(csPCa)的临床和放射学模型。材料与方法收集12个医疗中心的回顾性数据(于2022年3月31日前)。使用自动深度学习算法生成的分割,从整个前列腺中提取放射特征。结合bpMRI放射组学、年龄、前列腺特异性抗原、前列腺成像报告和数据系统(PI-RADS)和前列腺区病变位置的模型进行训练。回顾性验证集和前瞻性数据(于2022年3月31日之后获得)用于比较PI-RADS评分(受试者工作特征曲线下面积[AUC]和PI-RADS bbbb3的特异性)。对序列(t2加权、表观扩散系数、扩散加权成像)和扫描仪供应商(GE、Philips、Siemens)进行敏感性分析,并对相关类别进行公平性分析。结果模型开发的回顾性数据集包括7157例男性患者(平均年龄64.78岁;3342例(46.7%)患有csPCa),模型验证的前瞻性数据集包括1629例患者(平均年龄66.19岁;592例(36.3%)。多模态模型在回顾性分析中优于PI-RADS (AUC, 0.88 vs 0.80, P = 0.005;特异性为71% vs 58%, P = 0.002)和前瞻性验证集(AUC, 0.91 vs 0.85, P < 0.001;特异性为77% vs 66%, P < 0.001),与PI-RADS相比,活检减少22.7%。敏感性分析显示了多个序列和供应商对实现模型泛化的重要性,因为单独使用特定序列或供应商会导致更差的性能。公平性分析显示了不同类别的普遍性,但强调了在一个医疗中心,更高的PI-RADS增加了敏感性,而性能降低了。结论多模态模型提供了一种暂时可推广的csPCa预测器,优于PI-RADS。关键词:算法开发,机器学习,模型验证,模型训练,生殖/生殖,肿瘤-原发性,肿瘤学,比较研究,技术评估©rsna, 2025。
{"title":"Improving Clinically Significant Prostate Cancer Detection with a Multimodal Machine Learning Approach: A Large-Scale Multicenter Study.","authors":"Ana Carolina Rodrigues, José Guilherme de Almeida, Nuno Rodrigues, Raquel Moreno, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Sara Silva, Inês Domingues, Manolis Tsiknakis, Konstantinos Marias, Daniele Regge, Nikolaos Papanikolaou","doi":"10.1148/rycan.240507","DOIUrl":"10.1148/rycan.240507","url":null,"abstract":"<p><p>Purpose To develop and prospectively validate a clinical and radiologic model to predict clinically significant prostate cancer (csPCa) using biparametric MRI (bpMRI). Materials and Methods Retrospective data (acquired before March 31, 2022) from 12 medical centers were collected. Radiomic features were extracted from the whole prostate gland using segmentations generated by an automatic deep learning algorithm. A model incorporating bpMRI radiomics, age, prostate-specific antigens, the Prostate Imaging Reporting and Data System (PI-RADS), and the prostate zone lesion location was trained. A retrospective validation set and prospective data (acquired after March 31, 2022) were used to compare PI-RADS scoring (area under the receiver operating characteristic curve [AUC] and specificity at PI-RADS >3). Sensitivity analyses for sequence (T2-weighted, apparent diffusion coefficient, diffusion-weighted imaging) and scanner vendor (GE, Philips, Siemens) were performed, in addition to fairness analyses for relevant categories. Results The retrospective dataset for model development included 7157 male patients (mean age, 64.78 years; 3342 [46.7%] with csPCa), and the prospective dataset for model validation included 1629 patients (mean age, 66.19 years; 592 [36.3%] with csPCa). The multimodal model outperformed PI-RADS in the retrospective (AUC, 0.88 vs 0.80, <i>P</i> = .005; specificity of 71% vs 58%, <i>P</i> = .002) and prospective validation sets (AUC, 0.91 vs 0.85, <i>P</i> < .001; specificity of 77% vs 66%, <i>P</i> < .001), leading to 22.7% fewer biopsies compared with PI-RADS. Sensitivity analyses showed the importance of multiple sequences and vendors in achieving model generalization, as using specific sequences or vendors alone led to worse performance. Fairness analysis showed generalizability across different categories but highlighted increased sensitivity with higher PI-RADS and reduced performance in one medical center. Conclusion A multimodal model provided a temporally generalizable predictor of csPCa that outperformed PI-RADS. <b>Keywords:</b> Algorithm Development, Machine Learning, Model Validation, Model Training, Genital/Reproductive, Neoplasms-Primary, Oncology, Comparative Studies, Technology Assessment <i>Supplemental material is available for this article.</i> © RSNA, 2025.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e240507"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144856198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PSMA PET/CT for Detection of Metastatic Pancreatic Neuroendocrine Tumor. PSMA PET/CT检测转移性胰腺神经内分泌肿瘤。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.250093
Rami Chatta, Harrison Kwei Tsai, Saurabh Pallod, Hina Shah
{"title":"PSMA PET/CT for Detection of Metastatic Pancreatic Neuroendocrine Tumor.","authors":"Rami Chatta, Harrison Kwei Tsai, Saurabh Pallod, Hina Shah","doi":"10.1148/rycan.250093","DOIUrl":"10.1148/rycan.250093","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e250093"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144966352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating CT Radiomics and microRNAs to Predict Residual Teratoma in Nonseminomatous Testicular Cancer. 结合CT放射组学和microrna预测非半胱氨酸睾丸癌残留畸胎瘤。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.259028
Radhika Rajeev
{"title":"Integrating CT Radiomics and microRNAs to Predict Residual Teratoma in Nonseminomatous Testicular Cancer.","authors":"Radhika Rajeev","doi":"10.1148/rycan.259028","DOIUrl":"10.1148/rycan.259028","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e259028"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145086925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Breast Cancer Intravoxel Incoherent Motion MRI Biomarkers across Software Platforms. 跨软件平台评估乳腺癌体素内非相干运动MRI生物标志物。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.240115
Eric E Sigmund, Gene Y Cho, Dibash Basukala, Olivia M Sutton, Joao V Horvat, Artem Mikheev, Henry Rusinek, Nima Gilani, Xiaochun Li, James S Babb, Judith D Goldberg, Katja Pinker, Linda Moy, Sunitha B Thakur

Purpose To evaluate intravoxel incoherent motion (IVIM) biomarkers across different MRI vendors and software programs for breast cancer characterization in a two-site study. Materials and Methods This institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study included 106 patients (with 18 benign and 88 malignant lesions) who underwent bilateral diffusion-weighted imaging (DWI) between February 2009 and March 2013. DWI was performed using 1.5-T (n = 6) or 3-T MRI scanners from two vendors using single-shot spin-echo echo-planar imaging or twice-refocused, bipolar gradient single-shot turbo spin-echo readout with multiple b values between 0 and 1000 sec/mm2. IVIM parameters tissue diffusivity (Dt), perfusion fraction (fp), pseudo-diffusivity (Dp), and their respective first-order radiomics were derived using two software packages (Igor; Wavemetrics, and Firevoxel; New York University). Bland-Altman analysis compared IVIM metrics from the two software programs. Histopathology was the reference standard, where logistic regressions with adjustments for site compared benign and malignant lesions. Least absolute shrinkage and selection operator (LASSO) penalized multivariable regression was performed first for metrics derived from each parameter separately, and then after incorporating metrics from all three parameters. Area under receiver operating characteristic (ROC) curve (AUC) ± standard error was used to quantify the diagnostic value. Performance was also evaluated using threefold cross-validation of the combined cohort. Results In total, 49 (mean age, 49 years ± 11 [SD]) and 57 (mean age, 48 years ± 10) female patients were enrolled from sites 1 and 2, respectively. Software 1 (Igor) and software 2 (Firevoxel) identified diagnostic biomarkers individually and in multivariable analysis. Tissue diffusivity exhibited the highest software consistency, with coefficients of variation of 4.8% and 2.8% (site 1 and site 2, respectively), followed by perfusion fraction (14.5% and 18.9%) and pseudo-diffusivity (36.9% and 19.8%). The highest performing metrics were Dt,min (AUC, 0.786 ± 0.05), fp,max (AUC, 0.835 ± 0.04), and Dp,max (AUC, 0.804 ± 0.05) for software 1 and Dt,skew (AUC, 0.82 ± 0.05), fp,max (AUC, 0.82 ± 0.046), and Dp,max (AUC, 0.75 ± 0.06) for software 2. Five metrics (Dt,min, Dt,skew, fp,max, Dp,min, Dp,max) were included in the multivariable regression, achieving AUCs of 0.90 ± 0.03 and 0.90 ± 0.03 for software 1, and 0.84 ± 0.04 and 0.81 ± 0.05 for software 2, without and with cross-validation, respectively. Conclusion This study confirmed the translational potential of IVIM biomarkers for breast cancer characterization. Keyword

目的在一项两点研究中,评估不同MRI供应商和软件程序中的体素内非相干运动(IVIM)生物标志物对乳腺癌特征的影响。材料和方法本研究经机构审查委员会批准,符合《健康保险流通与责任法案》,纳入106例患者(18例良性病变和88例恶性病变),于2009年2月至2013年3月接受双侧弥漫性加权成像(DWI)检查。DWI使用来自两家供应商的1.5-T (n = 6)或3-T MRI扫描仪进行,使用单次自旋回波回波平面成像或两次重新聚焦,双极梯度单次涡轮自旋回波读出,多个b值在0到1000秒/mm2之间。IVIM参数组织扩散率(Dt),灌注分数(fp),伪扩散率(Dp)及其各自的一阶放射组学使用两个软件包(Igor; Wavemetrics,和Firevoxel; New York University)导出。Bland-Altman分析比较了两个软件程序的IVIM指标。组织病理学是参考标准,其中逻辑回归与调整部位比较良性和恶性病变。最小绝对收缩和选择算子(LASSO)惩罚多变量回归首先分别对每个参数派生的指标执行,然后将所有三个参数的指标合并。采用受试者工作特征曲线下面积(AUC)±标准误差来量化诊断价值。还使用联合队列的三重交叉验证来评估疗效。结果共入组49例(平均年龄49岁±11岁[SD])和57例(平均年龄48岁±10岁)女性患者。软件1 (Igor)和软件2 (Firevoxel)分别在多变量分析中识别诊断性生物标志物。组织扩散率具有最高的软件一致性,变异系数分别为4.8%和2.8%(位点1和位点2),其次是灌注分数(14.5%和18.9%)和伪扩散率(36.9%和19.8%)。软件1表现最好的指标为Dt、min (AUC, 0.786±0.05)、fp、max (AUC, 0.835±0.04)和Dp、max (AUC, 0.804±0.05),软件2表现最好的指标为Dt、skew (AUC, 0.82±0.05)、fp、max (AUC, 0.82±0.046)和Dp、max (AUC, 0.75±0.06)。将5个指标(Dt、min、Dt、skew、fp、max、Dp、min、Dp、max)纳入多变量回归,软件1的auc分别为0.90±0.03和0.90±0.03,软件2的auc分别为0.84±0.04和0.81±0.05,不进行交叉验证和进行交叉验证。结论本研究证实了IVIM生物标志物在乳腺癌表征中的转化潜力。关键词:磁共振扩散加权成像,乳腺,技术评估本文有补充材料。©rsna, 2025。
{"title":"Evaluating Breast Cancer Intravoxel Incoherent Motion MRI Biomarkers across Software Platforms.","authors":"Eric E Sigmund, Gene Y Cho, Dibash Basukala, Olivia M Sutton, Joao V Horvat, Artem Mikheev, Henry Rusinek, Nima Gilani, Xiaochun Li, James S Babb, Judith D Goldberg, Katja Pinker, Linda Moy, Sunitha B Thakur","doi":"10.1148/rycan.240115","DOIUrl":"10.1148/rycan.240115","url":null,"abstract":"<p><p>Purpose To evaluate intravoxel incoherent motion (IVIM) biomarkers across different MRI vendors and software programs for breast cancer characterization in a two-site study. Materials and Methods This institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study included 106 patients (with 18 benign and 88 malignant lesions) who underwent bilateral diffusion-weighted imaging (DWI) between February 2009 and March 2013. DWI was performed using 1.5-T (<i>n</i> = 6) or 3-T MRI scanners from two vendors using single-shot spin-echo echo-planar imaging or twice-refocused, bipolar gradient single-shot turbo spin-echo readout with multiple <i>b</i> values between 0 and 1000 sec/mm<sup>2</sup>. IVIM parameters tissue diffusivity (<i>D<sub>t</sub></i>), perfusion fraction (<i>f<sub>p</sub></i>), pseudo-diffusivity (<i>D<sub>p</sub></i>), and their respective first-order radiomics were derived using two software packages (Igor; Wavemetrics, and Firevoxel; New York University). Bland-Altman analysis compared IVIM metrics from the two software programs. Histopathology was the reference standard, where logistic regressions with adjustments for site compared benign and malignant lesions. Least absolute shrinkage and selection operator (LASSO) penalized multivariable regression was performed first for metrics derived from each parameter separately, and then after incorporating metrics from all three parameters. Area under receiver operating characteristic (ROC) curve (AUC) ± standard error was used to quantify the diagnostic value. Performance was also evaluated using threefold cross-validation of the combined cohort. Results In total, 49 (mean age, 49 years ± 11 [SD]) and 57 (mean age, 48 years ± 10) female patients were enrolled from sites 1 and 2, respectively. Software 1 (Igor) and software 2 (Firevoxel) identified diagnostic biomarkers individually and in multivariable analysis. Tissue diffusivity exhibited the highest software consistency, with coefficients of variation of 4.8% and 2.8% (site 1 and site 2, respectively), followed by perfusion fraction (14.5% and 18.9%) and pseudo-diffusivity (36.9% and 19.8%). The highest performing metrics were <i>D<sub>t,min</sub></i> (AUC, 0.786 ± 0.05), <i>f<sub>p,max</sub></i> (AUC, 0.835 ± 0.04), and <i>D<sub>p,max</sub></i> (AUC, 0.804 ± 0.05) for software 1 and <i>D<sub>t,skew</sub></i> (AUC, 0.82 ± 0.05), <i>f<sub>p,max</sub></i> (AUC, 0.82 ± 0.046), and <i>D<sub>p,max</sub></i> (AUC, 0.75 ± 0.06) for software 2. Five metrics (<i>D<sub>t,min</sub>, D<sub>t,skew</sub>, f<sub>p,max</sub>, D<sub>p,min</sub>, D<sub>p,max</sub></i>) were included in the multivariable regression, achieving AUCs of 0.90 ± 0.03 and 0.90 ± 0.03 for software 1, and 0.84 ± 0.04 and 0.81 ± 0.05 for software 2, without and with cross-validation, respectively. Conclusion This study confirmed the translational potential of IVIM biomarkers for breast cancer characterization. <b>Keyword","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e240115"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145001349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
68Ga-NK224 PET/CT Enables Noninvasive Assessment of PD-L1 Expression and Tumor Heterogeneity. 68Ga-NK224 PET/CT能够无创评估PD-L1表达和肿瘤异质性。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.259019
Brennan W Callow, Gary D Luker
{"title":"<sup>68</sup>Ga-NK224 PET/CT Enables Noninvasive Assessment of PD-L1 Expression and Tumor Heterogeneity.","authors":"Brennan W Callow, Gary D Luker","doi":"10.1148/rycan.259019","DOIUrl":"10.1148/rycan.259019","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e259019"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145086893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic Response at 18F-FDG PET/CT as a Prognostic Marker after Induction Chemotherapy or Chemoradiotherapy in Localized Esophageal Squamous Cell Carcinoma. 18F-FDG PET/CT代谢反应作为局部食管鳞状细胞癌诱导化疗或放化疗后的预后标志物
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.259024
Sanchay Jain
{"title":"Metabolic Response at <sup>18</sup>F-FDG PET/CT as a Prognostic Marker after Induction Chemotherapy or Chemoradiotherapy in Localized Esophageal Squamous Cell Carcinoma.","authors":"Sanchay Jain","doi":"10.1148/rycan.259024","DOIUrl":"10.1148/rycan.259024","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e259024"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145086904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Frontier for Prostate Artery Embolization: Neoadjuvant PAE before Radiation Therapy in Patients with Prostate Cancer. 前列腺动脉栓塞的新前沿:前列腺癌患者放射治疗前的新辅助PAE。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.259023
Tushar Garg, Eric Wehrenberg-Klee
{"title":"New Frontier for Prostate Artery Embolization: Neoadjuvant PAE before Radiation Therapy in Patients with Prostate Cancer.","authors":"Tushar Garg, Eric Wehrenberg-Klee","doi":"10.1148/rycan.259023","DOIUrl":"10.1148/rycan.259023","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e259023"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145086936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modern Approaches for Thoracic Image Registration and Respiratory Motion Management in Oncology. 肿瘤学胸部影像配准与呼吸运动管理的现代方法。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.250023
Erika Jank, Eulanca Y Liu, William Delery, Peter Boyle, Claudia Miller, Ryan Andosca, Louise Naumann, Rishi Upadhyay, Achuta Kadambi, Daniel Low, Michael Lauria, Ricky R Savjani

This review explores modern image registration techniques in the context of managing respiratory-induced motion in the thoracic region. The respiratory cycle introduces anatomic variability that poses challenges for radiation therapy, breathing dynamics modeling, and diverse research applications. Conventional and advanced motion management strategies are presented, emphasizing the critical role of robust image registration. Emerging approaches such as multimodal and interpatient registration are discussed, alongside metrics for assessing registration quality. This review aims to enhance understanding of recent developments in image registration and thoracic motion management. Continued progress in modeling respiratory dynamics is essential to support advanced research applications and clinical innovation. Keywords: Thorax, Deep Learning, Machine Learning, Radiation Therapy Supplemental material is available for this article. © RSNA, 2025.

这篇综述探讨了现代图像配准技术在管理呼吸引起的运动在胸部区域的背景下。呼吸循环引入了解剖学上的可变性,这对放射治疗、呼吸动力学建模和各种研究应用提出了挑战。提出了传统和先进的运动管理策略,强调了鲁棒图像配准的关键作用。新兴的方法,如多模式和患者间注册进行了讨论,以及评估注册质量的指标。这篇综述旨在增进对图像配准和胸部运动管理的最新进展的理解。呼吸动力学建模的持续进展对于支持先进的研究应用和临床创新至关重要。关键词:胸腔,深度学习,机器学习,放射治疗©rsna, 2025。
{"title":"Modern Approaches for Thoracic Image Registration and Respiratory Motion Management in Oncology.","authors":"Erika Jank, Eulanca Y Liu, William Delery, Peter Boyle, Claudia Miller, Ryan Andosca, Louise Naumann, Rishi Upadhyay, Achuta Kadambi, Daniel Low, Michael Lauria, Ricky R Savjani","doi":"10.1148/rycan.250023","DOIUrl":"10.1148/rycan.250023","url":null,"abstract":"<p><p>This review explores modern image registration techniques in the context of managing respiratory-induced motion in the thoracic region. The respiratory cycle introduces anatomic variability that poses challenges for radiation therapy, breathing dynamics modeling, and diverse research applications. Conventional and advanced motion management strategies are presented, emphasizing the critical role of robust image registration. Emerging approaches such as multimodal and interpatient registration are discussed, alongside metrics for assessing registration quality. This review aims to enhance understanding of recent developments in image registration and thoracic motion management. Continued progress in modeling respiratory dynamics is essential to support advanced research applications and clinical innovation. <b>Keywords:</b> Thorax, Deep Learning, Machine Learning, Radiation Therapy <i>Supplemental material is available for this article.</i> © RSNA, 2025.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e250023"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144856199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiparametric Dynamic Contrast Imaging for Voxelwise Quantitative Assessment of Brain Tumors. 多参数动态对比成像在脑肿瘤体素定量评估中的应用。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.250049
Yang Chen, Jiayu Xiao, Steven Cen, Zhehao Hu, Junzhou Chen, Mark S Shiroishi, Frances E Chow, Jason C Ye, David D Tran, Kyle Hurth, Gabriel Zada, Hsu-Lei Lee, Anthony G Christodoulou, Debiao Li, Eric Chang, Zhaoyang Fan

Purpose To develop a multiparametric dynamic contrast imaging (mpDYCI) technique that enables simultaneous quantification of brain tissue perfusion, microvasculature permeability, transmembrane water efflux, and susceptibility and can be integrated into the routine brain tumor imaging protocol for voxelwise multifaceted quantitative brain tumor assessment. Materials and Methods In this prospective study conducted from March 2023 to April 2024, the mpDYCI technique was evaluated. The mpDYCI technique builds on an MR Multitasking-based dynamic T1 and T2* mapping method and incorporates several technical optimizations in pulse sequence, image reconstruction, T1/T2* quantification, and quantitative metric estimation to achieve robust whole-brain multiparametric quantification. The intersession repeatability and accuracy of mpDYCI metrics were assessed, using intraclass correlation coefficient (ICC), through digital phantom and in vivo experiments involving healthy individuals and individuals with brain tumors. The feasibility of integrating mpDYCI into the routine brain imaging protocol and its clinical utilities based on complementary information from intrinsically coregistered multiple quantitative metrics were also explored. Results In vivo experiments were performed in six healthy participants (mean age, 33 years; range, 27-48 years; three female) and 55 participants with brain tumors (mean age, 56 years; range, 24-81 years; 36 female). Quantitative metrics derived from mpDYCI demonstrated good to excellent repeatability (ICC ≥ 0.80) and excellent agreement with reference standards (range, 6.86%-15.21% percentage error or ICC ≥ 0.93). Histogram analysis, voxel clustering, and histologic validation confirmed the capability of mpDYCI to capture the intratumoral heterogeneity. Low voxelwise correlations between each pair of mpDYCI metrics (correlation coefficient ≤ 0.33 except for one pair) suggested that each metric provides complementary information. Furthermore, mpDYCI exhibited the potential to help differentiate treatment-related effects from true tumor progression in brain metastases. Conclusion With a single 7.5-minute scan and single-dose contrast media injection, mpDYCI can simultaneously quantify perfusion, permeability, water efflux, and susceptibility, thereby enabling comprehensive voxelwise characterization of brain tumors. Keywords: MR Perfusion, CNS, Brain/Brain Stem, Tumor Immune Microenvironment, Reconstruction Algorithms, MR-Dynamic Contrast Enhanced, MR Imaging, Brain Tumor Heterogeneity, Multiparametric MR Imaging, Dynamic Contrast-enhanced MRI, Dynamic Susceptibility Contrast MRI, Quantitative Susceptibility Mapping Supplemental material is available for this article. © RSNA, 2025.

目的开发一种多参数动态对比成像(mpDYCI)技术,该技术可以同时量化脑组织灌注、微血管通透性、跨膜水流出和易感性,并可集成到常规脑肿瘤成像方案中,用于体素方向的多方面定量脑肿瘤评估。材料与方法本前瞻性研究于2023年3月至2024年4月进行,对mpDYCI技术进行评估。mpDYCI技术建立在基于MR多任务的动态T1和T2*映射方法的基础上,并在脉冲序列、图像重建、T1/T2*量化和定量度量估计方面进行了多项技术优化,以实现稳健的全脑多参数量化。通过涉及健康个体和脑肿瘤个体的数字幻影和体内实验,使用类内相关系数(ICC)评估mpDYCI指标的间歇可重复性和准确性。将mpDYCI整合到常规脑成像方案的可行性及其基于内在共登记多个定量指标的互补信息的临床应用也进行了探讨。结果对6名健康参与者(平均年龄33岁,范围27-48岁,女性3名)和55名脑肿瘤参与者(平均年龄56岁,范围24-81岁,女性36名)进行了体内实验。从mpDYCI得出的定量指标显示出良好的重复性(ICC≥0.80)和与参考标准的良好一致性(范围,6.86%-15.21%的百分比误差或ICC≥0.93)。直方图分析、体素聚类和组织学验证证实了mpDYCI捕捉肿瘤内异质性的能力。每对mpDYCI指标之间的体素相关性较低(除一对外相关系数≤0.33),表明每个指标提供的信息是互补的。此外,mpDYCI显示出有助于区分脑转移的治疗相关效应和真正的肿瘤进展的潜力。结论通过单次7.5分钟扫描和单次注射造影剂,mpDYCI可以同时量化灌注、通透性、水通量和易感性,从而实现对脑肿瘤的全面体素表征。关键词:磁共振灌注,中枢神经系统,脑/脑干,肿瘤免疫微环境,重建算法,磁共振动态增强,磁共振成像,脑肿瘤异质性,多参数磁共振成像,动态增强MRI,动态敏感性对比MRI,定量敏感性映射©rsna, 2025。
{"title":"Multiparametric Dynamic Contrast Imaging for Voxelwise Quantitative Assessment of Brain Tumors.","authors":"Yang Chen, Jiayu Xiao, Steven Cen, Zhehao Hu, Junzhou Chen, Mark S Shiroishi, Frances E Chow, Jason C Ye, David D Tran, Kyle Hurth, Gabriel Zada, Hsu-Lei Lee, Anthony G Christodoulou, Debiao Li, Eric Chang, Zhaoyang Fan","doi":"10.1148/rycan.250049","DOIUrl":"10.1148/rycan.250049","url":null,"abstract":"<p><p>Purpose To develop a multiparametric dynamic contrast imaging (mpDYCI) technique that enables simultaneous quantification of brain tissue perfusion, microvasculature permeability, transmembrane water efflux, and susceptibility and can be integrated into the routine brain tumor imaging protocol for voxelwise multifaceted quantitative brain tumor assessment. Materials and Methods In this prospective study conducted from March 2023 to April 2024, the mpDYCI technique was evaluated. The mpDYCI technique builds on an MR Multitasking-based dynamic T1 and T2* mapping method and incorporates several technical optimizations in pulse sequence, image reconstruction, T1/T2* quantification, and quantitative metric estimation to achieve robust whole-brain multiparametric quantification. The intersession repeatability and accuracy of mpDYCI metrics were assessed, using intraclass correlation coefficient (ICC), through digital phantom and in vivo experiments involving healthy individuals and individuals with brain tumors. The feasibility of integrating mpDYCI into the routine brain imaging protocol and its clinical utilities based on complementary information from intrinsically coregistered multiple quantitative metrics were also explored. Results In vivo experiments were performed in six healthy participants (mean age, 33 years; range, 27-48 years; three female) and 55 participants with brain tumors (mean age, 56 years; range, 24-81 years; 36 female). Quantitative metrics derived from mpDYCI demonstrated good to excellent repeatability (ICC ≥ 0.80) and excellent agreement with reference standards (range, 6.86%-15.21% percentage error or ICC ≥ 0.93). Histogram analysis, voxel clustering, and histologic validation confirmed the capability of mpDYCI to capture the intratumoral heterogeneity. Low voxelwise correlations between each pair of mpDYCI metrics (correlation coefficient ≤ 0.33 except for one pair) suggested that each metric provides complementary information. Furthermore, mpDYCI exhibited the potential to help differentiate treatment-related effects from true tumor progression in brain metastases. Conclusion With a single 7.5-minute scan and single-dose contrast media injection, mpDYCI can simultaneously quantify perfusion, permeability, water efflux, and susceptibility, thereby enabling comprehensive voxelwise characterization of brain tumors. <b>Keywords:</b> MR Perfusion, CNS, Brain/Brain Stem, Tumor Immune Microenvironment, Reconstruction Algorithms, MR-Dynamic Contrast Enhanced, MR Imaging, Brain Tumor Heterogeneity, Multiparametric MR Imaging, Dynamic Contrast-enhanced MRI, Dynamic Susceptibility Contrast MRI, Quantitative Susceptibility Mapping <i>Supplemental material is available for this article.</i> © RSNA, 2025.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e250049"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145150732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Risk Stratification in Hepatocellular Carcinoma: Clinical Relevance of CatBoost-based Prediction Following TACE. 肝细胞癌的精确风险分层:基于catboost的TACE预测的临床意义。
IF 5.6 Q1 ONCOLOGY Pub Date : 2025-09-01 DOI: 10.1148/rycan.250386
Maedeh Rouzbahani
{"title":"Precision Risk Stratification in Hepatocellular Carcinoma: Clinical Relevance of CatBoost-based Prediction Following TACE.","authors":"Maedeh Rouzbahani","doi":"10.1148/rycan.250386","DOIUrl":"10.1148/rycan.250386","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"7 5","pages":"e250386"},"PeriodicalIF":5.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145001360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiology. Imaging cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1