首页 > 最新文献

Recenti progressi in medicina最新文献

英文 中文
Migliorare l’assistenza per la salute mentale con la fenotipizzazione digitale: raggruppamento dei comportamentit dei pazienti per il supporto decisionale personalizzato. 通过数字表型来改善心理健康:将患者行为分组,以支持个性化决策。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45778
Joy Bordini, Rita Cosoli

Breakthrough digital phenotyping approach reveals three distinct behavioral patterns from smartphone data that could revolutionize personalized mental health care. Using AI clustering on 77 users, we discovered "Night Owls", "Routine-Oriented", and "Always-Connected" behavioral types with 90%+ accuracy. Our explainable ML pipeline identifies key digital biomarkers for targeted interventions, offering clinicians data-driven insights for precision psychiatry.

突破性的数字表型分析方法从智能手机数据中揭示了三种不同的行为模式,这可能会彻底改变个性化的心理健康护理。通过对77名用户的人工智能聚类,我们发现了“夜猫子”、“常规导向”和“永远连接”的行为类型,准确率达到90%以上。我们可解释的ML管道确定了目标干预的关键数字生物标志物,为临床医生提供精确精神病学的数据驱动见解。
{"title":"Migliorare l’assistenza per la salute mentale con la fenotipizzazione digitale: raggruppamento dei comportamentit dei pazienti per il supporto decisionale personalizzato.","authors":"Joy Bordini, Rita Cosoli","doi":"10.1701/4573.45778","DOIUrl":"10.1701/4573.45778","url":null,"abstract":"<p><p>Breakthrough digital phenotyping approach reveals three distinct behavioral patterns from smartphone data that could revolutionize personalized mental health care. Using AI clustering on 77 users, we discovered \"Night Owls\", \"Routine-Oriented\", and \"Always-Connected\" behavioral types with 90%+ accuracy. Our explainable ML pipeline identifies key digital biomarkers for targeted interventions, offering clinicians data-driven insights for precision psychiatry.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"567-568"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predizione del tipo di mutazione nelle malattie mitocondriali primarie tramite modelli di machine learning applicati a dati clinici non genetici né istologici. 利用应用于临床非遗传或组织学数据的机器学习模型预测初级线粒体疾病的突变类型。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45801
Sara Mazzucato, Piervito Lopriore, Francesco Daddoveri, Costanza Lamperti, Valerio Carelli, Olimpia Musumeci, Serenella Servidei, Silvestro Micera, Michelangelo Mancuso, Andrea Bandini

This study shows that machine learning can accurately distinguish between mitochondrial and nuclear DNA mutations in primary mitochondrial diseases using only non-genetic and non-histological clinical data. While language models underperform in comparison, they show potential as complementary diagnostic tools.

本研究表明,机器学习仅使用非遗传和非组织学临床数据就可以准确区分原发性线粒体疾病的线粒体和核DNA突变。虽然语言模型相比之下表现不佳,但它们显示出作为补充诊断工具的潜力。
{"title":"Predizione del tipo di mutazione nelle malattie mitocondriali primarie tramite modelli di machine learning applicati a dati clinici non genetici né istologici.","authors":"Sara Mazzucato, Piervito Lopriore, Francesco Daddoveri, Costanza Lamperti, Valerio Carelli, Olimpia Musumeci, Serenella Servidei, Silvestro Micera, Michelangelo Mancuso, Andrea Bandini","doi":"10.1701/4573.45801","DOIUrl":"10.1701/4573.45801","url":null,"abstract":"<p><p>This study shows that machine learning can accurately distinguish between mitochondrial and nuclear DNA mutations in primary mitochondrial diseases using only non-genetic and non-histological clinical data. While language models underperform in comparison, they show potential as complementary diagnostic tools.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"613-614"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ClinEthix: supporto su aspetti etici e regolatori per la qualificazione di software utilizzati nella ricerca clinica. 临床研究软件资格认证的伦理和监管方面的支持。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45802
Sara Abbate, Maria Carmela Leo, Fabrizio Bianco, Diana Ferro, Alberto Eugenio Tozzi, Francesca Rocchi, Giuseppe Pontrelli

Clinical research is increasingly regulated. Despite growing artificial intelligence (AI) use in healthcare, there is a lack of adequate tools to support researchers in non profit (AI or not) studies. To assist with the classification of clinical software, ClinEthix, a prototype conversational tool, has been developed to help researchers with regulatory qualification. A survey of 20 researchers found it highly useful, clear and user-friendly. Future developments will integrate LLMs and human feedback to improve accuracy.

临床研究越来越规范。尽管人工智能(AI)在医疗保健领域的应用越来越多,但缺乏足够的工具来支持非营利性(人工智能或非人工智能)研究的研究人员。为了协助临床软件的分类,开发了一个原型对话工具ClinEthix,以帮助研究人员获得监管资格。一项针对20名研究人员的调查发现,它非常有用、清晰且用户友好。未来的发展将整合法学硕士和人类反馈,以提高准确性。
{"title":"ClinEthix: supporto su aspetti etici e regolatori per la qualificazione di software utilizzati nella ricerca clinica.","authors":"Sara Abbate, Maria Carmela Leo, Fabrizio Bianco, Diana Ferro, Alberto Eugenio Tozzi, Francesca Rocchi, Giuseppe Pontrelli","doi":"10.1701/4573.45802","DOIUrl":"10.1701/4573.45802","url":null,"abstract":"<p><p>Clinical research is increasingly regulated. Despite growing artificial intelligence (AI) use in healthcare, there is a lack of adequate tools to support researchers in non profit (AI or not) studies. To assist with the classification of clinical software, ClinEthix, a prototype conversational tool, has been developed to help researchers with regulatory qualification. A survey of 20 researchers found it highly useful, clear and user-friendly. Future developments will integrate LLMs and human feedback to improve accuracy.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"615-616"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valutazione del ragionamento clinico dei reasoning large language models su casi clinici complessi. 复杂临床病例中大型语言模型推理的临床评估。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45794
Vittorio De Vita, Bianca Destro Castaniti, Mariapia Vassalli, Lorenzo De Mori, Doriana Lacalaprice, Emanuele Arcà, Antonio Cristiano, Chiara Battipaglia, Pietro Eric Risuleo, Tommaso Dionisi, Francesco Andrea Causio

Large language models (LLMs) show promise in explicit reasoning for complex medical fields like psychiatry. This study assessed the clinical validity of Gemini's chain-of-thought (CoT) reasoning in 10 complex psychiatric cases, evaluated by specialists using six metrics. Results indicate high performance (average score ≥4.26/5), especially in step sufficiency and factual accuracy, suggesting that CoT reasoning by LLMs can support transparent and detailed clinical decision-making.

大型语言模型(llm)在精神病学等复杂医学领域的显式推理中显示出前景。本研究评估了10个复杂精神病例中双子座思维链推理的临床有效性,由专家使用6个指标进行评估。结果表明,LLMs的CoT推理在步骤充分性和事实准确性方面表现优异(平均得分≥4.26/5),表明LLMs的CoT推理可以支持透明、详细的临床决策。
{"title":"Valutazione del ragionamento clinico dei reasoning large language models su casi clinici complessi.","authors":"Vittorio De Vita, Bianca Destro Castaniti, Mariapia Vassalli, Lorenzo De Mori, Doriana Lacalaprice, Emanuele Arcà, Antonio Cristiano, Chiara Battipaglia, Pietro Eric Risuleo, Tommaso Dionisi, Francesco Andrea Causio","doi":"10.1701/4573.45794","DOIUrl":"10.1701/4573.45794","url":null,"abstract":"<p><p>Large language models (LLMs) show promise in explicit reasoning for complex medical fields like psychiatry. This study assessed the clinical validity of Gemini's chain-of-thought (CoT) reasoning in 10 complex psychiatric cases, evaluated by specialists using six metrics. Results indicate high performance (average score ≥4.26/5), especially in step sufficiency and factual accuracy, suggesting that CoT reasoning by LLMs can support transparent and detailed clinical decision-making.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"599-600"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards learning healthcare systems in Italy: opportunities and challenges of AI at point-of-care. 在意大利学习医疗保健系统:人工智能在护理点的机遇和挑战。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45776
Luigi De Angelis, Alessio Pivetta, Francesco Baglivo, Luca Alessandro Cappellini, Francesca Aurora Sacchi, Marcello Di Pumpo, Mattia Mercier, Giacomo Diedenhofen, Mattia Di Bartolomeo, Francesco Andrea Causio, Alessandro Belpiede, Alberto Eugenio Tozzi, Diana Ferro

In Italy, the growing enthusiasm for artificial intelligence (AI) in healthcare contrasts with significant infrastructural, cultural, and trust-related barriers hindering its real-world adoption. Moving beyond the hype requires a systems thinking approach, proposing the learning health system (LHS) framework as a structured path for integration. We highlight the complementary roles of AI models: traditional machine learning (ML) is proven for diagnostics and prognostics, while large language models (LLMs) excel at administrative tasks and can structure unstructured data to train robust ML tools. The LHS cycle reveals key challenges for Italy: moving from Practice-to-Data requires overcoming data fragmentation; from Data-to-Knowledge involves transforming data into insights while mitigating bias; and from Knowledge-to-Practice necessitates bridging the gap between evidence and clinical workflow by building trust and AI literacy. Ultimately, successful and equitable AI implementation depends on a holistic strategy combining infrastructure development, multidisciplinary collaboration, and robust governance to enhance the quality and sustainability of the national healthcare system.

在意大利,人们对人工智能(AI)在医疗保健领域日益增长的热情,与之形成鲜明对比的是,基础设施、文化和信任方面的障碍阻碍了人工智能在现实世界中的应用。超越这种炒作需要一种系统思维方法,提出学习型卫生系统(LHS)框架作为整合的结构化路径。我们强调了人工智能模型的互补作用:传统的机器学习(ML)已被证明可用于诊断和预测,而大型语言模型(llm)擅长管理任务,可以构建非结构化数据以训练强大的ML工具。LHS周期揭示了意大利面临的主要挑战:从实践到数据的转变需要克服数据碎片化;从数据到知识包括在减少偏见的同时将数据转化为见解;从知识到实践需要通过建立信任和人工智能素养来弥合证据和临床工作流程之间的差距。最终,成功和公平的人工智能实施取决于将基础设施发展、多学科合作和强有力的治理相结合的整体战略,以提高国家医疗保健系统的质量和可持续性。
{"title":"Towards learning healthcare systems in Italy: opportunities and challenges of AI at point-of-care.","authors":"Luigi De Angelis, Alessio Pivetta, Francesco Baglivo, Luca Alessandro Cappellini, Francesca Aurora Sacchi, Marcello Di Pumpo, Mattia Mercier, Giacomo Diedenhofen, Mattia Di Bartolomeo, Francesco Andrea Causio, Alessandro Belpiede, Alberto Eugenio Tozzi, Diana Ferro","doi":"10.1701/4573.45776","DOIUrl":"10.1701/4573.45776","url":null,"abstract":"<p><p>In Italy, the growing enthusiasm for artificial intelligence (AI) in healthcare contrasts with significant infrastructural, cultural, and trust-related barriers hindering its real-world adoption. Moving beyond the hype requires a systems thinking approach, proposing the learning health system (LHS) framework as a structured path for integration. We highlight the complementary roles of AI models: traditional machine learning (ML) is proven for diagnostics and prognostics, while large language models (LLMs) excel at administrative tasks and can structure unstructured data to train robust ML tools. The LHS cycle reveals key challenges for Italy: moving from Practice-to-Data requires overcoming data fragmentation; from Data-to-Knowledge involves transforming data into insights while mitigating bias; and from Knowledge-to-Practice necessitates bridging the gap between evidence and clinical workflow by building trust and AI literacy. Ultimately, successful and equitable AI implementation depends on a holistic strategy combining infrastructure development, multidisciplinary collaboration, and robust governance to enhance the quality and sustainability of the national healthcare system.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"556-560"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligenza artificiale e IoT per l’ottimizzazione dei tempi in sala operatoria: un confronto tra un modello generale e un modello chirurgia specifico. 人工智能和IoT用于优化手术室时间:通用模型和特定手术模型的比较。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45782
Valentina Bellini, Matteo Panizzi, Tania Domenichetti, Matteo Guarnieri, Elena Bignami

The combined use of IoT and AI enables automatic and precise collection of operative times through BLE bracelets, improving efficiency compared to manual recording. Surgery-specific models, trained on real data, better predict procedure duration, optimizing management and resources in the operating room.

物联网和人工智能的结合使用可以通过BLE手环自动精确地收集操作时间,与手动记录相比,提高了效率。基于真实数据的特定手术模型可以更好地预测手术时间,优化手术室的管理和资源。
{"title":"Intelligenza artificiale e IoT per l’ottimizzazione dei tempi in sala operatoria: un confronto tra un modello generale e un modello chirurgia specifico.","authors":"Valentina Bellini, Matteo Panizzi, Tania Domenichetti, Matteo Guarnieri, Elena Bignami","doi":"10.1701/4573.45782","DOIUrl":"10.1701/4573.45782","url":null,"abstract":"<p><p>The combined use of IoT and AI enables automatic and precise collection of operative times through BLE bracelets, improving efficiency compared to manual recording. Surgery-specific models, trained on real data, better predict procedure duration, optimizing management and resources in the operating room.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"575-576"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pipeline multimodale integrata per l’analisi longitudinale delle neurodegenerazioni: integrazione di test cognitivi e neuroimaging con machine learning per una indagine sui meccanismi comuni di Alzheimer e Parkinson. 神经退行性纵向分析的综合多模式管道:将认知测试和神经成像与机器学习结合起来,研究阿尔茨海默氏症和帕金森症的常见机制。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45798
Simone Torsello, Samuele Carli, Alice Cuzzucoli, Daniele Caligiore

This study introduces a multimodal pipeline that combines cognitive tests and MRI data from ADNI and PPMI to examine Parkinson's and Alzheimer's diseases. Using FastSurfer for quick brain volume analysis, it uncovers common neurobiological mechanisms and patterns of cognitive decline. Early findings support longitudinal multimodal evaluation, advancing precision medicine and personalized clinical decision-making in neurodegenerative disorders.

本研究引入了一种多模式管道,结合认知测试和来自ADNI和PPMI的MRI数据来检查帕金森病和阿尔茨海默病。使用FastSurfer进行快速脑容量分析,它揭示了认知能力下降的常见神经生物学机制和模式。早期发现支持纵向多模态评估,推进神经退行性疾病的精准医学和个性化临床决策。
{"title":"Pipeline multimodale integrata per l’analisi longitudinale delle neurodegenerazioni: integrazione di test cognitivi e neuroimaging con machine learning per una indagine sui meccanismi comuni di Alzheimer e Parkinson.","authors":"Simone Torsello, Samuele Carli, Alice Cuzzucoli, Daniele Caligiore","doi":"10.1701/4573.45798","DOIUrl":"10.1701/4573.45798","url":null,"abstract":"<p><p>This study introduces a multimodal pipeline that combines cognitive tests and MRI data from ADNI and PPMI to examine Parkinson's and Alzheimer's diseases. Using FastSurfer for quick brain volume analysis, it uncovers common neurobiological mechanisms and patterns of cognitive decline. Early findings support longitudinal multimodal evaluation, advancing precision medicine and personalized clinical decision-making in neurodegenerative disorders.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"607-608"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ricerca di strategie ottimali di prompting di un LLM per fornire un supporto efficace al dialogo medico-paziente. 为医生/病人对话提供有效支持。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45779
Francesco Giuliani, Onofrio Cappucci, Clara De Gennaro, Francesco Ricciardi, Sergio Russo, Massimiliano Copetti, Paola Crociani, Maura Pugliatti, Maurizio Leone

The study evaluated the use of a popular large language model (LLM) to support neurologists in communicating with patients with Multiple Sclerosis. We describe the development of a tailored COSTAR prompt and the process that led to its refinement. A cohort of neurologists assessed the prompt's effectiveness using the QAMAI tool. The results highlight both strengths and the issues that must be addressed for the effective clinical use of LLMs in this context.

该研究评估了一种流行的大语言模型(LLM)的使用,以支持神经科医生与多发性硬化症患者交流。我们描述了定制COSTAR提示符的开发以及导致其改进的过程。一组神经学家使用QAMAI工具评估提示的有效性。研究结果强调了llm的优势和必须解决的问题,以便在这种情况下有效地临床使用llm。
{"title":"Ricerca di strategie ottimali di prompting di un LLM per fornire un supporto efficace al dialogo medico-paziente.","authors":"Francesco Giuliani, Onofrio Cappucci, Clara De Gennaro, Francesco Ricciardi, Sergio Russo, Massimiliano Copetti, Paola Crociani, Maura Pugliatti, Maurizio Leone","doi":"10.1701/4573.45779","DOIUrl":"10.1701/4573.45779","url":null,"abstract":"<p><p>The study evaluated the use of a popular large language model (LLM) to support neurologists in communicating with patients with Multiple Sclerosis. We describe the development of a tailored COSTAR prompt and the process that led to its refinement. A cohort of neurologists assessed the prompt's effectiveness using the QAMAI tool. The results highlight both strengths and the issues that must be addressed for the effective clinical use of LLMs in this context.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"569-570"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why tomorrow's public health needs to be digital: artificial intelligence and automation for a sustainable Italian National Health Service. 为什么未来的公共卫生需要数字化:可持续发展的意大利国家卫生服务的人工智能和自动化。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45775
Francesco Baglivo, Giacomo Diedenhofen, Luigi De Angelis, Alessio Pivetta, Francesco Andrea Causio, Angelo D'Ambrosio, Francesca Aurora Sacchi, Marcello Di Pumpo, Alessandro Belpiede, Gianpaolo Ghisalberti, Diana Ferro, Caterina Rizzo

Italy's National Health Service (SSN) serves one of Europe's oldest populations under fiscal constraint and a fragmented data infrastructure. Rather than a standalone fix, artificial intelligence should be treated as a catalyst for a human-centred digital transformation that improves access, quality, and sustainability. Building on the Italian Society for Artificial Intelligence in Medicine (SIIAM) vision, we outline a pragmatic agenda. First, reduce elective-care backlogs by automating confirmations, reminders, cancellations, and rescheduling; deploy multilingual conversational agents to collect structured pre-visit histories and deliver summaries, while natural-language processing flags overdue follow-ups. Second, advance equity by offering inclusive digital front doors and tele-triage that prioritise patients facing language, literacy, socioeconomic, or geographic barriers. Third, curb waste through clinical-decision support and workflow automation that standardise evidence-based practice and relieve documentation burden. Fourth, modernise surveillance by pairing large language model powered voice agents for behaviour and symptom monitoring with participatory systems and AI epidemic intelligence. Fifth, link data and people through multidisciplinary teams and a human-in-the-loop approach that embeds transparency, bias mitigation, privacy, and safety. Implementation should start where impact is fastest: risk-stratified booking, proactive reminders, and shared dashboards with comparable indicators. To sustain gains, ring-fence resources for regional multidisciplinary units, enforce interoperability and reference datasets, and align procurement with European requirements for auditability and post-deployment monitoring. AI can help reshape Italian healthcare, but success ultimately depends on integrated data, trained teams, and robust governance.

意大利的国民健康服务体系(SSN)在财政拮据和数据基础设施分散的情况下为欧洲最年长的人口之一提供服务。人工智能不应该是一个独立的解决方案,而应该被视为以人为中心的数字化转型的催化剂,以改善获取、质量和可持续性。在意大利医学人工智能协会(SIIAM)愿景的基础上,我们概述了一个务实的议程。首先,通过自动化确认、提醒、取消和重新安排,减少备用护理的积压;部署多语言会话代理来收集结构化的访问前历史并提供摘要,同时自然语言处理标记过期的后续操作。其次,通过提供包容性的数字前门和远程分诊,优先考虑面临语言、识字、社会经济或地理障碍的患者,促进公平。第三,通过临床决策支持和工作流程自动化控制浪费,使循证实践标准化,减轻文件负担。第四,通过将用于行为和症状监测的大型语言模型驱动的语音代理与参与式系统和人工智能流行病情报相结合,实现监测的现代化。第五,通过多学科团队和嵌入透明度、减少偏见、隐私和安全的“人在循环”方法,将数据和人联系起来。实施应该从影响最快的地方开始:风险分层预订、主动提醒和具有可比指标的共享仪表板。为了保持收益,为区域多学科单位提供资源,加强互操作性和参考数据集,并使采购符合欧洲对可审计性和部署后监测的要求。人工智能可以帮助重塑意大利的医疗保健,但成功最终取决于整合的数据、训练有素的团队和强大的治理。
{"title":"Why tomorrow's public health needs to be digital: artificial intelligence and automation for a sustainable Italian National Health Service.","authors":"Francesco Baglivo, Giacomo Diedenhofen, Luigi De Angelis, Alessio Pivetta, Francesco Andrea Causio, Angelo D'Ambrosio, Francesca Aurora Sacchi, Marcello Di Pumpo, Alessandro Belpiede, Gianpaolo Ghisalberti, Diana Ferro, Caterina Rizzo","doi":"10.1701/4573.45775","DOIUrl":"10.1701/4573.45775","url":null,"abstract":"<p><p>Italy's National Health Service (SSN) serves one of Europe's oldest populations under fiscal constraint and a fragmented data infrastructure. Rather than a standalone fix, artificial intelligence should be treated as a catalyst for a human-centred digital transformation that improves access, quality, and sustainability. Building on the Italian Society for Artificial Intelligence in Medicine (SIIAM) vision, we outline a pragmatic agenda. First, reduce elective-care backlogs by automating confirmations, reminders, cancellations, and rescheduling; deploy multilingual conversational agents to collect structured pre-visit histories and deliver summaries, while natural-language processing flags overdue follow-ups. Second, advance equity by offering inclusive digital front doors and tele-triage that prioritise patients facing language, literacy, socioeconomic, or geographic barriers. Third, curb waste through clinical-decision support and workflow automation that standardise evidence-based practice and relieve documentation burden. Fourth, modernise surveillance by pairing large language model powered voice agents for behaviour and symptom monitoring with participatory systems and AI epidemic intelligence. Fifth, link data and people through multidisciplinary teams and a human-in-the-loop approach that embeds transparency, bias mitigation, privacy, and safety. Implementation should start where impact is fastest: risk-stratified booking, proactive reminders, and shared dashboards with comparable indicators. To sustain gains, ring-fence resources for regional multidisciplinary units, enforce interoperability and reference datasets, and align procurement with European requirements for auditability and post-deployment monitoring. AI can help reshape Italian healthcare, but success ultimately depends on integrated data, trained teams, and robust governance.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"551-555"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GLARE-Edu: una piattaforma IA per la formazione personalizzata e il supporto decisionale nell’applicazione delle linee guida cliniche. glar - edu:在应用临床指导方针时提供个性化培训和决策支持的IA平台。
Q3 Medicine Pub Date : 2025-10-01 DOI: 10.1701/4573.45784
Annalisa Roveta, Luigi Mario Castello, Francesca Ugo, Marco Petronio, Paolo Terenziani, Alessio Bottrighi, Erica Raina, Antonio Maconi

GLARE-Edu is an AI-powered, adaptive platform supporting healthcare professionals and students in learning clinical guidelines and improving decision-making through personalized training and realistic case simulations. Two case studies demonstrated significant improvements in guideline application and user satisfaction.

GLARE-Edu是一个基于人工智能的自适应平台,支持医疗保健专业人员和学生学习临床指南,并通过个性化培训和现实案例模拟改善决策。两个案例研究证明了指南应用和用户满意度的显著改善。
{"title":"GLARE-Edu: una piattaforma IA per la formazione personalizzata e il supporto decisionale nell’applicazione delle linee guida cliniche.","authors":"Annalisa Roveta, Luigi Mario Castello, Francesca Ugo, Marco Petronio, Paolo Terenziani, Alessio Bottrighi, Erica Raina, Antonio Maconi","doi":"10.1701/4573.45784","DOIUrl":"10.1701/4573.45784","url":null,"abstract":"<p><p>GLARE-Edu is an AI-powered, adaptive platform supporting healthcare professionals and students in learning clinical guidelines and improving decision-making through personalized training and realistic case simulations. Two case studies demonstrated significant improvements in guideline application and user satisfaction.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"579-580"},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Recenti progressi in medicina
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1