首页 > 最新文献

Radiation research最新文献

英文 中文
Validating Radiosensitivity with Pre-Exposure Differential Gene Expression in Peripheral Blood Predicting Survival and Non-Survival in a Second Irradiated Rhesus Macaque Cohort. 通过外周血中暴露前的差异基因表达验证辐射敏感性,预测第二批辐照猕猴的存活率和非存活率
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00099.1
D Schwanke, O O Fatanmi, S Y Wise, P Ostheim, S Schüle, G Kaletka, S Stewart, T Wiegel, V K Singh, M Port, M Abend
<p><p>Radiosensitivity differs in humans and possibly in closely related nonhuman primates. The reasons for variation in radiosensitivity are not well known. In an earlier study, we examined gene expression (GE) pre-radiation in peripheral blood among male (n = 62) and female (n = 60) rhesus macaques (n = 122), which did or did not survive (up to 60 days) after whole-body exposure of 7.0 Gy (LD66/60). Eight genes (CHD5, CHI3L1, DYSF, EPX, IGF2BP1, LCN2, MBOAT4, SLC22A4) revealed significant associations with survival. Access to a second rhesus macaque cohort (males = 40, females = 23, total n = 63) irradiated with 5.8-7.2 Gy (LD29-50/60) and some treated with gamma-tocotrienol (GT3, a radiation countermeasure) allowed us to validate these gene expression changes independently. Total RNA was isolated from whole blood samples and examined by quantitative RT-PCR on a 96-well format. cycle threshold (Ct)-values normalized to 18S rRNA were analyzed for their association with survival. Regardless of the species-specific TaqMan assay, similar results were obtained. Two genes (CHD5 and CHI3L1) out of eight revealed a significant association with survival in the second cohort, while only CHD5 (involved in DNA damage response and proliferation control) showed mean gene expression changes in the same direction for both cohorts. No expected association of CHD5 GE with dose, treatment, or sex could be established. Instead, we observed significant associations for those comparisons comprising pre-exposure samples with CHD5 Ct values ≤ 11 (total n = 17). CHD5 Ct values ≤ 11 in these comparisons were mainly associated with increased frequencies (61-100%) of non-survivors, a trend which depending on the sample numbers, reached significance (P = 0.03) in males and, accordingly, in females. This was also reflected by a logistic regression model including all available samples from both cohorts comprising CHD5 measurements (n = 104, odds ratio 1.38, 95% CI 1.07-1.79, P = 0.01). However, this association was driven by males (odds ratio 1.62, 95% CI 1.10-2.38, P = 0.01) and CHD5 Ct values ≤ 11 since removing low CHD5 Ct values from this model, converted to insignificance (P = 0.19). A second male subcohort comprising high CHD5 Ct values ≥ 14.4 in both cohorts (n = 5) appeared associated with survival. Removing these high CHD5 Ct values converted the model borderline significant (P = 0.051). Based on the probability function of the receiver operating characteristics (ROC) curves, 8 (12.3%) and 5 (7.7%) from 65 pre-exposure RNA measurements in males, death and survival could be predicted with a negative and positive predictive value ranging between 85-100%. An associated odds ratio reflected a 62% elevated risk for dying or surviving per unit change (Ct-value) in gene expression, considering the before-mentioned CHD5 thresholds in RNA copy numbers. In conclusion, we identified two subsets of male animals characterized by increased (Ct values ≤ 11) and decreased (Ct valu
人类对辐射的敏感性不同,与之密切相关的非人灵长类动物对辐射的敏感性也可能不同。辐射敏感性差异的原因尚不清楚。在早前的一项研究中,我们检测了雄性(n = 62)和雌性(n = 60)猕猴(n = 122)外周血中辐射前的基因表达(GE)。八个基因(CHD5、CHI3L1、DYSF、EPX、IGF2BP1、LCN2、MBOAT4、SLC22A4)与存活率有显著关联。我们获得了第二组猕猴(雄性 40 只,雌性 23 只,共 63 只),它们接受了 5.8-7.2 Gy(LD29-50/60)辐照,其中一些还接受了伽马-生育三烯酚(GT3,一种辐射对策)治疗,这使我们能够独立验证这些基因表达变化。我们从全血样本中分离出总 RNA,并在 96 孔板上进行了定量 RT-PCR 检测。无论采用哪种物种特异性 TaqMan 检测方法,都得到了相似的结果。八个基因中有两个基因(CHD5 和 CHI3L1)与第二个队列的存活率有显著关联,而只有 CHD5(参与 DNA 损伤反应和增殖控制)显示两个队列的平均基因表达量变化方向相同。CHD5 GE与剂量、治疗或性别没有预期的关联。相反,我们观察到 CHD5 Ct 值≤ 11 的暴露前样本(共 17 个样本)的比较结果具有明显的关联性。在这些比较中,CHD5 Ct 值≤ 11 主要与非存活者的频率增加(61%-100%)有关,这一趋势取决于样本数量,在男性中达到显著性(P = 0.03),在女性中也相应达到显著性(P = 0.03)。包含两个队列中所有可用样本的 CHD5 测量结果的逻辑回归模型也反映了这一点(n = 104,几率比 1.38,95% CI 1.07-1.79,P = 0.01)。然而,这种关联是由男性(几率比1.62,95% CI 1.10-2.38,P = 0.01)和CHD5 Ct值≤11驱动的,因为从该模型中移除低CHD5 Ct值,转换为不显著性(P = 0.19)。在两个队列(n = 5)中,由 CHD5 Ct 值≥ 14.4 的高值组成的第二个男性亚队列似乎与存活率有关。除去这些高 CHD5 Ct 值后,该模型具有边缘显著性(P = 0.051)。根据接受者操作特征曲线(ROC)的概率函数,在 65 例暴露前 RNA 测量结果中,男性有 8 例(12.3%)和 5 例(7.7%)可以预测死亡和存活,阴性和阳性预测值在 85-100% 之间。考虑到之前提到的 CHD5 RNA 拷贝数阈值,相关的几率比反映了基因表达每变化一个单位(Ct 值),死亡或存活的风险就会增加 62%。总之,我们发现了两个雄性动物亚群,其特征分别是辐照前CHD5 GE拷贝数增加(Ct值≤11)和减少(Ct值≥14.4),这两个亚群似乎可以预测雄性动物的死亡或存活,而与群组、辐照或治疗无关。
{"title":"Validating Radiosensitivity with Pre-Exposure Differential Gene Expression in Peripheral Blood Predicting Survival and Non-Survival in a Second Irradiated Rhesus Macaque Cohort.","authors":"D Schwanke, O O Fatanmi, S Y Wise, P Ostheim, S Schüle, G Kaletka, S Stewart, T Wiegel, V K Singh, M Port, M Abend","doi":"10.1667/RADE-23-00099.1","DOIUrl":"10.1667/RADE-23-00099.1","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Radiosensitivity differs in humans and possibly in closely related nonhuman primates. The reasons for variation in radiosensitivity are not well known. In an earlier study, we examined gene expression (GE) pre-radiation in peripheral blood among male (n = 62) and female (n = 60) rhesus macaques (n = 122), which did or did not survive (up to 60 days) after whole-body exposure of 7.0 Gy (LD66/60). Eight genes (CHD5, CHI3L1, DYSF, EPX, IGF2BP1, LCN2, MBOAT4, SLC22A4) revealed significant associations with survival. Access to a second rhesus macaque cohort (males = 40, females = 23, total n = 63) irradiated with 5.8-7.2 Gy (LD29-50/60) and some treated with gamma-tocotrienol (GT3, a radiation countermeasure) allowed us to validate these gene expression changes independently. Total RNA was isolated from whole blood samples and examined by quantitative RT-PCR on a 96-well format. cycle threshold (Ct)-values normalized to 18S rRNA were analyzed for their association with survival. Regardless of the species-specific TaqMan assay, similar results were obtained. Two genes (CHD5 and CHI3L1) out of eight revealed a significant association with survival in the second cohort, while only CHD5 (involved in DNA damage response and proliferation control) showed mean gene expression changes in the same direction for both cohorts. No expected association of CHD5 GE with dose, treatment, or sex could be established. Instead, we observed significant associations for those comparisons comprising pre-exposure samples with CHD5 Ct values ≤ 11 (total n = 17). CHD5 Ct values ≤ 11 in these comparisons were mainly associated with increased frequencies (61-100%) of non-survivors, a trend which depending on the sample numbers, reached significance (P = 0.03) in males and, accordingly, in females. This was also reflected by a logistic regression model including all available samples from both cohorts comprising CHD5 measurements (n = 104, odds ratio 1.38, 95% CI 1.07-1.79, P = 0.01). However, this association was driven by males (odds ratio 1.62, 95% CI 1.10-2.38, P = 0.01) and CHD5 Ct values ≤ 11 since removing low CHD5 Ct values from this model, converted to insignificance (P = 0.19). A second male subcohort comprising high CHD5 Ct values ≥ 14.4 in both cohorts (n = 5) appeared associated with survival. Removing these high CHD5 Ct values converted the model borderline significant (P = 0.051). Based on the probability function of the receiver operating characteristics (ROC) curves, 8 (12.3%) and 5 (7.7%) from 65 pre-exposure RNA measurements in males, death and survival could be predicted with a negative and positive predictive value ranging between 85-100%. An associated odds ratio reflected a 62% elevated risk for dying or surviving per unit change (Ct-value) in gene expression, considering the before-mentioned CHD5 thresholds in RNA copy numbers. In conclusion, we identified two subsets of male animals characterized by increased (Ct values ≤ 11) and decreased (Ct valu","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"384-395"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Point-of-Care Microfluidic RNA Extraction Slide for Gene Expression Diagnosis after Irradiation. 开发用于辐照后基因表达诊断的护理点微流控 RNA 提取玻片
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00169.1
S Stewart, S Motzke, C Gärtner, W Bäumler, C Stroszczynski, M Port, M Abend, P Ostheim

In times of war, radiological/nuclear emergency scenarios have become a reemphasized threat. However, there are challenges in transferring whole-blood samples to laboratories for specialized diagnostics using RNA. This project aims to miniaturize the process of unwieldy conventional RNA extraction with its stationed technical equipment using a microfluidic-based slide (MBS) for point-of-care diagnostics. The MBS is thought to be a preliminary step toward the development of a so-called lab-on-a-chip microfluidic device. A MBS would enable early and fast field care combined with gene expression (GE) analysis for the prediction of hematologic acute radiation syndrome (HARS) severity or identification of RNA microbes. Whole blood samples from ten healthy donors were irradiated with 0, 0.5 and 4 Gy, simulating different ARS severity degrees. RNA quality and quantity of a preliminary MBS was compared with a conventional column-based (CB) RNA extraction method. GE of four HARS severity-predicting radiation-induced genes (FDXR, DDB2, POU2AF1 and WNT3) was examined employing qRT-PCR. Compared to the CB method, twice as much total RNA from whole blood could be extracted using the MBS (6.6 ± 3.2 µg vs. 12.0 ± 5.8 µg) in half of the extraction time, and all MBS RNA extracts appeared DNA-free in contrast to the CB method (30% were contaminated with DNA). Using MBS, RNA quality [RNA integrity number equivalent (RINe)] values decreased about threefold (3.3 ± 0.8 vs. 9.0 ± 0.4), indicating severe RNA degradation, while expected high-quality RINe ≥ 8 were found using column-based method. However, normalized cycle threshold (Ct) values, as well as radiation-induced GE fold-changes appeared comparable for all genes utilizing both methods, indicating that no RNA degradation took place. In summary, the preliminary MBS showed promising features such as: 1. halving the RNA extraction time without the burden of heavy technical equipment (e.g., a centrifuge); 2. absence of DNA contamination in contrast to CB RNA extraction; 3. reduction in blood required, because of twice the biological output of RNA; and 4. equal GE performance compared to CB, thus, increasing its appeal for later semi-automatic parallel field applications.

在战争时期,放射性/核应急方案已成为一种再次受到重视的威胁。然而,将全血样本转移到实验室利用 RNA 进行专业诊断却面临着挑战。本项目旨在利用基于微流体的载玻片(MBS),将笨重的传统 RNA 提取过程及其固定的技术设备微型化,用于床旁诊断。MBS 被认为是向开发所谓的片上实验室微流体设备迈出的第一步。微流控芯片可实现早期快速现场护理,并结合基因表达(GE)分析预测血液急性放射综合征(HARS)的严重程度或鉴定 RNA 微生物。用 0、0.5 或 4 Gy 对 10 名健康捐献者的全血样本进行辐照,模拟不同的急性辐射综合征严重程度。将初步 MBS 的 RNA 质量和数量与传统的柱式 (CB) RNA 提取方法进行了比较。采用 qRT-PCR 方法检测了四个可预测 HARS 严重程度的辐射诱导基因(FDXR、DDB2、POU2AF1 和 WNT3)的 GE。与 CB 方法相比,使用 MBS 从全血中提取的总 RNA 量是 CB 方法的两倍(6.6 ± 3.2 µg vs. 12.0 ± 5.8 µg),而提取时间仅为 CB 方法的一半。使用 MBS 方法,RNA 质量[RNA 完整性等值(RINe)]值下降了约三倍(3.3 ± 0.8 vs. 9.0 ± 0.4),表明 RNA 降解严重,而使用柱基方法则发现预期的高质量 RINe ≥ 8。不过,使用这两种方法检测的所有基因的归一化周期阈值(Ct)值以及辐射诱导的 GE 折叠变化似乎相当,表明没有发生 RNA 降解。总之,初步的 MBS 显示出了一些很有前景的特点,如:1:1.将 RNA 提取时间缩短一半,而无需繁重的技术设备(如离心机);2.与 CB RNA 提取法相比,没有 DNA 污染;3.减少所需血液,因为 RNA 的生物产量是 CB 的两倍;以及 4.与 CB 相比,GE 性能相当,从而增加了其在以后半自动并行现场应用中的吸引力。
{"title":"Development of a Point-of-Care Microfluidic RNA Extraction Slide for Gene Expression Diagnosis after Irradiation.","authors":"S Stewart, S Motzke, C Gärtner, W Bäumler, C Stroszczynski, M Port, M Abend, P Ostheim","doi":"10.1667/RADE-23-00169.1","DOIUrl":"10.1667/RADE-23-00169.1","url":null,"abstract":"<p><p>In times of war, radiological/nuclear emergency scenarios have become a reemphasized threat. However, there are challenges in transferring whole-blood samples to laboratories for specialized diagnostics using RNA. This project aims to miniaturize the process of unwieldy conventional RNA extraction with its stationed technical equipment using a microfluidic-based slide (MBS) for point-of-care diagnostics. The MBS is thought to be a preliminary step toward the development of a so-called lab-on-a-chip microfluidic device. A MBS would enable early and fast field care combined with gene expression (GE) analysis for the prediction of hematologic acute radiation syndrome (HARS) severity or identification of RNA microbes. Whole blood samples from ten healthy donors were irradiated with 0, 0.5 and 4 Gy, simulating different ARS severity degrees. RNA quality and quantity of a preliminary MBS was compared with a conventional column-based (CB) RNA extraction method. GE of four HARS severity-predicting radiation-induced genes (FDXR, DDB2, POU2AF1 and WNT3) was examined employing qRT-PCR. Compared to the CB method, twice as much total RNA from whole blood could be extracted using the MBS (6.6 ± 3.2 µg vs. 12.0 ± 5.8 µg) in half of the extraction time, and all MBS RNA extracts appeared DNA-free in contrast to the CB method (30% were contaminated with DNA). Using MBS, RNA quality [RNA integrity number equivalent (RINe)] values decreased about threefold (3.3 ± 0.8 vs. 9.0 ± 0.4), indicating severe RNA degradation, while expected high-quality RINe ≥ 8 were found using column-based method. However, normalized cycle threshold (Ct) values, as well as radiation-induced GE fold-changes appeared comparable for all genes utilizing both methods, indicating that no RNA degradation took place. In summary, the preliminary MBS showed promising features such as: 1. halving the RNA extraction time without the burden of heavy technical equipment (e.g., a centrifuge); 2. absence of DNA contamination in contrast to CB RNA extraction; 3. reduction in blood required, because of twice the biological output of RNA; and 4. equal GE performance compared to CB, thus, increasing its appeal for later semi-automatic parallel field applications.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"514-522"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140185396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Computed Tomography Contrast Agent on Radiation-Induced Gene Expression and Double-Strand Breaks. 计算机断层扫描对比剂对辐射诱导的基因表达和双链断裂的影响
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00118.1
Simone Schüle, Felix Bunert, Carsten Hackenbroch, Meinrad Beer, Patrick Ostheim, Samantha Stewart, Matthias Port, Harry Scherthan, Michael Abend

After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes. Here, we investigated the effect of iodinated contrast agents on radiation-induced gene expression (GE) changes used for biodosimetry (AEN, BAX, CDKN1A, EDA2R, APOBEC3H) and for hematologic ARS severity prediction (FDXR, DDB2, WNT3, POU2AF1), and on the induction of double-strand breaks (DSBs) used for biodosimetry. Whole blood samples from 10 healthy donors (5 males, 5 females, mean age: 28 ± 2 years) were irradiated with X rays (0, 1 and 4 Gy) with and without the addition of iodinated contrast agent (0.016 ml contrast agent/ml blood) to the blood prior to the exposure. The amount of contrast agent was set to be equivalent to the blood concentration of an average patient (80 kg) during a contrast-enhanced CT scan. After irradiation, blood samples were incubated at 37°C for 20 min (DSB) and 8 h (GE, DSB). GE was measured employing quantitative real-time polymerase chain reaction. DSB foci were revealed by γH2AX + 53BP1 immunostaining and quantified automatically in >927 cells/sample. Radiation-induced differential gene expression (DGE) and DSB foci were calculated using the respective unexposed sample without supplementation of contrast agent as the reference. Neither the GE nor the number of DSB foci was significantly (P = 0.07-0.94) altered by the contrast agent application. However, for some GE and DSB comparisons with/without contrast agent, there were weakly significant differences (P = 0.03-0.04) without an inherent logic and thus are likely due to inter-individual variation. In nuclear events, the diagnostics of combined injuries can require the use of an iodinated contrast agent, which, according to our results, does not alter or influence radiation-induced GE changes and the quantity of DSB foci. Therefore, the gene expression and γH2AX focus assay can still be applied for biodosimetry and/or hematologic ARS severity prediction in such scenarios.

核事故发生后,会出现急性辐射综合征(ARS)与腹部创伤等合并伤害,可能需要造影剂增强计算机断层扫描(CT)进行诊断。在此,我们研究了碘化造影剂对辐射诱导的基因表达(GE)变化的影响,这些基因表达可用于生物模拟(AEN、BAX、CDKN1A、EDA2R、APOBEC3H)和血液学 ARS 严重程度预测(FDXR、DDB2、WNT3、POU2AF1),也可用于生物模拟的双链断裂(DSB)诱导。对 10 名健康捐献者(5 男 5 女,平均年龄:28 ± 2 岁)的全血样本进行 X 射线(0、1 和 4 Gy)照射,照射前在血液中添加或不添加碘造影剂(0.016 毫升造影剂/毫升血液)。造影剂的量设定为相当于普通患者(80 千克)在进行造影剂增强 CT 扫描时的血液浓度。照射后,血液样本在 37°C 孵育 20 分钟(DSB)和 8 小时(GE、DSB)。GE 采用定量实时聚合酶链反应进行测量。DSB 病灶由 γH2AX + 53BP1 免疫染色显示,并在大于 927 个细胞/样本中自动量化。辐射诱导的差异基因表达(DGE)和DSB灶以未添加造影剂的相应未暴露样本为参照进行计算。应用造影剂后,基因表达差异和 DSB 病灶数量均无明显变化(P = 0.07-0.94)。然而,在一些使用/不使用造影剂的 GE 和 DSB 比较中,存在微弱的显著差异(P = 0.03-0.04),但没有内在的逻辑关系,因此很可能是由于个体间的差异造成的。在核事件中,合并损伤的诊断可能需要使用碘造影剂,而根据我们的结果,碘造影剂不会改变或影响辐射诱导的 GE 变化和 DSB 病灶的数量。因此,在这种情况下,基因表达和γH2AX病灶检测仍可用于生物模拟和/或血液学ARS严重程度预测。
{"title":"The Influence of Computed Tomography Contrast Agent on Radiation-Induced Gene Expression and Double-Strand Breaks.","authors":"Simone Schüle, Felix Bunert, Carsten Hackenbroch, Meinrad Beer, Patrick Ostheim, Samantha Stewart, Matthias Port, Harry Scherthan, Michael Abend","doi":"10.1667/RADE-23-00118.1","DOIUrl":"10.1667/RADE-23-00118.1","url":null,"abstract":"<p><p>After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes. Here, we investigated the effect of iodinated contrast agents on radiation-induced gene expression (GE) changes used for biodosimetry (AEN, BAX, CDKN1A, EDA2R, APOBEC3H) and for hematologic ARS severity prediction (FDXR, DDB2, WNT3, POU2AF1), and on the induction of double-strand breaks (DSBs) used for biodosimetry. Whole blood samples from 10 healthy donors (5 males, 5 females, mean age: 28 ± 2 years) were irradiated with X rays (0, 1 and 4 Gy) with and without the addition of iodinated contrast agent (0.016 ml contrast agent/ml blood) to the blood prior to the exposure. The amount of contrast agent was set to be equivalent to the blood concentration of an average patient (80 kg) during a contrast-enhanced CT scan. After irradiation, blood samples were incubated at 37°C for 20 min (DSB) and 8 h (GE, DSB). GE was measured employing quantitative real-time polymerase chain reaction. DSB foci were revealed by γH2AX + 53BP1 immunostaining and quantified automatically in >927 cells/sample. Radiation-induced differential gene expression (DGE) and DSB foci were calculated using the respective unexposed sample without supplementation of contrast agent as the reference. Neither the GE nor the number of DSB foci was significantly (P = 0.07-0.94) altered by the contrast agent application. However, for some GE and DSB comparisons with/without contrast agent, there were weakly significant differences (P = 0.03-0.04) without an inherent logic and thus are likely due to inter-individual variation. In nuclear events, the diagnostics of combined injuries can require the use of an iodinated contrast agent, which, according to our results, does not alter or influence radiation-induced GE changes and the quantity of DSB foci. Therefore, the gene expression and γH2AX focus assay can still be applied for biodosimetry and/or hematologic ARS severity prediction in such scenarios.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"396-405"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emission of Parasitic X Rays of Vacuum-electron Tubes with Glass Housings: Implications for the Evaluation of Occupational Doses. 玻璃外壳真空电子管的寄生 X 射线发射:对职业剂量评估的影响》。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00161.1
H Pöttgen, A Schirmer, M Port, R Nusshardt

Despite the large variety of high-voltage semiconductor components for medium and high voltage switching and pulse-forming applications as well as for high-power high-frequency generation, the use of vacuum electron tubes still prevails to a considerable degree. Due to the common design incorporating a high energy electron beam which finally is dumped into an anode or a resonator cavity, these tubes are also considered as sources of X rays produced as bremsstrahlung and characteristic radiation, which are referred to as parasitic X rays. Here three types of vacuum-electron tubes, diode, tetrode, and thyratron, with glass housings are investigated. They are predominantly operated in the high voltage range below 30 kV and are not subject to licensing laws. The measurements of the dose rate and X-ray-spectra were performed in the laboratory without complex electrical circuitry usually used in making practical measurements for occupational radiation protection. For the diode tube, where a parasitic X-ray emission is observed only in the reverse operation as a blocking diode, a broad distribution of dose rates of electrically equivalent specimens was observed. This is attributed to field emission from the electrodes. For the tetrode and the thyratron tubes, field emission from the electrodes is identified as the dominant mechanism for the generation of parasitic X rays. Thus, technical radiation protection must focus on shielding of the glass tube rather than optimization of the electrical circuitry.

尽管用于中压和高压开关、脉冲形成以及大功率高频发电的高压半导体元件种类繁多,但真空电子管的使用在很大程度上仍然占主导地位。由于这些真空电子管的常见设计是将高能电子束最终倾入阳极或谐振腔,因此也被认为是产生轫致辐射和特征辐射的 X 射线的来源,这些辐射被称为寄生 X 射线。这里研究的是三种带有玻璃外壳的真空电子管,即二极管、四极管和三极管。它们主要在 30 千伏以下的高压范围内运行,不受许可法的限制。剂量率和 X 射线频谱的测量是在实验室进行的,没有通常用于职业辐射防护实际测量的复杂电路。对于二极管管来说,只有在作为阻断二极管反向工作时才会出现寄生 X 射线发射,因此可以观察到电气等效试样剂量率的广泛分布。这归因于电极的场发射。对于四极管和三极管,电极的场发射被认为是产生寄生 X 射线的主要机制。因此,技术辐射防护必须侧重于玻璃管的屏蔽,而不是电路的优化。
{"title":"Emission of Parasitic X Rays of Vacuum-electron Tubes with Glass Housings: Implications for the Evaluation of Occupational Doses.","authors":"H Pöttgen, A Schirmer, M Port, R Nusshardt","doi":"10.1667/RADE-23-00161.1","DOIUrl":"10.1667/RADE-23-00161.1","url":null,"abstract":"<p><p>Despite the large variety of high-voltage semiconductor components for medium and high voltage switching and pulse-forming applications as well as for high-power high-frequency generation, the use of vacuum electron tubes still prevails to a considerable degree. Due to the common design incorporating a high energy electron beam which finally is dumped into an anode or a resonator cavity, these tubes are also considered as sources of X rays produced as bremsstrahlung and characteristic radiation, which are referred to as parasitic X rays. Here three types of vacuum-electron tubes, diode, tetrode, and thyratron, with glass housings are investigated. They are predominantly operated in the high voltage range below 30 kV and are not subject to licensing laws. The measurements of the dose rate and X-ray-spectra were performed in the laboratory without complex electrical circuitry usually used in making practical measurements for occupational radiation protection. For the diode tube, where a parasitic X-ray emission is observed only in the reverse operation as a blocking diode, a broad distribution of dose rates of electrically equivalent specimens was observed. This is attributed to field emission from the electrodes. For the tetrode and the thyratron tubes, field emission from the electrodes is identified as the dominant mechanism for the generation of parasitic X rays. Thus, technical radiation protection must focus on shielding of the glass tube rather than optimization of the electrical circuitry.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"499-503"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140111279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Radiation-induced Pulmonary Fibrosis Partial Body Irradiation Model in C57BL/6 Mice. 在 C57BL/6 小鼠中建立辐射诱导的肺纤维化部分体照射模型
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00143.1
Vidya P Kumar, Shalini Jaiswal, Kefale Wuddie, Jerrold M Ward, Mark Lawrence, Sanchita P Ghosh

With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.

在当前动荡的地缘政治气候下,核攻击的威胁很大。核事故或放射性事故造成的电离辐射照射往往会对人类健康造成重大危害。根据吸收剂量的不同,急性辐射综合症和急性辐照延迟效应(DEARE)的症状可在数小时、数周至数月内出现。肺部是一个对辐射相对敏感的器官,表现为急性辐射性肺炎,随后在数周甚至数月内出现明显的纤维化。最近首次开发的小鼠部分全身辐照(PBI)损伤模型可用于测试针对胃肠道和肺部等多器官损伤的潜在对策。使用µ-CT扫描、肺功能测试、组织病理学参数和分子生物标记物评估了辐射对肺部造成的长期损伤。在 BM2.5-PBI 6-7 个月后,通过对雄性和雌性 C57BL/6J 小鼠的 µ-CT 扫描观察到磨玻璃状不透明,从而检测到肺纤维化。与外周气道有关的肺力学评估表明,BM2.5-PBI 6-7 个月后的辐照动物肺部纤维化,肺实质组织变硬,吸气能力下降。辐照肺的组织病理学评估显示,存在局灶性和弥漫性胸膜、实质炎症和纤维化病变。与年龄匹配的天真小鼠肺部相比,纤维化通过胶原蛋白水平的升高得到证实。促纤维化生物标志物水平的升高和抗炎蛋白的减少也验证了这些发现。总之,我们建立了辐射诱导肺纤维化的长期模型,并可在该模型中筛选对策,以促进辐射诱导肺损伤的生存和保护/缓解或恢复。
{"title":"Development of a Radiation-induced Pulmonary Fibrosis Partial Body Irradiation Model in C57BL/6 Mice.","authors":"Vidya P Kumar, Shalini Jaiswal, Kefale Wuddie, Jerrold M Ward, Mark Lawrence, Sanchita P Ghosh","doi":"10.1667/RADE-23-00143.1","DOIUrl":"10.1667/RADE-23-00143.1","url":null,"abstract":"<p><p>With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"460-470"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering the Radiation Biomarkers in the Plasma of Total-Body Irradiated Leukemia Patients. 发现全身辐照白血病患者血浆中的辐射生物标志物
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00137.1
Rydlova Gabriela, Vozandychova Vera, Rehulka Pavel, Rehulkova Helena, Sirak Igor, Davidkova Marie, Markova Marketa, Myslivcova-Fucikova Alena, Tichy Ales

The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.

全球人口受到急性大规模辐射照射的风险不断增加,这凸显了对最佳辐射生物标志物的需求。电离辐射会引发基因组、蛋白质组和代谢组的复杂反应,据报道,所有这些都是辐射诱导体内损伤的合适指标。本研究通过质谱法(MS)分析了全身辐照(TBI)白血病患者的外周血样本,以鉴定和量化辐照前后血浆中不同调控蛋白。简言之,16 名白血病患者在接受 TBI(2 × 2.0 Gy)照射前和照射后 24 小时内的血样,经串联质谱标记等位试剂盒(TMTpro-16-plex)处理后进行质谱分析。同时,使用 Q-Exactive 质谱仪中的 RP-nanoLC-ESI-MS/MS 系统进行无标记相对定量。蛋白质鉴定在 Proteome Discoverer v.2.2 平台(Thermo)上完成。数据可通过 ProteomeXchange 获取,标识符为 PXD043516。使用两种不同的方法,我们获得了辐照 24 小时后上调(比值≥ 1.2)或下调(比值≤ 0.83)质粒蛋白的两个数据集,在 TMT-16plex 分析中分别鉴定出 356 和 346 个蛋白,在无标记分析中分别鉴定出 285 和 308 个蛋白(P ≤ 0.05)。将两个数据集合并后,发现有 15 个候选蛋白与伽马辐照有显著关系。这些蛋白质大多与炎症反应和脂质代谢有关。随后,在这些蛋白质中,有五种蛋白质(C 反应蛋白、α 淀粉酶 1A、甘露糖结合蛋白 C、磷脂转移蛋白和补体 C5)最有可能成为人类的辐射生物标志物。这些候选生物标志物可能会对实际的生物剂量测定产生影响。
{"title":"Discovering the Radiation Biomarkers in the Plasma of Total-Body Irradiated Leukemia Patients.","authors":"Rydlova Gabriela, Vozandychova Vera, Rehulka Pavel, Rehulkova Helena, Sirak Igor, Davidkova Marie, Markova Marketa, Myslivcova-Fucikova Alena, Tichy Ales","doi":"10.1667/RADE-23-00137.1","DOIUrl":"10.1667/RADE-23-00137.1","url":null,"abstract":"<p><p>The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"418-428"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural-history Characterization of a Murine Partial-body Irradiation Model System: Establishment of a Multiple-Parameter Based GI-ARS Severity-Scoring System. 小鼠局部全身辐照模型系统的自然史特征:建立基于多参数的 GI-ARS 严重程度评分系统
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00132.1
David L Bolduc, Lynnette H Cary, Juliann G Kiang, Lalitha Kurada, Vidya P Kumar, Sunshine A Edma, Matthew G Olson, Vernieda B Vergara, Dalton D Bistline, Mario Reese, Doreswamy Kenchegowda, Maureen Hood, Alexandru Korotcov, Shalini Jaiswal, William F Blakely

The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.

这项研究的目的是描述小鼠全腹部辐照模型的自然史,以测量胃肠道急性辐射损伤。12 至 15 周大的雄性 CD2F1 小鼠分别接受了剂量为 0、11、13.5、15、15.75 和 16.5 Gy(2.75 Gy/分钟)的 4-MV 直线加速器 X 射线全腹部辐照。照射后 10 天内,每天在笼边(即动物饲养室)观察所有动物的临床症状和体征,包括体重。在照射后 1、3、7 和 10 天收集小鼠群组的空肠组织,并通过组织病理学分析评估辐射损伤。结果显示,小鼠体重的下降与时间和剂量有关[例如,在 7 天时,小鼠体重为 0.66(±0.80)千克,在 10 天时为 0.66(±0.80)千克]:0Gy时体重减轻0.66(±0.80)%,11Gy时体重减轻6.40(±0.76)%,13.5Gy时体重减轻9.43(±2.06)%,15Gy时体重减轻23.53(±1.91)%,15.75Gy时体重减轻29.97(±1.16)%,16.5Gy时体重减轻31.79(±0.76)%]。在剂量为 11 至 15 Gy 的辐照后 10 天内,除体重变化外,几乎观察不到辐射损伤的临床症状和体征。剂量大于 15 Gy 的辐照后,临床症状和体征的严重程度逐渐增加。空肠组织学显示,损伤程度随剂量增加而逐渐加重。例如,与对照组相比,在照射后7天,随着剂量从11 Gy增加到16.5 Gy,隐窝的百分比分别下降到82.3 (±9.5)、69.2 (±12.3)、45.4 (±11.9)、18.0 (±3.4)和11.5 (±1.8)。采用的粘膜损伤评分系统主要关注绒毛形态损伤的变化(即绒毛顶端附近的上皮下间隙伴有毛细血管充血、沿绒毛长度方向的上皮明显隆起伴有少量绒毛顶端变性)。当剂量≥15 Gy 时,全腹辐照对粘膜损伤评分的影响在辐照后 7 天达到峰值,7 天后呈下降趋势。根据临床症状和体征建立了小鼠多参数胃肠道急性辐射综合征严重程度评分系统,包括外观(即驼背和/或毛发蓬松)、呼吸频率、一般行为(即活动能力下降)和激惹行为(即对刺激反应迟钝)、体重减轻、粪便/腹泻评分以及空肠粘膜损伤等级评分。总之,小鼠部分躯体辐照的自然史放射反应对于建立一个特性良好的辐射模型系统非常重要;在此,我们建立了一个多参数胃肠道急性辐射综合征严重程度评分系统,该系统提供了一种基于辐射损伤胃肠道组织的实用评估方法。
{"title":"Natural-history Characterization of a Murine Partial-body Irradiation Model System: Establishment of a Multiple-Parameter Based GI-ARS Severity-Scoring System.","authors":"David L Bolduc, Lynnette H Cary, Juliann G Kiang, Lalitha Kurada, Vidya P Kumar, Sunshine A Edma, Matthew G Olson, Vernieda B Vergara, Dalton D Bistline, Mario Reese, Doreswamy Kenchegowda, Maureen Hood, Alexandru Korotcov, Shalini Jaiswal, William F Blakely","doi":"10.1667/RADE-23-00132.1","DOIUrl":"10.1667/RADE-23-00132.1","url":null,"abstract":"<p><p>The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"406-417"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of Chromosomal Aberrations after Exposure to the Auger Electron Emitter Iodine-125, the β--emitter Tritium and Cesium-137 γ rays. 暴露于欧杰电子发射体碘-125、β-发射体氚和铯-137 γ 射线后的染色体畸变诱导。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00158.1
M Unverricht-Yeboah, M Von Ameln, R Kriehuber

High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), β- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.

在允许将 125I-UdR 植入 DNA 的细胞中观察到了高 LET 型细胞存活曲线。在细胞存活实验中,将三价胸腺嘧啶掺入细胞的 DNA 中也会导致相对生物效应的增加,但增加的幅度比掺入 125I-UdR 后观察到的要小。文献中对这些发现的解释是,在 3H 和 125I 的衰变过程中,射出电子的能量导致诱导 DNA 损伤的整体复杂性。染色体畸变(CA)是指一条或多条染色体的形态或结构变化,可由电离辐射诱发。CA的数量是否与辐射的线性能量转移(LET)和/或诱导的DNA双链断裂(DSB)的实际复杂性有关,目前尚不清楚。在这项研究中,我们研究了在不同细胞周期阶段和不同辐射类型(奥奇电子(125I)、β粒子(3H)或γ辐射(137Cs))诱导的DNA病变是否会影响γ-H2AX病灶检测法确定的诱导相同数量DSB后诱导的CA数量。细胞同步化后,在 S 期用低活度的 125I-UdR 或三尖杉烷进行脉冲标记。为了进行衰变积累,细胞在S期脉冲标记后或进入G2/M期或G1期后进行冷冻保存。对处于 S、G2/M 或 G1 期的同步细胞和冷冻保存的细胞进行γ辐照(137Cs)实验。解冻后,进行 CA 检测。所有实验都是在诱导了相似数量的 DSB 后进行的。在G2/M细胞中测量,与暴露于γ辐射和掺入三价胸苷的辐射相比,掺入125I-UdR后诱导的CA分别高出2.9倍和1.7倍。此外,与 G1 期细胞相比,掺入 125I-UdR 后 G2/M 期细胞的 CA 测量值增加了 2.5 倍。相比之下,在 S 期或 G1 期冷冻保存后,三种辐射质量之间的照射量没有差异。数据表明,与 S 期或 G1 期细胞的 DNA 结构相比,G2/M 期细胞中复制 DNA 的三维组织似乎对诱导更复杂的 DNA 病变更敏感。这究竟是由于DNA组织本身还是DNA修复能力的差异造成的,目前还不清楚。
{"title":"Induction of Chromosomal Aberrations after Exposure to the Auger Electron Emitter Iodine-125, the β--emitter Tritium and Cesium-137 γ rays.","authors":"M Unverricht-Yeboah, M Von Ameln, R Kriehuber","doi":"10.1667/RADE-23-00158.1","DOIUrl":"10.1667/RADE-23-00158.1","url":null,"abstract":"<p><p>High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), β- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"479-486"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Product Development within the National Institutes of Health Radiation and Nuclear Countermeasures Program. 美国国立卫生研究院辐射与核对策计划的产品开发。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00144.1
David R Cassatt, Andrea L DiCarlo, Olivia Molinar-Inglis

The Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) was established to facilitate the development of medical countermeasures (MCMs) and diagnostic approaches for use in a radiation public health emergency. Approvals for MCMs can be very challenging but are made possible under the United States Food and Drug Administration (FDA) Animal Rule, which is designed to enable licensure of drugs or biologics when clinical efficacy studies are unethical or unfeasible. The NIAID portfolio includes grants, contracts, and inter-agency agreements designed to span all aspects of drug development and encompasses basic research through FDA approval. In addition, NIAID manages an active portfolio of biodosimetry approaches to assess injuries and absorbed radiation levels to guide triage and treatment decisions. NIAID, together with grantees, contractors, and other stakeholders with promising products, works to advance candidate MCMs and biodosimetry tools through an established product development pipeline. In addition to managing grants and contracts, NIAID tests promising candidates in our established preclinical animal models, and the NIAID Program Officers work closely with sponsors as product managers to guide them through the process. In addition, a valuable benefit for stakeholders is working with the NIAID Office of Regulatory Affairs, where NIAID coordinates with the FDA to facilitate interactions between sponsors and the agency. Activities funded by NIAID include basic research (e.g., library screens to discover new products, determine early efficacy, and delineate mechanism of action) and the development of small and large animal models of radiation-induced hematopoietic, gastrointestinal, lung, kidney, and skin injury, radiation combined injury, and radionuclide decorporation. NIAID also sponsors Good Laboratory Practice product safety, pharmacokinetic, pharmacodynamic, and toxicology studies, as well as efficacy and dose-ranging studies to optimize product regimens. For later-stage candidates, NIAID funds large-scale manufacturing and formulation development of products. The program also supports Phase 1 human clinical studies to ensure human safety and to bridge pharmacokinetic, pharmacodynamic, and efficacy data from animals to humans. To date, NIAID has supported >900 animal studies and one clinical study, evaluating >500 new/repurposed radiation MCMs and biodosimetric approaches. NIAID sponsorship led to the approval of three of the six drugs for acute radiation syndrome under the FDA Animal Rule, five Investigational New Drug applications, and 18 additional submissions for Investigational Device Exemptions, while advancing 38 projects to the Biomedical Advanced Research and Development Authority for follow-on research and development.

美国国立卫生研究院(NIH)国立过敏与传染病研究所(NIAID)的辐射与核对策计划(RNCP)旨在促进辐射公共卫生紧急状况下使用的医疗对策(MCMs)和诊断方法的开发。MCMs 的审批可能非常具有挑战性,但根据美国食品和药物管理局(FDA)的《动物规则》(Animal Rule),在临床疗效研究不道德或不可行的情况下,该规则可使药物或生物制剂获得许可成为可能。NIAID 的项目组合包括赠款、合同和机构间协议,旨在涵盖药物开发的各个方面,从基础研究到 FDA 批准。此外,NIAID 还管理着一个积极的生物仿真方法组合,用于评估伤害和吸收的辐射水平,以指导分流和治疗决策。NIAID 与受赠方、承包商和其他拥有有前途产品的利益相关方一起,努力通过已建立的产品开发渠道来推进候选的多介质材料和生物模拟工具。除了管理赠款和合同外,NIAID 还在我们已建立的临床前动物模型中对有前景的候选产品进行测试,NIAID 的项目官员作为产品经理与赞助商密切合作,指导他们完成整个过程。此外,与 NIAID 监管事务办公室合作对利益相关者来说也是一项宝贵的福利,NIAID 与美国食品和药物管理局(FDA)协调,促进申办者与该机构之间的互动。NIAID 资助的活动包括基础研究(如发现新产品、确定早期疗效和阐明作用机制的库筛选),以及开发辐射诱导的造血、胃肠、肺、肾和皮肤损伤、辐射合并损伤和放射性核素穿孔的小型和大型动物模型。NIAID 还赞助 "良好实验室规范 "产品安全性、药代动力学、药效学和毒理学研究,以及疗效和剂量范围研究,以优化产品治疗方案。对于处于后期阶段的候选药物,NIAID 会资助产品的大规模生产和制剂开发。该计划还支持 1 期人体临床研究,以确保人体安全性,并将药代动力学、药效学和药效数据从动物转化到人体。迄今为止,NIAID 已支持了超过 900 项动物研究和一项临床研究,评估了超过 500 种新的/再利用的辐射 MCM 和生物模拟方法。在 NIAID 的赞助下,四种治疗急性辐射综合征的药物中的三种根据美国食品及药物管理局动物规则获得批准,五种新药研究申请获得批准,另有 18 份研究设备豁免申请获得批准,同时将 38 个项目推进到生物医学高级研究与发展管理局进行后续研发。
{"title":"Product Development within the National Institutes of Health Radiation and Nuclear Countermeasures Program.","authors":"David R Cassatt, Andrea L DiCarlo, Olivia Molinar-Inglis","doi":"10.1667/RADE-23-00144.1","DOIUrl":"10.1667/RADE-23-00144.1","url":null,"abstract":"<p><p>The Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) was established to facilitate the development of medical countermeasures (MCMs) and diagnostic approaches for use in a radiation public health emergency. Approvals for MCMs can be very challenging but are made possible under the United States Food and Drug Administration (FDA) Animal Rule, which is designed to enable licensure of drugs or biologics when clinical efficacy studies are unethical or unfeasible. The NIAID portfolio includes grants, contracts, and inter-agency agreements designed to span all aspects of drug development and encompasses basic research through FDA approval. In addition, NIAID manages an active portfolio of biodosimetry approaches to assess injuries and absorbed radiation levels to guide triage and treatment decisions. NIAID, together with grantees, contractors, and other stakeholders with promising products, works to advance candidate MCMs and biodosimetry tools through an established product development pipeline. In addition to managing grants and contracts, NIAID tests promising candidates in our established preclinical animal models, and the NIAID Program Officers work closely with sponsors as product managers to guide them through the process. In addition, a valuable benefit for stakeholders is working with the NIAID Office of Regulatory Affairs, where NIAID coordinates with the FDA to facilitate interactions between sponsors and the agency. Activities funded by NIAID include basic research (e.g., library screens to discover new products, determine early efficacy, and delineate mechanism of action) and the development of small and large animal models of radiation-induced hematopoietic, gastrointestinal, lung, kidney, and skin injury, radiation combined injury, and radionuclide decorporation. NIAID also sponsors Good Laboratory Practice product safety, pharmacokinetic, pharmacodynamic, and toxicology studies, as well as efficacy and dose-ranging studies to optimize product regimens. For later-stage candidates, NIAID funds large-scale manufacturing and formulation development of products. The program also supports Phase 1 human clinical studies to ensure human safety and to bridge pharmacokinetic, pharmacodynamic, and efficacy data from animals to humans. To date, NIAID has supported >900 animal studies and one clinical study, evaluating >500 new/repurposed radiation MCMs and biodosimetric approaches. NIAID sponsorship led to the approval of three of the six drugs for acute radiation syndrome under the FDA Animal Rule, five Investigational New Drug applications, and 18 additional submissions for Investigational Device Exemptions, while advancing 38 projects to the Biomedical Advanced Research and Development Authority for follow-on research and development.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"471-478"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FSL-1: A Synthetic Peptide Increases Survival in a Murine Model of Hematopoietic Acute Radiation Syndrome. FSL-1:一种合成肽,可提高造血急性辐射综合征小鼠模型的存活率。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-05-01 DOI: 10.1667/RADE-23-00142.1
Gregory P Holmes-Hampton, Vidya P Kumar, Kaylee Valenzia, Sanchita P Ghosh

In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.

在当前的地缘政治环境下,确定和开发预防性辐射对策的需求尚未得到满足,特别是为了确保可能需要在辐射污染区域执行作战或救援任务的作战人员和急救人员的健康。目前,美国食品和药物管理局尚未批准任何用于预防性用药的对策。在此,我们报告了 FSL-1(toll 样受体 2/6 激动剂)的疗效以及在小鼠全身辐照(TBI)模型中对急性辐射综合征(ARS)的保护作用。小鼠皮下注射单剂量的 FSL-1。在非辐照动物中评估了该化合物的安全性,在 AFRRI Co-60 设施中接受 TBI 照射的动物中评估了该化合物的疗效,优化了 FSL-1 的剂量,并评估了常见的血液学参数[全血细胞 (CBC)、细胞因子和骨髓祖细胞]。对动物进行了长达 60 天的照射后监测,并对辐射引起的损伤进行了评估。结果表明,对未受辐照的小鼠施用剂量高达 3 毫克/千克的 FSL-1 是无毒的。疗效窗口期被确定为创伤性脑损伤前 24 小时至创伤性脑损伤后 24 小时。在暴露于超致死剂量的创伤性脑损伤之前 24 小时或之后 24 小时给药 FSL-1 均可显著提高存活率。经测定,在照射前服用 FSL-1 的最佳剂量为 1.5 毫克/千克。最后,FSL-1 还能保护造血系统(CBC 和骨髓 CFU 的恢复)。综上所述,提高存活率和加速血液参数恢复的效果表明,FSL-1 应被开发为一种新型的士兵和平民辐射防护措施,可在辐射或核事件发生后的辐照前或辐照后使用。
{"title":"FSL-1: A Synthetic Peptide Increases Survival in a Murine Model of Hematopoietic Acute Radiation Syndrome.","authors":"Gregory P Holmes-Hampton, Vidya P Kumar, Kaylee Valenzia, Sanchita P Ghosh","doi":"10.1667/RADE-23-00142.1","DOIUrl":"10.1667/RADE-23-00142.1","url":null,"abstract":"<p><p>In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"449-459"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiation research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1