Pub Date : 2024-04-15DOI: 10.1007/s00024-024-03469-1
Maria do Céu Jesus, Giacomo Belli, Duccio Gheri, Sandro Matos, Nicolau Wallenstein, Emanuele Marchetti
The 2022’s seismo-volcanic crisis on São Jorge Island of the Azores archipelago has provided an opportunity to deploy a portable infrasound array as a collaborative work between the Research Institute for Volcanology and Risk Assessment (IVAR) of the University of the Azores (UAc) and the University of Florence (UniFI). The four-element array, SJ1, became operational on 2 April 2022. Despite being deployed in a first stage to monitor the activities related to the volcanic unrest on São Jorge Island, SJ1 worked as a supporting tool to the existing IMS infrasound station IS42, located on Graciosa Island at ~ 40 km distance, leading to an enhancement of the infrasonic monitoring network in the region. This work emphasises the importance of low-cost portable infrasound arrays to improve the coverage of infrasound observations for local and regional monitoring purposes in the Azores region. Two events recorded by both arrays are briefly exemplified: a low-magnitude earthquake on São Jorge Island and a fireball which crossed the North Atlantic Ocean. Infrasound data from both arrays are combined to obtain a fast but still accurate source localization of the analysed events.
{"title":"The use of a low-cost, small-aperture array as an auxiliary tool to improve infrasound monitoring in the Azores region","authors":"Maria do Céu Jesus, Giacomo Belli, Duccio Gheri, Sandro Matos, Nicolau Wallenstein, Emanuele Marchetti","doi":"10.1007/s00024-024-03469-1","DOIUrl":"https://doi.org/10.1007/s00024-024-03469-1","url":null,"abstract":"<p>The 2022’s seismo-volcanic crisis on São Jorge Island of the Azores archipelago has provided an opportunity to deploy a portable infrasound array as a collaborative work between the Research Institute for Volcanology and Risk Assessment (IVAR) of the University of the Azores (UAc) and the University of Florence (UniFI). The four-element array, SJ1, became operational on 2 April 2022. Despite being deployed in a first stage to monitor the activities related to the volcanic unrest on São Jorge Island, SJ1 worked as a supporting tool to the existing IMS infrasound station IS42, located on Graciosa Island at ~ 40 km distance, leading to an enhancement of the infrasonic monitoring network in the region. This work emphasises the importance of low-cost portable infrasound arrays to improve the coverage of infrasound observations for local and regional monitoring purposes in the Azores region. Two events recorded by both arrays are briefly exemplified: a low-magnitude earthquake on São Jorge Island and a fireball which crossed the North Atlantic Ocean. Infrasound data from both arrays are combined to obtain a fast but still accurate source localization of the analysed events.</p>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"4 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1007/s00024-024-03462-8
Alexander L. Peace, Jordan J. J. Phethean, Scott Jess, Christian Schiffer
Polyphase fault evolution through reactivation is a globally observed phenomenon on passive margins. These structures play a crucial role in petroleum systems, offer vital constraints on rift and passive margin kinematics, and, in certain instances, serve as global markers for far-field stresses. Despite the significance of reactivated faults, understanding their kinematic evolution, existence, extent, and interactions within fault populations is often limited. This underscores the need for comprehensive investigations, including considerations of halokinesis in this process. This study presents a structural interpretation of a relay ramp identified in the Penobscot 3D seismic reflection survey offshore Nova Scotia, Canada. The ramp is characterized by two major SSE-dipping faults accompanied by smaller antithetic and synthetic normal faults with a general ENE-WSW strike. The two major faults exhibit evidence of reverse deformation in their lower sections, transitioning to normal offsets in their upper portions. Smaller faults predominantly affect younger strata without evidence of reactivation. Fault throw analysis indicates coupled movement on the main faults during both reverse and normal deformation intervals. Structural analysis suggests that these structures initially formed as reverse faults due to halokinesis and were subsequently reactivated during oceanward salt migration. The timing of Atlantic margin halokinesis aligns broadly with previously documented large-scale kinematic reorganization periods, suggesting similar kinematic events triggered salt movements in the Penobscot area. The observed kinematic dichotomy at depth is crucial, highlighting the potential oversight of polyphase deformation in areas where seismic data only captures near-surface structures. Recognising salt's role in kinematic reactivation is vital, explaining inversion phenomena and generating economically important trapping structures globally. This study implies that reactivation of structures in passive margins may be more widespread than previously acknowledged, particularly if seismic data only captures upper portions of structures.
{"title":"Halokinetically Overprinted Tectonic Inversion of the Penobscot 3D Volume Offshore Nova Scotia, Canada","authors":"Alexander L. Peace, Jordan J. J. Phethean, Scott Jess, Christian Schiffer","doi":"10.1007/s00024-024-03462-8","DOIUrl":"10.1007/s00024-024-03462-8","url":null,"abstract":"<div><p>Polyphase fault evolution through reactivation is a globally observed phenomenon on passive margins. These structures play a crucial role in petroleum systems, offer vital constraints on rift and passive margin kinematics, and, in certain instances, serve as global markers for far-field stresses. Despite the significance of reactivated faults, understanding their kinematic evolution, existence, extent, and interactions within fault populations is often limited. This underscores the need for comprehensive investigations, including considerations of halokinesis in this process. This study presents a structural interpretation of a relay ramp identified in the Penobscot 3D seismic reflection survey offshore Nova Scotia, Canada. The ramp is characterized by two major SSE-dipping faults accompanied by smaller antithetic and synthetic normal faults with a general ENE-WSW strike. The two major faults exhibit evidence of reverse deformation in their lower sections, transitioning to normal offsets in their upper portions. Smaller faults predominantly affect younger strata without evidence of reactivation. Fault throw analysis indicates coupled movement on the main faults during both reverse and normal deformation intervals. Structural analysis suggests that these structures initially formed as reverse faults due to halokinesis and were subsequently reactivated during oceanward salt migration. The timing of Atlantic margin halokinesis aligns broadly with previously documented large-scale kinematic reorganization periods, suggesting similar kinematic events triggered salt movements in the Penobscot area. The observed kinematic dichotomy at depth is crucial, highlighting the potential oversight of polyphase deformation in areas where seismic data only captures near-surface structures. Recognising salt's role in kinematic reactivation is vital, explaining inversion phenomena and generating economically important trapping structures globally. This study implies that reactivation of structures in passive margins may be more widespread than previously acknowledged, particularly if seismic data only captures upper portions of structures.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1541 - 1570"},"PeriodicalIF":1.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1007/s00024-024-03472-6
Denizhan Guven
This study estimates both hourly and daily Downward Surface Solar Radiation (SSR) in Istanbul while determining the importance of variables on SSR using tree-based machine learning methods, namely Decision Tree (DT), Random Forest (RF), and Gradient Boosted Regression Tree (GBRT). The hourly and daily data of climatic factors for the period between January 2016 and December 2020 are gathered from the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA5 reanalysis data sets. In addition to the meteorology data, hourly data of selected aerosols are obtained from the Ministry of Environment, Urbanization and Climate Change. Temperature, cloud coverage, ozone level, precipitation, pressure, and two components of wind speeds, PM10, PM2.5, and SO2 are utilized to train and test the established models. The model performances are determined with the out-of-bag errors by calculating R-squared, MSE, RMSE, and MBE. The GBRT model is found to be the most accurate model with the lowest error rates. Furthermore, this study provides the variable importance in determining the SSR. Although all models provide different values for the variable importance; temperature, ozone level, cloud coverage, and precipitation are found to be the most important variables in estimating daily SSR. For the hourly estimation, the time of day (hour) becomes the most important factor in addition to temperature, ozone level, and cloud coverage. Finally, this study shows that the tree-based machine learning methods used with these variables to estimate hourly and daily SSR results are very accurate when it is not possible to measure the SSR values directly.
本研究采用基于树的机器学习方法,即决策树(DT)、随机森林(RF)和梯度提升回归树(GBRT),估算伊斯坦布尔每小时和每天的向下表面太阳辐射(SSR),同时确定变量对 SSR 的重要性。从欧洲中期天气预报中心(ECMWF)ERA5 再分析数据集收集了 2016 年 1 月至 2020 年 12 月期间每小时和每天的气候因子数据。除气象数据外,还从环境、城市化和气候变化部获得了部分气溶胶的每小时数据。温度、云层覆盖率、臭氧水平、降水、气压、风速的两个分量、PM10、PM2.5 和二氧化硫被用来训练和测试已建立的模型。通过计算 R-squared、MSE、RMSE 和 MBE,利用袋外误差确定了模型的性能。结果发现,GBRT 模型是最准确的模型,误差率最低。此外,这项研究还提供了确定 SSR 的变量重要性。尽管所有模型都提供了不同的变量重要性值,但温度、臭氧水平、云层覆盖率和降水量被认为是估算每日 SSR 的最重要变量。在每小时的估算中,除了温度、臭氧水平和云层覆盖之外,一天中的时间(小时)成为最重要的因素。最后,本研究表明,在无法直接测量 SSR 值的情况下,利用这些变量估算每小时和每天 SSR 结果的基于树的机器学习方法非常准确。
{"title":"Analysing the Determinants of Surface Solar Radiation with Tree-Based Machine Learning Methods: Case of Istanbul","authors":"Denizhan Guven","doi":"10.1007/s00024-024-03472-6","DOIUrl":"10.1007/s00024-024-03472-6","url":null,"abstract":"<div><p>This study estimates both hourly and daily Downward Surface Solar Radiation (SSR) in Istanbul while determining the importance of variables on SSR using tree-based machine learning methods, namely Decision Tree (DT), Random Forest (RF), and Gradient Boosted Regression Tree (GBRT). The hourly and daily data of climatic factors for the period between January 2016 and December 2020 are gathered from the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA5 reanalysis data sets. In addition to the meteorology data, hourly data of selected aerosols are obtained from the Ministry of Environment, Urbanization and Climate Change. Temperature, cloud coverage, ozone level, precipitation, pressure, and two components of wind speeds, PM<sub>10</sub>, PM<sub>2.5</sub>, and SO<sub>2</sub> are utilized to train and test the established models. The model performances are determined with the out-of-bag errors by calculating R-squared, MSE, RMSE, and MBE. The GBRT model is found to be the most accurate model with the lowest error rates. Furthermore, this study provides the variable importance in determining the SSR. Although all models provide different values for the variable importance; temperature, ozone level, cloud coverage, and precipitation are found to be the most important variables in estimating daily SSR. For the hourly estimation, the time of day (hour) becomes the most important factor in addition to temperature, ozone level, and cloud coverage. Finally, this study shows that the tree-based machine learning methods used with these variables to estimate hourly and daily SSR results are very accurate when it is not possible to measure the SSR values directly.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1633 - 1659"},"PeriodicalIF":1.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1007/s00024-024-03481-5
A. Chilingarian, T. Karapetyan, B. Sargsyan, Y. Khanikyanc, S. Chilingaryan
To catalyze transformative advancements in High-energy Physics in the Atmosphere (HEPA), a comprehensive understanding of particle fluxes, electric fields, and lightning occurrences across atmospheric layers is imperative. This paper elucidates the instrumentation and capabilities of the Aragats Space-Environmental Center (ASEC), which encompasses measurement tools for various cosmic ray species, near-surface electric fields, and lightning events integrated across high-mountain research station at slopes of Mt. Aragats and the highest mountains of Eastern Europe and Germany. Through these measurements, we aim to elucidate models of particle acceleration mechanisms and the charge distribution within the lower atmosphere. We introduce an Advanced Data Extraction Infrastructure (ADEI) integrated with sophisticated statistical analysis tools to facilitate rapid access to this wealth of data. Despite the significance of these atmospheric processes, the intricate interplay between thundercloud electrification, lightning activity, wideband radio emissions, and particle fluxes remains poorly understood. A particularly compelling avenue of inquiry lies in exploring the relationship between high-energy atmospheric phenomena, intracloud electric fields, and lightning initiation. Furthermore, investigations into accelerated structures within geospace plasmas hold promise for shedding light on particle acceleration processes, potentially extending to higher energies within analogous structures in cosmic plasmas. This paper also examines practical methodologies for extracting meaningful physical insights from temporal datasets, such as correlating surges in particle flux intensity with variations in near-surface electric field strength and precipitation patterns. Additionally, we explore the utility of wideband field and interferometer antenna signals in this context, offering valuable avenues for further research and analysis. Through these endeavors, we aim to deepen our understanding of high-energy atmospheric processes and their broader implications for terrestrial and cosmic phenomena.
{"title":"Measurements of Particle Fluxes, Electric Fields, and Lightning Occurrences at the Aragats Space-Environmental Center (ASEC)","authors":"A. Chilingarian, T. Karapetyan, B. Sargsyan, Y. Khanikyanc, S. Chilingaryan","doi":"10.1007/s00024-024-03481-5","DOIUrl":"10.1007/s00024-024-03481-5","url":null,"abstract":"<div><p>To catalyze transformative advancements in High-energy Physics in the Atmosphere (HEPA), a comprehensive understanding of particle fluxes, electric fields, and lightning occurrences across atmospheric layers is imperative. This paper elucidates the instrumentation and capabilities of the Aragats Space-Environmental Center (ASEC), which encompasses measurement tools for various cosmic ray species, near-surface electric fields, and lightning events integrated across high-mountain research station at slopes of Mt. Aragats and the highest mountains of Eastern Europe and Germany. Through these measurements, we aim to elucidate models of particle acceleration mechanisms and the charge distribution within the lower atmosphere. We introduce an Advanced Data Extraction Infrastructure (ADEI) integrated with sophisticated statistical analysis tools to facilitate rapid access to this wealth of data. Despite the significance of these atmospheric processes, the intricate interplay between thundercloud electrification, lightning activity, wideband radio emissions, and particle fluxes remains poorly understood. A particularly compelling avenue of inquiry lies in exploring the relationship between high-energy atmospheric phenomena, intracloud electric fields, and lightning initiation. Furthermore, investigations into accelerated structures within geospace plasmas hold promise for shedding light on particle acceleration processes, potentially extending to higher energies within analogous structures in cosmic plasmas. This paper also examines practical methodologies for extracting meaningful physical insights from temporal datasets, such as correlating surges in particle flux intensity with variations in near-surface electric field strength and precipitation patterns. Additionally, we explore the utility of wideband field and interferometer antenna signals in this context, offering valuable avenues for further research and analysis. Through these endeavors, we aim to deepen our understanding of high-energy atmospheric processes and their broader implications for terrestrial and cosmic phenomena.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 6","pages":"1963 - 1985"},"PeriodicalIF":1.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1007/s00024-024-03467-3
C. Listowski, C. C. Stephan, A. Le Pichon, A. Hauchecorne, Y.-H. Kim, U. Achatz, G. Bölöni
The international monitoring system (IMS) has been put in place to monitor compliance with the comprehensive nuclear-test-ban treaty (CTBT). Its infrasound component, dedicated to the monitoring of atmospheric events, gives also room to civil applications (e.g. monitoring of volcanic eruptions, meteorites, severe weather). Infrasound detection capabilities are largely determined by the state of the middle atmosphere. This requires an accurate knowledge of the atmospheric processes at play. More particularly internal gravity waves (GW) pose a challenge to atmospheric modelling because of unresolved processes. Using high-resolution simulation outputs over winter 2020 (20 January–1 March) we present a method to assess the impact of GW on infrasound surface transmission losses across the IMS. We validate the method by comparing simulated GW perturbations to GW lidar observations at Observatoire de Haute-Provence in France, and satellite-based GW energy estimations globally. We perform propagation simulations using atmospheric specifications where GW are filtered out and kept in, respectively. We demonstrate that the largest impact of GW across the IMS is not where GW activity is the largest, but rather where GW activity combines with infrasound waveguides not firmly set in a given direction. In northern winter, the largest variations of transmission losses at 1 Hz due to GW occur in the southern (summer) hemisphere in the direction of the main guide (westward propagation), with average values ranging between 10 and 25 dB in the first shadow zone. It corresponds to an average signal amplification of at least a factor 5 to 15, while this amplification is around 2 to 5 for the main guide in the northern winter hemisphere (eastward propagation).
{"title":"Stratospheric Gravity Waves Impact on Infrasound Transmission Losses Across the International Monitoring System","authors":"C. Listowski, C. C. Stephan, A. Le Pichon, A. Hauchecorne, Y.-H. Kim, U. Achatz, G. Bölöni","doi":"10.1007/s00024-024-03467-3","DOIUrl":"https://doi.org/10.1007/s00024-024-03467-3","url":null,"abstract":"<p>The international monitoring system (IMS) has been put in place to monitor compliance with the comprehensive nuclear-test-ban treaty (CTBT). Its infrasound component, dedicated to the monitoring of atmospheric events, gives also room to civil applications (e.g. monitoring of volcanic eruptions, meteorites, severe weather). Infrasound detection capabilities are largely determined by the state of the middle atmosphere. This requires an accurate knowledge of the atmospheric processes at play. More particularly internal gravity waves (GW) pose a challenge to atmospheric modelling because of unresolved processes. Using high-resolution simulation outputs over winter 2020 (20 January–1 March) we present a method to assess the impact of GW on infrasound surface transmission losses across the IMS. We validate the method by comparing simulated GW perturbations to GW lidar observations at Observatoire de Haute-Provence in France, and satellite-based GW energy estimations globally. We perform propagation simulations using atmospheric specifications where GW are filtered out and kept in, respectively. We demonstrate that the largest impact of GW across the IMS is not where GW activity is the largest, but rather where GW activity combines with infrasound waveguides not firmly set in a given direction. In northern winter, the largest variations of transmission losses at 1 Hz due to GW occur in the southern (summer) hemisphere in the direction of the main guide (westward propagation), with average values ranging between 10 and 25 dB in the first shadow zone. It corresponds to an average signal amplification of at least a factor 5 to 15, while this amplification is around 2 to 5 for the main guide in the northern winter hemisphere (eastward propagation).</p>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"121 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1007/s00024-024-03473-5
Weichao Yan, Naser Golsanami, Huilin Xing, Sanzhong Li, Peng Chi
As a technique capable of replacing laboratory experiments, a large number of digital rock simulations have been widely used for the characterization of reservoir petrophysical parameters. For conditions with less coring data, rapid reconstruction of three-dimensional (3D) digital rocks using two-dimensional (2D) pore structure images is an important prerequisite for the accurate calculation of petrophysical parameters. However, the conventional digital rock rapid reconstruction method with poor pore connectivity leads to the erroneous evaluation of key reservoir rock parameters (e.g., permeability and resistivity ). In this study, we used the sequential indicator simulation method as the base data and combined the erosion operation and expansion operation in mathematical morphology to realize the rapid construction of 3D digital rock models with strong pore connectivity . The accuracy of the digital rock model reconstructed by the new method was verified by comparing with the permeability and electrical properties obtained by the CT-based method, sequential indicator simulation method, multi-point statistical method, process-based method, and deep leaning method. This study overcomes the shortcomings of the sequential indicator simulation digital rock reconstruction method in terms of small pore radius and poor pore connectivity, improves the permeability of constructing 3D digital rocks, and lays the foundation for accurate and rapid analysis of petrophysical properties.
{"title":"A Rapid Reconstruction Method of 3D Digital Rock with Strong Pore Connectivity","authors":"Weichao Yan, Naser Golsanami, Huilin Xing, Sanzhong Li, Peng Chi","doi":"10.1007/s00024-024-03473-5","DOIUrl":"10.1007/s00024-024-03473-5","url":null,"abstract":"<div><p>As a technique capable of replacing laboratory experiments, a large number of digital rock simulations have been widely used for the characterization of reservoir petrophysical parameters. For conditions with less coring data, rapid reconstruction of three-dimensional (3D) digital rocks using two-dimensional (2D) pore structure images is an important prerequisite for the accurate calculation of petrophysical parameters. However, the conventional digital rock rapid reconstruction method with poor pore connectivity leads to the erroneous evaluation of key reservoir rock parameters (e.g., permeability and resistivity ). In this study, we used the sequential indicator simulation method as the base data and combined the erosion operation and expansion operation in mathematical morphology to realize the rapid construction of 3D digital rock models with strong pore connectivity . The accuracy of the digital rock model reconstructed by the new method was verified by comparing with the permeability and electrical properties obtained by the CT-based method, sequential indicator simulation method, multi-point statistical method, process-based method, and deep leaning method. This study overcomes the shortcomings of the sequential indicator simulation digital rock reconstruction method in terms of small pore radius and poor pore connectivity, improves the permeability of constructing 3D digital rocks, and lays the foundation for accurate and rapid analysis of petrophysical properties.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1601 - 1616"},"PeriodicalIF":1.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1007/s00024-024-03468-2
Masayoshi Someya, Shingo Watada, Takashi Furumura
To understand the characteristics of seismic waves and tsunamis recorded simultaneously by the ocean-bottom observation networks, the coupling between the solid Earth and the ocean has to be modeled in the presence of gravity. However, previous coupled simulations adopted approximate equations that did not fully incorporate the effects of gravity. In this study, we derived correctly linearized governing equations under gravity and compared them with those of previous studies. Numerical experiments were performed for a two-dimensional P-SV wavefield, using the finite difference method (FDM). To validate the accuracy of the calculated tsunamis, we computed the theoretical tsunami dispersion relation using a propagator matrix and compared it with our results and those of previous studies. We found that our proposed method provided more accurate results than those of previous studies, particularly in the short-period band. We also investigated the applicability of the proposed method to distant tsunamis by examining the difference between calculated and theoretical tsunami phase velocities in the long-period band. The proposed formulation provides accurate results that properly incorporate gravity into the simultaneous simulation of seismic waves and tsunamis.
{"title":"2D FDM Simulation of Seismic Waves and Tsunamis Based on Improved Coupling Equations Under Gravity","authors":"Masayoshi Someya, Shingo Watada, Takashi Furumura","doi":"10.1007/s00024-024-03468-2","DOIUrl":"10.1007/s00024-024-03468-2","url":null,"abstract":"<div><p>To understand the characteristics of seismic waves and tsunamis recorded simultaneously by the ocean-bottom observation networks, the coupling between the solid Earth and the ocean has to be modeled in the presence of gravity. However, previous coupled simulations adopted approximate equations that did not fully incorporate the effects of gravity. In this study, we derived correctly linearized governing equations under gravity and compared them with those of previous studies. Numerical experiments were performed for a two-dimensional P-SV wavefield, using the finite difference method (FDM). To validate the accuracy of the calculated tsunamis, we computed the theoretical tsunami dispersion relation using a propagator matrix and compared it with our results and those of previous studies. We found that our proposed method provided more accurate results than those of previous studies, particularly in the short-period band. We also investigated the applicability of the proposed method to distant tsunamis by examining the difference between calculated and theoretical tsunami phase velocities in the long-period band. The proposed formulation provides accurate results that properly incorporate gravity into the simultaneous simulation of seismic waves and tsunamis.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 4","pages":"1053 - 1073"},"PeriodicalIF":1.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-024-03468-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s00024-024-03475-3
Jahnabi Basu, S. T. G. Raghukanth
The 2016 Mw 6.8 Chauk, Myanmar earthquake was one of the largest earthquakes in Myanmar, leading to significant damage to historical monuments and the first earthquake to occur in the instrumental era. In the current study, broadband (0.01–25 Hz) ground motions are simulated in the 4.5° × 4.5° region around the epicenter to investigate the ground-motion characteristics of the event. Towards this goal, deterministically generated low-frequency and stochastically simulated high-frequency ground motions are combined to create three-component broadband seismograms. The simulated ground motions are further compared with the available strong motion data recorded in the near-field and far-field stations. Thus, the efficacy in modeling the ground motions is quantified through the estimation of the goodness of fit between the 5% damped acceleration response spectra obtained from recorded and simulated ground motions. Furthermore, the peak ground acceleration (PGA) of the simulated ground motions for the entire region is presented in the form of a contour map along with its spatial variation with the region's topography. The simulated PGA is further compared with the global ground motion models developed for subduction zone intraslab earthquakes. Most importantly, acceleration time histories are generated at the locations of severely damaged monuments in Bagan and Nyuang-U city, which can further be utilized for nonlinear dynamic analysis of the structures.
{"title":"Simulation of Broadband Ground Motions for the 2016 Mw 6.8 Chauk Earthquake","authors":"Jahnabi Basu, S. T. G. Raghukanth","doi":"10.1007/s00024-024-03475-3","DOIUrl":"10.1007/s00024-024-03475-3","url":null,"abstract":"<div><p>The 2016 M<sub>w</sub> 6.8 Chauk, Myanmar earthquake was one of the largest earthquakes in Myanmar, leading to significant damage to historical monuments and the first earthquake to occur in the instrumental era. In the current study, broadband (0.01–25 Hz) ground motions are simulated in the 4.5° × 4.5° region around the epicenter to investigate the ground-motion characteristics of the event. Towards this goal, deterministically generated low-frequency and stochastically simulated high-frequency ground motions are combined to create three-component broadband seismograms. The simulated ground motions are further compared with the available strong motion data recorded in the near-field and far-field stations. Thus, the efficacy in modeling the ground motions is quantified through the estimation of the goodness of fit between the 5% damped acceleration response spectra obtained from recorded and simulated ground motions. Furthermore, the peak ground acceleration (PGA) of the simulated ground motions for the entire region is presented in the form of a contour map along with its spatial variation with the region's topography. The simulated PGA is further compared with the global ground motion models developed for subduction zone intraslab earthquakes. Most importantly, acceleration time histories are generated at the locations of severely damaged monuments in Bagan and Nyuang-U city, which can further be utilized for nonlinear dynamic analysis of the structures.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1479 - 1507"},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s00024-024-03471-7
Axin Zheng, Jianping Pan
The target reliability of mine rock slopes must be scientifically determined, which can fully reflect the safety level of slope stability and plays an essential role in establishing slope reliability design guidelines. Since the design guidelines based on reliability methods have not been established for mine rock slopes, the suggested target reliability values are proposed based on the grey fixed weight clustering and analogy method. Firstly, a new evaluation method of slope safety grade is proposed by considering more influencing factors of slopes. Secondly, the grey fixed weight clustering is used to quantitatively processes the slope reliability data, and the slope safety grade is judged. Then, the target reliability of each grade is obtained by the analogy method. Finally, the equal difference method is applied to set the threshold of allowable failure probability for the minimum service life of slopes, and the reliability of other service life is processed by linear interpolation. The results show that, the target reliability of the maximum service life for grade I, II, III ductile failure is 3.25, 2.75, 2.25, and brittle failure is 3.75, 3.25, 2.75, respectively. the allowable failure probability of the minimum service life for each grade shows that the ductile failure is 1%, 3%, 5% and brittle failure is 0.5%, 1%, 3%, respectively. In addition, the suggested values of Inter-ramp and Bench slopes are also improved, and a case study is conducted in the Jinbao iron mine to illustrate the feasibility of the method and results in this paper.
{"title":"Study on Target Reliability of Mine Rock Slopes by Grey Fixed Weight Clustering and Analogy Method—Case Study of the Jinbao Iron Mine","authors":"Axin Zheng, Jianping Pan","doi":"10.1007/s00024-024-03471-7","DOIUrl":"10.1007/s00024-024-03471-7","url":null,"abstract":"<div><p>The target reliability of mine rock slopes must be scientifically determined, which can fully reflect the safety level of slope stability and plays an essential role in establishing slope reliability design guidelines. Since the design guidelines based on reliability methods have not been established for mine rock slopes, the suggested target reliability values are proposed based on the grey fixed weight clustering and analogy method. Firstly, a new evaluation method of slope safety grade is proposed by considering more influencing factors of slopes. Secondly, the grey fixed weight clustering is used to quantitatively processes the slope reliability data, and the slope safety grade is judged. Then, the target reliability of each grade is obtained by the analogy method. Finally, the equal difference method is applied to set the threshold of allowable failure probability for the minimum service life of slopes, and the reliability of other service life is processed by linear interpolation. The results show that, the target reliability of the maximum service life for grade I, II, III ductile failure is 3.25, 2.75, 2.25, and brittle failure is 3.75, 3.25, 2.75, respectively. the allowable failure probability of the minimum service life for each grade shows that the ductile failure is 1%, 3%, 5% and brittle failure is 0.5%, 1%, 3%, respectively. In addition, the suggested values of Inter-ramp and Bench slopes are also improved, and a case study is conducted in the Jinbao iron mine to illustrate the feasibility of the method and results in this paper.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1589 - 1600"},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s00024-024-03463-7
Shimaa. H. Elkhouly, Ghada Ali
In the field of seismic signal analysis, it is of utmost importance to accurately differentiate between earthquakes and underground nuclear explosions. As a contribution for the verification regime of the Comprehensive Nuclear Test Ban Treaty (CTBT), Various methods have been employed for this purpose, including Complexity, Spectral ratio, mb—Ms (body wave and surface wave magnitudes), and corner frequency of P and S waves. These discrimination techniques have been examined to manually identify natural seismic events from nuclear explosions across different regions worldwide, such as China, India, Pakistan, North Korea, and the United States. To gather the necessary data, a comprehensive dataset comprising nuclear explosions and earthquakes of the same magnitude range (4 ≤ mb ≤ 6.5) of 35 seismic events from 1945 to 2017 has been compiled from the International Research Institute for Seismology (IRIS) using broadband and long period seismic stations. The objective of this study is to employ a range of linear and nonlinear Machine Learning (ML) models with the aim of automatically distinguishing between underground nuclear explosions and large earthquakes to enhance the accuracy of manual feature extraction. For this purpose, time domain waveforms and different classifier techniques focused on feature extraction have been used. The ML models employed include logistic regression, K-nearest neighbours classifier, decision tree classifier, random forest classifier, voting classifier, and Naive Bayes. The outcomes of the ROC and AUC analyses were employed to validate the validity of our proposed discrimination algorithm. The results show that the Random Forest Classifier is the most effective model, obtaining 100% accuracy in the case of feature extraction, while the best model for the time domain waveform classifier that achieved 75.5% accuracy is the voting classifier.
在地震信号分析领域,准确区分地震和地下核爆炸至关重要。作为对《全面禁止核试验条约》(CTBT)核查制度的贡献,我们为此采用了多种方法,包括复杂性、频谱比、mb-Ms(体波和面波震级)以及 P 波和 S 波的角频率。这些判别技术已被用于人工识别全球不同地区(如中国、印度、巴基斯坦、朝鲜和美国)的核爆炸引起的天然地震事件。为了收集必要的数据,国际地震学研究所(IRIS)利用宽带和长周期地震台站汇编了一个综合数据集,其中包括从 1945 年到 2017 年发生的 35 次地震事件中震级范围相同(4 ≤ mb ≤ 6.5)的核爆炸和地震。本研究的目的是采用一系列线性和非线性机器学习(ML)模型,自动区分地下核爆炸和大地震,以提高人工特征提取的准确性。为此,使用了时域波形和侧重于特征提取的不同分类器技术。采用的 ML 模型包括逻辑回归、K-近邻分类器、决策树分类器、随机森林分类器、投票分类器和 Naive Bayes。我们采用 ROC 和 AUC 分析结果来验证我们提出的判别算法的有效性。结果表明,随机森林分类器是最有效的模型,在特征提取方面获得了 100% 的准确率,而时域波形分类器的最佳模型是投票分类器,获得了 75.5% 的准确率。
{"title":"Seismic Discrimination Between Nuclear Explosions and Natural Earthquakes using Multi-Machine Learning Techniques","authors":"Shimaa. H. Elkhouly, Ghada Ali","doi":"10.1007/s00024-024-03463-7","DOIUrl":"https://doi.org/10.1007/s00024-024-03463-7","url":null,"abstract":"<p>In the field of seismic signal analysis, it is of utmost importance to accurately differentiate between earthquakes and underground nuclear explosions. As a contribution for the verification regime of the Comprehensive Nuclear Test Ban Treaty (CTBT), Various methods have been employed for this purpose, including Complexity, Spectral ratio, mb—Ms (body wave and surface wave magnitudes), and corner frequency of P and S waves. These discrimination techniques have been examined to manually identify natural seismic events from nuclear explosions across different regions worldwide, such as China, India, Pakistan, North Korea, and the United States. To gather the necessary data, a comprehensive dataset comprising nuclear explosions and earthquakes of the same magnitude range (4 ≤ m<sub>b</sub> ≤ 6.5) of 35 seismic events from 1945 to 2017 has been compiled from the International Research Institute for Seismology (IRIS) using broadband and long period seismic stations. The objective of this study is to employ a range of linear and nonlinear Machine Learning (ML) models with the aim of automatically distinguishing between underground nuclear explosions and large earthquakes to enhance the accuracy of manual feature extraction. For this purpose, time domain waveforms and different classifier techniques focused on feature extraction have been used. The ML models employed include logistic regression, K-nearest neighbours classifier, decision tree classifier, random forest classifier, voting classifier, and Naive Bayes. The outcomes of the ROC and AUC analyses were employed to validate the validity of our proposed discrimination algorithm. The results show that the Random Forest Classifier is the most effective model, obtaining 100% accuracy in the case of feature extraction, while the best model for the time domain waveform classifier that achieved 75.5% accuracy is the voting classifier.</p>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"18 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}