Pub Date : 2024-08-30DOI: 10.1007/s00024-024-03565-2
Mohamed Amine Bechkit, Abdelmadjid Boufekane, Gianluigi Busico, Giuseppe Francesco Cesare Lama, Fayçal Chafiheddine Mouhoub, Moussa Aichaoui, Khiereddine Arrache, Seid Bourouis
Nowadays the salinization of freshwater resources due to seawater intrusion represent a worldwide issue. Accordingly, this study aims to identify and locate the freshwater-saltwater interface in the downstream part of the Nador wadi plain (Algeria), a coastal area characterized by a semi-arid mediterranean climate using a multi-methodologies approach including geophysical methods, hydrostatics approach, hydrochemical method, and piezometry situation. The investigation was carried out by the electrical survey and refraction seismic methods in the period of April-May 2018. Moreover, the hydrochemical and piezometry methods were used to confirm the results of the geophysical technique. The results of the present study case showed that the seawater intrusion interface is located at 420–1380 m from the shoreline. Additionally, the presence of the bedrock bulge (clay formation) at a distance ranging between 550 and 1050 m from the shoreline, plays the role of the natural hydraulic barrier for the seawater advance. The findings indicate that the identified seawater intrusion interface and the natural hydraulic barrier formed by the bedrock bulge are critical for managing groundwater resources in the Nador wadi plain. This methodology can be applied to other coastal plains worldwide to address the challenges of seawater intrusion and groundwater salinization.
{"title":"Seawater Intrusion Mapping Using Geophysical Methods, Piezometry, and Hydrochemical Data Analysis: Application in the Coastal Aquifer of Nador Wadi Plain in Tipaza (Algeria)","authors":"Mohamed Amine Bechkit, Abdelmadjid Boufekane, Gianluigi Busico, Giuseppe Francesco Cesare Lama, Fayçal Chafiheddine Mouhoub, Moussa Aichaoui, Khiereddine Arrache, Seid Bourouis","doi":"10.1007/s00024-024-03565-2","DOIUrl":"10.1007/s00024-024-03565-2","url":null,"abstract":"<div><p>Nowadays the salinization of freshwater resources due to seawater intrusion represent a worldwide issue. Accordingly, this study aims to identify and locate the freshwater-saltwater interface in the downstream part of the Nador wadi plain (Algeria), a coastal area characterized by a semi-arid mediterranean climate using a multi-methodologies approach including geophysical methods, hydrostatics approach, hydrochemical method, and piezometry situation. The investigation was carried out by the electrical survey and refraction seismic methods in the period of April-May 2018. Moreover, the hydrochemical and piezometry methods were used to confirm the results of the geophysical technique. The results of the present study case showed that the seawater intrusion interface is located at 420–1380 m from the shoreline. Additionally, the presence of the bedrock bulge (clay formation) at a distance ranging between 550 and 1050 m from the shoreline, plays the role of the natural hydraulic barrier for the seawater advance. The findings indicate that the identified seawater intrusion interface and the natural hydraulic barrier formed by the bedrock bulge are critical for managing groundwater resources in the Nador wadi plain. This methodology can be applied to other coastal plains worldwide to address the challenges of seawater intrusion and groundwater salinization.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2823 - 2837"},"PeriodicalIF":1.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1007/s00024-024-03556-3
Pengliang Yang, Wei Zhou
Full waveform inversion (FWI) updates the subsurface model from an initial model by comparing observed and synthetic seismograms. Due to high nonlinearity, FWI is easy to be trapped into local minima. Extended domain FWI, including wavefield reconstruction inversion (WRI) and extended source waveform inversion (ESI) are attractive options to mitigate this issue. This paper makes an in-depth analysis for FWI in the extended domain, identifying key challenges and searching for potential remedies towards practical applications. WRI and ESI are formulated within the same mathematical framework using Lagrangian-based adjoint-state method with a special focus on time-domain formulation using extended sources, while putting connections between classical FWI, WRI and ESI: both WRI and ESI can be viewed as weighted versions of classic FWI. Due to symmetric positive definite Hessian, the conjugate gradient is explored to efficiently solve the normal equation in a matrix free manner, while both time and frequency domain wave equation solvers are feasible. This study finds that the most significant challenge comes from the huge storage demand to store time-domain wavefields through iterations. To resolve this challenge, two possible workaround strategies can be considered, i.e., by extracting sparse frequencial wavefields or by considering time-domain data instead of wavefields for reducing such challenge. We suggest that these options should be explored more intensively for tractable workflows.
全波形反演(FWI)通过比较观测地震图和合成地震图,从初始模型更新地下模型。由于高度非线性,全波形反演容易陷入局部极小值。扩展域 FWI(包括波场重建反演(WRI)和扩展震源波形反演(ESI))是缓解这一问题的有吸引力的选择。本文对扩展域全波反演进行了深入分析,确定了关键挑战,并为实际应用寻找潜在的补救措施。本文使用基于拉格朗日的邻接态方法,在同一数学框架内对 WRI 和 ESI 进行了表述,并特别关注使用扩展源的时域表述,同时将经典 FWI、WRI 和 ESI 联系起来:WRI 和 ESI 都可视为经典 FWI 的加权版本。由于存在对称正定 Hessian,共轭梯度可用于以无矩阵方式高效求解法线方程,同时时域和频域波方程求解器都是可行的。本研究发现,最大的挑战来自于通过迭代存储时域波场的巨大存储需求。为解决这一难题,可以考虑两种可行的变通策略,即通过提取稀疏的频域波场或考虑时域数据而不是波场来减少这一难题。我们建议对这些方案进行更深入的探索,以实现可行的工作流程。
{"title":"Algorithmic Analysis Towards Time-Domain Extended Source Waveform Inversion","authors":"Pengliang Yang, Wei Zhou","doi":"10.1007/s00024-024-03556-3","DOIUrl":"10.1007/s00024-024-03556-3","url":null,"abstract":"<div><p>Full waveform inversion (FWI) updates the subsurface model from an initial model by comparing observed and synthetic seismograms. Due to high nonlinearity, FWI is easy to be trapped into local minima. Extended domain FWI, including wavefield reconstruction inversion (WRI) and extended source waveform inversion (ESI) are attractive options to mitigate this issue. This paper makes an in-depth analysis for FWI in the extended domain, identifying key challenges and searching for potential remedies towards practical applications. WRI and ESI are formulated within the same mathematical framework using Lagrangian-based adjoint-state method with a special focus on time-domain formulation using extended sources, while putting connections between classical FWI, WRI and ESI: both WRI and ESI can be viewed as weighted versions of classic FWI. Due to symmetric positive definite Hessian, the conjugate gradient is explored to efficiently solve the normal equation in a matrix free manner, while both time and frequency domain wave equation solvers are feasible. This study finds that the most significant challenge comes from the huge storage demand to store time-domain wavefields through iterations. To resolve this challenge, two possible workaround strategies can be considered, i.e., by extracting sparse frequencial wavefields or by considering time-domain data instead of wavefields for reducing such challenge. We suggest that these options should be explored more intensively for tractable workflows.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2765 - 2785"},"PeriodicalIF":1.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s00024-024-03554-5
Tingwei Yang, Tao Xu, Yinshuang Ai, Qingdong Zeng, Jinhui Yang, Laicheng Miao, Fan Zheng, Nanqiao Du
During the destruction of the North China Craton in the Mesozoic era, a significant gold mineralization event occurred, leading to the formation of the world-renowned Jiaodong Gold Province. The Liaodong and Jiaodong regions have similar tectonic backgrounds and geological evolution histories. However, the confirmed gold resources in the Liaodong region are only one-tenth of those in Jiaodong. To reveal the controlling factors behind the differences in mineralization between these two regions and explore the deep mineralization prospects in the Liaodong region, we conducted a short-period and high-density array (WSP array) in the Wulong Gold Concentrated Area, the largest goldfield in the Liaodong region. Using data recorded by 334 SmartSolo seismometers for one month, we applied ambient noise tomography to obtain the S-wave velocity structure of the crust down to a depth of 3.5 km beneath the Wulong goldfield. The velocity structure revealed the presence of two sets of low-velocity anomalies trending NNE and NW, respectively, in the shallow crust (shallower than 1.5 km) of the Wulong goldfield, while two high-velocity anomalies were identified at deeper depths (1.5–3.5 km). By combining these findings with the geological characteristics of the Wulong goldfield, it was discovered that the high-velocity anomaly (II) corresponds to the Sanguliu granitic body exposed at the surface, while the high-velocity anomaly (I) could be a concealed intrusive body. The shallow low-velocity anomalies are the result of hydrothermal alteration caused by mineralizing fluids along the NNE- and NW-trending faults. The intersection of these two sets of faults, where the low-velocity anomalies exist, represents the center of the hydrothermal activities. Based on these observations, it is proposed that the area between the Sanguliu granitic body and the concealed intrusive body in the northwest has favorable metallogenic conditions. The intersections of the NNE- and NW-trending faults show the high potential for forming large to super-large altered rock-type gold deposits.
在中生代华北克拉通的破坏过程中,发生了重大的金矿化事件,形成了举世闻名的胶东金省。辽东和胶东地区有着相似的构造背景和地质演化历史。然而,辽东地区已探明的黄金资源量仅为胶东地区的十分之一。为了揭示两地成矿差异背后的控制因素,探索辽东地区深部成矿前景,我们在辽东地区最大的金矿区--五龙金矿集中区进行了短周期高密度阵列(WSP 阵列)研究。利用 334 台 SmartSolo 地震仪一个月的记录数据,我们采用环境噪声层析技术获得了乌龙金矿区地下 3.5 千米深处的地壳 S 波速度结构。速度结构显示,在武隆金矿区的浅层地壳(浅于 1.5 千米)存在两组分别呈 NNE 和 NW 走向的低速异常,而在较深的地壳(1.5-3.5 千米)则发现了两组高速异常。将这些发现与武隆金矿区的地质特征相结合,发现高速异常(II)与暴露在地表的桑古柳花岗岩体相对应,而高速异常(I)可能是一个隐蔽的侵入体。浅层低速异常是矿化流体沿 NNE 和 NW 走向断层造成热液蚀变的结果。这两组断层的交汇处存在低速异常,是热液活动的中心。根据这些观察结果,建议在西北部的桑古柳花岗岩体和隐藏的侵入体之间的区域具有有利的成矿条件。NNE 和 NW 走向断层的交汇处显示出形成大型至超大型蚀变岩型金矿床的巨大潜力。
{"title":"Crustal Structure and its Control on Gold Mineralization in Wulong Goldfield, Liaodong Peninsula of China: Constraints from Ambient Noise Tomography with a Short-Period Dense Array","authors":"Tingwei Yang, Tao Xu, Yinshuang Ai, Qingdong Zeng, Jinhui Yang, Laicheng Miao, Fan Zheng, Nanqiao Du","doi":"10.1007/s00024-024-03554-5","DOIUrl":"10.1007/s00024-024-03554-5","url":null,"abstract":"<div><p>During the destruction of the North China Craton in the Mesozoic era, a significant gold mineralization event occurred, leading to the formation of the world-renowned Jiaodong Gold Province. The Liaodong and Jiaodong regions have similar tectonic backgrounds and geological evolution histories. However, the confirmed gold resources in the Liaodong region are only one-tenth of those in Jiaodong. To reveal the controlling factors behind the differences in mineralization between these two regions and explore the deep mineralization prospects in the Liaodong region, we conducted a short-period and high-density array (WSP array) in the Wulong Gold Concentrated Area, the largest goldfield in the Liaodong region. Using data recorded by 334 SmartSolo seismometers for one month, we applied ambient noise tomography to obtain the S-wave velocity structure of the crust down to a depth of 3.5 km beneath the Wulong goldfield. The velocity structure revealed the presence of two sets of low-velocity anomalies trending NNE and NW, respectively, in the shallow crust (shallower than 1.5 km) of the Wulong goldfield, while two high-velocity anomalies were identified at deeper depths (1.5–3.5 km). By combining these findings with the geological characteristics of the Wulong goldfield, it was discovered that the high-velocity anomaly (II) corresponds to the Sanguliu granitic body exposed at the surface, while the high-velocity anomaly (I) could be a concealed intrusive body. The shallow low-velocity anomalies are the result of hydrothermal alteration caused by mineralizing fluids along the NNE- and NW-trending faults. The intersection of these two sets of faults, where the low-velocity anomalies exist, represents the center of the hydrothermal activities. Based on these observations, it is proposed that the area between the Sanguliu granitic body and the concealed intrusive body in the northwest has favorable metallogenic conditions. The intersections of the NNE- and NW-trending faults show the high potential for forming large to super-large altered rock-type gold deposits.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2973 - 2990"},"PeriodicalIF":1.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1007/s00024-024-03560-7
Anatol Guglielmi, Alexey Zavyalov, Oleg Zotov, Boris Klain
One hundred years ago, Fusakichi Omori died. Our paper is dedicated to his memory. Omori made an outstanding contribution to the physics of earthquakes. In 1894 he formulated the law of aftershock evolution. Omori’s Law states that after the main shock of an earthquake, the frequency of aftershocks decreases hyperbolically with time. In this paper, we briefly describe one of the directions of modern aftershock research. We present Omori’s law in the form of a differential equation describing the evolution of aftershocks. The evolution equation allows us to solve the inverse problem of the earthquake source “cooling down” after the main shock. The solution of the inverse problem allowed us to reveal the existence of the so-called Omori epoch. It is established that at the end of the Omori epoch something similar to a bifurcation of the source state occurs. A logistic equation supposedly describing the bifurcation phenomenon is proposed.
{"title":"The Omori Epoch: On the 100th Anniversary of the Death of a Famous Japanese Seismologist","authors":"Anatol Guglielmi, Alexey Zavyalov, Oleg Zotov, Boris Klain","doi":"10.1007/s00024-024-03560-7","DOIUrl":"10.1007/s00024-024-03560-7","url":null,"abstract":"<div><p>One hundred years ago, Fusakichi Omori died. Our paper is dedicated to his memory. Omori made an outstanding contribution to the physics of earthquakes. In 1894 he formulated the law of aftershock evolution. Omori’s Law states that after the main shock of an earthquake, the frequency of aftershocks decreases hyperbolically with time. In this paper, we briefly describe one of the directions of modern aftershock research. We present Omori’s law in the form of a differential equation describing the evolution of aftershocks. The evolution equation allows us to solve the inverse problem of the earthquake source “cooling down” after the main shock. The solution of the inverse problem allowed us to reveal the existence of the so-called Omori epoch. It is established that at the end of the Omori epoch something similar to a bifurcation of the source state occurs. A logistic equation supposedly describing the bifurcation phenomenon is proposed.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2741 - 2752"},"PeriodicalIF":1.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1007/s00024-024-03558-1
Septriono Hari Nugroho, Purna Sulastya Putra, Amar, Mohammad Heidarzadeh
This paper presents the first detailed analysis of grain size parameters and tsunami deposit of the 2018 Anak Krakatau tsunami, considering artificial structures such as buildings and roads. The deposition of tsunamis on land is extremely complex, involving contributions from both the hydrodynamics of tsunami flow propagation and the characteristics of the tsunami, as well as topographical conditions. In both local and detailed contexts, artificial structures can affect the formation of tsunami deposits. In this study, we focused on the effect of artificial structures on the characteristics of the 2018 Anak Krakatau tsunami deposits. Field observations showed that the remains of dikes, houses and asphalt roads significantly influenced the source, thickness, structure of tsunami deposits and grain size parameters. Tsunami deposits consisting of fine-grained material originated from the sediment on the seafloor. Tsunami deposits were thicker in areas closer to the part of the sea unaffected by artificial structures and exhibited a thinning trend inland. In general, the grain size of tsunami deposits is coarser than that of pre-tsunami deposits. Tsunami deposits predominantly exhibit an upward fining trend. Our study explains the key role of artificial structures in the formation of tsunami deposits and the sediment structure produced in coastal areas. A drastic change in the characteristics of the grain size parameters results from the presence of artificial structures. Overall, the tsunami deposit layers could have been better sorted. Significantly different sortation values were observed at sites located above the asphalt road. Similarly, kurtosis values showed an anomaly. The skewness value was inversely proportional to the average grain size in areas affected by artificial structures.
{"title":"Effects of Artificial Structures on Grain Size and Characteristics of the 2018 Anak Krakatau Tsunami Deposits","authors":"Septriono Hari Nugroho, Purna Sulastya Putra, Amar, Mohammad Heidarzadeh","doi":"10.1007/s00024-024-03558-1","DOIUrl":"https://doi.org/10.1007/s00024-024-03558-1","url":null,"abstract":"<p>This paper presents the first detailed analysis of grain size parameters and tsunami deposit of the 2018 Anak Krakatau tsunami, considering artificial structures such as buildings and roads. The deposition of tsunamis on land is extremely complex, involving contributions from both the hydrodynamics of tsunami flow propagation and the characteristics of the tsunami, as well as topographical conditions. In both local and detailed contexts, artificial structures can affect the formation of tsunami deposits. In this study, we focused on the effect of artificial structures on the characteristics of the 2018 Anak Krakatau tsunami deposits. Field observations showed that the remains of dikes, houses and asphalt roads significantly influenced the source, thickness, structure of tsunami deposits and grain size parameters. Tsunami deposits consisting of fine-grained material originated from the sediment on the seafloor. Tsunami deposits were thicker in areas closer to the part of the sea unaffected by artificial structures and exhibited a thinning trend inland. In general, the grain size of tsunami deposits is coarser than that of pre-tsunami deposits. Tsunami deposits predominantly exhibit an upward fining trend. Our study explains the key role of artificial structures in the formation of tsunami deposits and the sediment structure produced in coastal areas. A drastic change in the characteristics of the grain size parameters results from the presence of artificial structures. Overall, the tsunami deposit layers could have been better sorted. Significantly different sortation values were observed at sites located above the asphalt road. Similarly, kurtosis values showed an anomaly. The skewness value was inversely proportional to the average grain size in areas affected by artificial structures.</p>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"28 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1007/s00024-024-03552-7
Ognjen Bonacci, Ana Žaknić-Ćatović, Tanja Roje-Bonacci, Stevan Prohaska, Duje Bonacci, Samir Ćatović
This study highlights significant recent increases in water and air temperatures in the rapidly developing city of Belgrade, Serbia to raise awareness of the anticipated negative impacts and the urgent need to develop appropriate mitigation strategies. We investigate the mean annual water temperature trends at the confluence of the Sava and Danube Rivers, along with air temperature trends at the Belgrade meteorological station, spanning from 1956 to 2020. Results reveal a consistent increase in temperature across all three measuring stations, with the Danube experiencing a rise of 0.34 °C/decade, the Sava at 0.44 °C/decade, and Belgrade's air temperature increasing by 0.39 °C/decade. Employing the Rescaled Adjusted Partial Sums method, sharp rises in water temperature were pinpointed in 1989 for the Sava and 1990 for the Danube, while Belgrade's air temperature surge began in 1998. The highest intensity of air temperature increase within the recent period (1998–2020) was observed at the Belgrade observatory, reaching 0.76 °C/decade. Notably, the Sava exhibited a faster increase in water temperature over the last thirty years compared to the Danube. August marked the peak average water temperature for both rivers, while July recorded the highest average air temperature in Belgrade. Despite differing flow rates, both rivers exhibit similar hydrological regimes, with maximum flows occurring in April and minimum flows in August for the Sava, and October for the Danube. Seasonal temperature increases were most pronounced in summer, notably in August, with the smallest rises occurring during cold periods. Additionally, an inverse proportional relationship between mean annual water temperatures and discharges was observed at both river stations. The overall findings suggest that the increase in both air and water temperatures is more pronounced during the warmer part of the year.
{"title":"Air and Water Temperature Trend Analysis at the Confluence of the Sava and Danube Rivers in Belgrade, Serbia","authors":"Ognjen Bonacci, Ana Žaknić-Ćatović, Tanja Roje-Bonacci, Stevan Prohaska, Duje Bonacci, Samir Ćatović","doi":"10.1007/s00024-024-03552-7","DOIUrl":"10.1007/s00024-024-03552-7","url":null,"abstract":"<div><p>This study highlights significant recent increases in water and air temperatures in the rapidly developing city of Belgrade, Serbia to raise awareness of the anticipated negative impacts and the urgent need to develop appropriate mitigation strategies. We investigate the mean annual water temperature trends at the confluence of the Sava and Danube Rivers, along with air temperature trends at the Belgrade meteorological station, spanning from 1956 to 2020. Results reveal a consistent increase in temperature across all three measuring stations, with the Danube experiencing a rise of 0.34 °C/decade, the Sava at 0.44 °C/decade, and Belgrade's air temperature increasing by 0.39 °C/decade. Employing the Rescaled Adjusted Partial Sums method, sharp rises in water temperature were pinpointed in 1989 for the Sava and 1990 for the Danube, while Belgrade's air temperature surge began in 1998. The highest intensity of air temperature increase within the recent period (1998–2020) was observed at the Belgrade observatory, reaching 0.76 °C/decade. Notably, the Sava exhibited a faster increase in water temperature over the last thirty years compared to the Danube. August marked the peak average water temperature for both rivers, while July recorded the highest average air temperature in Belgrade. Despite differing flow rates, both rivers exhibit similar hydrological regimes, with maximum flows occurring in April and minimum flows in August for the Sava, and October for the Danube. Seasonal temperature increases were most pronounced in summer, notably in August, with the smallest rises occurring during cold periods. Additionally, an inverse proportional relationship between mean annual water temperatures and discharges was observed at both river stations. The overall findings suggest that the increase in both air and water temperatures is more pronounced during the warmer part of the year.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2895 - 2912"},"PeriodicalIF":1.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-024-03552-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1007/s00024-024-03559-0
Ahmet Iyad Ceyhunlu, Gokmen Ceribasi
Throughout the geological history of Earth, there have been many changes in the climate system due to natural and external factors. In the past, it can be said that changes in climate were caused by natural causes, while today they are largely caused by human activities. Turkey is among the countries that will be affected by climate change. Therefore, In this study, a stochastic time series model was constructed to forecast the precipitation and temperature data of Turkey between 2020 and 2050. Seasonal Autoregressive Integrated Moving Average models were used to take into account the relationship between the data and seasonality factors. In addition, the most appropriate model for each station was established separately. The accuracy of the predicted data was tested by correlation test (r) and root mean square error (RMSE) test. As a result of the study, the average r value for temperature data was 99% and RMSE value was calculated as 1.46. For precipitation data, the average r value was calculated as 66% and RMSE value as 34.6. In addition, in this study, drought models for Turkey until 2050 were established and spatial and temporal evaluation of these models were made. These models were obtained by analyzing the data of uniformly distributed stations over Turkey between 1990 and 2050 with standard precipitation evapotranspiration index (SPEI). Different time scales (SPEI3, SPEI6, SPEI9 and SPEI12) were used in drought analysis. As a result of this study, drought return interval maps of Turkey and drought maps between 1990 and 2050 were created.
{"title":"Prediction of Precipitation-Temperature Data and Drought Assessment of Turkey with Stochastic Time Series Models","authors":"Ahmet Iyad Ceyhunlu, Gokmen Ceribasi","doi":"10.1007/s00024-024-03559-0","DOIUrl":"10.1007/s00024-024-03559-0","url":null,"abstract":"<div><p>Throughout the geological history of Earth, there have been many changes in the climate system due to natural and external factors. In the past, it can be said that changes in climate were caused by natural causes, while today they are largely caused by human activities. Turkey is among the countries that will be affected by climate change. Therefore, In this study, a stochastic time series model was constructed to forecast the precipitation and temperature data of Turkey between 2020 and 2050. Seasonal Autoregressive Integrated Moving Average models were used to take into account the relationship between the data and seasonality factors. In addition, the most appropriate model for each station was established separately. The accuracy of the predicted data was tested by correlation test (r) and root mean square error (RMSE) test. As a result of the study, the average r value for temperature data was 99% and RMSE value was calculated as 1.46. For precipitation data, the average r value was calculated as 66% and RMSE value as 34.6. In addition, in this study, drought models for Turkey until 2050 were established and spatial and temporal evaluation of these models were made. These models were obtained by analyzing the data of uniformly distributed stations over Turkey between 1990 and 2050 with standard precipitation evapotranspiration index (SPEI). Different time scales (SPEI<sub>3</sub>, SPEI<sub>6</sub>, SPEI<sub>9</sub> and SPEI<sub>12</sub>) were used in drought analysis. As a result of this study, drought return interval maps of Turkey and drought maps between 1990 and 2050 were created.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2913 - 2933"},"PeriodicalIF":1.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1007/s00024-024-03557-2
Timur Tezel, Gillian R. Foulger, Jon G. Gluyas
Determining the magnitude of an earthquake rapidly and correctly is essential to starting simulations to evaluate the potential for tsunami generation and early warning for tsunami-prone countries and rapid response, considering countries that lie in seismically active regions. Although the UK does not have a high degree of tsunami hazard, the UK seismic network can estimate the moment magnitude for large earthquakes which will occur around the globe. This study aimed to test the UK Seismological Network Broadband Seismic Stations to calculate the P-wave moment magnitude (Mwp) using teleseismic waves. The standard way to calculate the Mwp is using the P-wave portion of a seismic wave recorded at different epicentral distances. We selected twenty-five seismic events with a magnitude greater than 6.5Mw and epicentral distances between 17 and 90 degrees. The main issue is selecting the P-wave portion of a seismic wave and using a trial P-wave velocity to estimate the Mwp. We simplified the selection of a P-wave portion of seismic waves using a theoretical formula that works with epicentral distance, P-wave arrival time and an apparent P-wave velocity, which calculates the S-wave arrival time. The results show the variation between the Harvard centroid moment tensor (CMT—Mw) and Mwp, which is about ± 0.1 magnitude units in most events and ± 0.2 for some events. These results prove the Mwp technique can be applied to the UK broadband seismic network broadband seismic stations and encourage the use of it immediately following a destructive earthquake anywhere in the world.
考虑到位于地震活跃地区的国家,快速、正确地确定地震震级对于开始模拟评估海啸发生的可能性、为海啸易发国家提供早期预警和快速响应至关重要。虽然英国的海啸危害程度不高,但英国地震网络可以估算出全球范围内将发生的大地震的震级。这项研究旨在测试英国地震网络宽带地震台利用远震波计算 P 波矩级(Mwp)的能力。计算 Mwp 的标准方法是使用在不同震中距离记录的地震波的 P 波部分。我们选择了 25 个震级大于 6.5Mw、震中距在 17 至 90 度之间的地震事件。主要问题是选择地震波的 P 波部分,并使用试验 P 波速度来估算 Mwp。我们利用一个理论公式简化了地震波 P 波部分的选择,该公式与震中距、P 波到达时间和视 P 波速度一起计算 S 波到达时间。结果显示,哈佛中心矩张量(CMT-Mw)与 Mwp 之间存在差异,在大多数事件中约为± 0.1 个震级单位,在某些事件中为± 0.2 个震级单位。这些结果证明 Mwp 技术可以应用于英国宽带地震网络宽带地震台,并鼓励在世界任何地方发生破坏性地震后立即使用该技术。
{"title":"Rapid Moment Magnitude (Mwp) Calculation for UK Broadband Seismic Stations Using Teleseismic Waves","authors":"Timur Tezel, Gillian R. Foulger, Jon G. Gluyas","doi":"10.1007/s00024-024-03557-2","DOIUrl":"10.1007/s00024-024-03557-2","url":null,"abstract":"<div><p>Determining the magnitude of an earthquake rapidly and correctly is essential to starting simulations to evaluate the potential for tsunami generation and early warning for tsunami-prone countries and rapid response, considering countries that lie in seismically active regions. Although the UK does not have a high degree of tsunami hazard, the UK seismic network can estimate the moment magnitude for large earthquakes which will occur around the globe. This study aimed to test the UK Seismological Network Broadband Seismic Stations to calculate the P-wave moment magnitude (M<sub><b>wp</b></sub>) using teleseismic waves. The standard way to calculate the M<sub><b>wp</b></sub> is using the P-wave portion of a seismic wave recorded at different epicentral distances. We selected twenty-five seismic events with a magnitude greater than 6.5M<sub><b>w</b></sub> and epicentral distances between 17 and 90 degrees. The main issue is selecting the P-wave portion of a seismic wave and using a trial P-wave velocity to estimate the M<sub><b>wp</b></sub>. We simplified the selection of a P-wave portion of seismic waves using a theoretical formula that works with epicentral distance, P-wave arrival time and an apparent P-wave velocity, which calculates the S-wave arrival time. The results show the variation between the Harvard centroid moment tensor (CMT—M<sub><b>w</b></sub>) and M<sub><b>wp,</b></sub> which is about ± 0.1 magnitude units in most events and ± 0.2 for some events. These results prove the M<sub><b>wp</b></sub> technique can be applied to the UK broadband seismic network broadband seismic stations and encourage the use of it immediately following a destructive earthquake anywhere in the world.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2753 - 2763"},"PeriodicalIF":1.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1007/s00024-024-03553-6
Sarita Tiwari, Ashok Biswal, Gajanan Ramteke
Water is a crucial and invaluable natural resource essential for humanity to sustain on Earth. Around 70% of the Earth’s surface is covered by salt water, which has the largest water volume, and just about 2.5% of fresh water is available for human consumption. The factors that control the spatio-temporal variability of these water resources are envisaged to be of importance. Hydrometeorology is the branch of science that deals with water resource management and understanding water availability by simultaneously using the principles of hydrology and meteorology. Extreme hydro-meteorological events like floods, droughts, and other hydro-meteorological calamities are impacting the region’s water resources. For a big state such as Madhya Pradesh, where the availability of hydro-meteorological data is critical in dealing with the management of water resources not only for the state but for the other neighbouring states, those aquifers and rivers are fed by the cross-boundary rivers of the state. Several research activities that have been carried out in Madhya Pradesh in hydrometeorology and allied disciplines by various researchers are reviewed and presented in this paper. This research paper also discussed the analysis of hydrometeorology services and highlighted the significance of hydrometeorology research at regional level. Apart from this, the major challenges faced in hydro-meteorological research in Madhya Pradesh are also highlighted in the paper.
{"title":"Hydro-meteorological Research Study in Madhya Pradesh, Central India: A Literature Review","authors":"Sarita Tiwari, Ashok Biswal, Gajanan Ramteke","doi":"10.1007/s00024-024-03553-6","DOIUrl":"10.1007/s00024-024-03553-6","url":null,"abstract":"<div><p>Water is a crucial and invaluable natural resource essential for humanity to sustain on Earth. Around 70% of the Earth’s surface is covered by salt water, which has the largest water volume, and just about 2.5% of fresh water is available for human consumption. The factors that control the spatio-temporal variability of these water resources are envisaged to be of importance. Hydrometeorology is the branch of science that deals with water resource management and understanding water availability by simultaneously using the principles of hydrology and meteorology. Extreme hydro-meteorological events like floods, droughts, and other hydro-meteorological calamities are impacting the region’s water resources. For a big state such as Madhya Pradesh, where the availability of hydro-meteorological data is critical in dealing with the management of water resources not only for the state but for the other neighbouring states, those aquifers and rivers are fed by the cross-boundary rivers of the state. Several research activities that have been carried out in Madhya Pradesh in hydrometeorology and allied disciplines by various researchers are reviewed and presented in this paper. This research paper also discussed the analysis of hydrometeorology services and highlighted the significance of hydrometeorology research at regional level. Apart from this, the major challenges faced in hydro-meteorological research in Madhya Pradesh are also highlighted in the paper.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 9","pages":"2935 - 2948"},"PeriodicalIF":1.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1007/s00024-024-03490-4
Kum-Ryong Jo, Song-Ryong Kim, Ki-Song Pak, Hyok-Chol Kim, Yong-Sik Ham
This paper has investigated the impact of convective parameterization schemes (CPS) and land surface models (LSM) on the simulation of summer climate over the Democratic People’s Republic of Korea (DPR Korea) using the regional climate model (RegCM 4.7). The sensitivity experiments with two LSMs [Biosphere Atmosphere Transfer Scheme (BATS) and Community Land Model (CLM 3.5)] and four CPSs (Grell, Emanuel, Grell over land and Emanuel over ocean (GL_EO), Emanuel over land and Grell over ocean (EL_GO)) at 30 km horizontal resolution are carried out in summer (from June to August) for 10 years (2001–2010) for this purpose. The simulation results are compared with the available observation data provided from the State Hydro-Meteorological Administration of the DPR Korea (SHMAK). The results show that summer mean circulation patterns (SMCP) and summer averaged surface temperature (SAST) is well captured for most of the simulations, but summer rainfall is not well represented by RegCM 4.7. The performance of the CLM3.5 scheme is better in all the simulations than the BATS scheme. Among the CPSs, the EL_GO scheme shows the smallest biases in the simulation of SAST and summer rainfall. The simulations using EL_GO with CLM3.5 shows the best performance in simulating the SAST and summer rainfall over the study region among the considered CPSs and LSMs. These results will be helpful to improve the prediction of climate change over the DPR Korea.
{"title":"Impact of Convective and Land Surface Parameterization Schemes on the Simulation of Surface Temperature and Precipitation Using RegCM4.7 During Summer Period Over the DPR Korea","authors":"Kum-Ryong Jo, Song-Ryong Kim, Ki-Song Pak, Hyok-Chol Kim, Yong-Sik Ham","doi":"10.1007/s00024-024-03490-4","DOIUrl":"10.1007/s00024-024-03490-4","url":null,"abstract":"<div><p>This paper has investigated the impact of convective parameterization schemes (CPS) and land surface models (LSM) on the simulation of summer climate over the Democratic People’s Republic of Korea (DPR Korea) using the regional climate model (RegCM 4.7). The sensitivity experiments with two LSMs [Biosphere Atmosphere Transfer Scheme (BATS) and Community Land Model (CLM 3.5)] and four CPSs (Grell, Emanuel, Grell over land and Emanuel over ocean (GL_EO), Emanuel over land and Grell over ocean (EL_GO)) at 30 km horizontal resolution are carried out in summer (from June to August) for 10 years (2001–2010) for this purpose. The simulation results are compared with the available observation data provided from the State Hydro-Meteorological Administration of the DPR Korea (SHMAK). The results show that summer mean circulation patterns (SMCP) and summer averaged surface temperature (SAST) is well captured for most of the simulations, but summer rainfall is not well represented by RegCM 4.7. The performance of the CLM3.5 scheme is better in all the simulations than the BATS scheme. Among the CPSs, the EL_GO scheme shows the smallest biases in the simulation of SAST and summer rainfall. The simulations using EL_GO with CLM3.5 shows the best performance in simulating the SAST and summer rainfall over the study region among the considered CPSs and LSMs. These results will be helpful to improve the prediction of climate change over the DPR Korea.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 8","pages":"2703 - 2715"},"PeriodicalIF":1.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}