Jumana W. Ammar, Z. Khan, Marwa N. Ghazi, N. Naser
Abstract A modern development discusses the synthesis and validity of simple, sensitive, and versatile spectrophotometric methods for Bi(III) and Al(III) determination in pharmaceutical formulations have been conducted. In the present paper, 4-(4 acetamidophenylazo) pyrogallol has been synthesized as a new organic compound, 4-APAP, by coupling pyrogallol in a regulated pH medium with diazotized p-aminoacetanilide. 4-APAP was identified by methods of FT-IR, 1H-NMR, 13C-NMR, and thermal analysis (thermogravimetry and differential scanning calorimetry). Solvatochromic activity was also studied in solvents with different polarities. The Kamlet and Taft linear solvation energy relationship was used to correlate shifts in UV-Visible spectra of 4-APAP with Kamlet-Taft parameters (α, β, and π*). The optimum assay conditions showed linearity from 0.3–13 to 0.5–11 μg·mL−1 for Bi(III) and Al(III), respectively. Molar absorptivity values were 3.365 × 104 and 0.356 × 104 L·mol−1·cm−1 for Bi(III) and Al(III), with similar Sandell's sensitivity measures of 0.006 and 0.008 μg·cm−2. Detection limits and quantification limits were 0.013 and 0.043 μg·mL−1 for Bi(III), respectively, and 0.018 and 0.059 μg·mL−1 for Al(III) with the relative standard deviation for determination of both metal ions using 4-APAP probe being <2.0%. The validity, accuracy, and efficiency of the approaches were demonstrated by the determination of Bi(III) and Al(III) in different formulations.
{"title":"Synthesis of a new organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric determination of Bi(III) and Al(III) in pharmaceutical samples","authors":"Jumana W. Ammar, Z. Khan, Marwa N. Ghazi, N. Naser","doi":"10.1515/revac-2021-0125","DOIUrl":"https://doi.org/10.1515/revac-2021-0125","url":null,"abstract":"Abstract A modern development discusses the synthesis and validity of simple, sensitive, and versatile spectrophotometric methods for Bi(III) and Al(III) determination in pharmaceutical formulations have been conducted. In the present paper, 4-(4 acetamidophenylazo) pyrogallol has been synthesized as a new organic compound, 4-APAP, by coupling pyrogallol in a regulated pH medium with diazotized p-aminoacetanilide. 4-APAP was identified by methods of FT-IR, 1H-NMR, 13C-NMR, and thermal analysis (thermogravimetry and differential scanning calorimetry). Solvatochromic activity was also studied in solvents with different polarities. The Kamlet and Taft linear solvation energy relationship was used to correlate shifts in UV-Visible spectra of 4-APAP with Kamlet-Taft parameters (α, β, and π*). The optimum assay conditions showed linearity from 0.3–13 to 0.5–11 μg·mL−1 for Bi(III) and Al(III), respectively. Molar absorptivity values were 3.365 × 104 and 0.356 × 104 L·mol−1·cm−1 for Bi(III) and Al(III), with similar Sandell's sensitivity measures of 0.006 and 0.008 μg·cm−2. Detection limits and quantification limits were 0.013 and 0.043 μg·mL−1 for Bi(III), respectively, and 0.018 and 0.059 μg·mL−1 for Al(III) with the relative standard deviation for determination of both metal ions using 4-APAP probe being <2.0%. The validity, accuracy, and efficiency of the approaches were demonstrated by the determination of Bi(III) and Al(III) in different formulations.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"13 1","pages":"108 - 126"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76193708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xun Gao, Kai Xu, Miaomiao Chi, Jiaojiao Li, Lingzhe Suo, Lin Zhu, Kexin Chen, J. Mu
Abstract To determine the trace amount of four benzoic acid esters in cosmetics, ionic dispersive liquid–liquid microextraction (DLLME) and magnetic solid-phase extraction were combined and optimized. After solvent optimization, 1-octyl-3-methylimidazolium hexafluorophosphate was selected as the extraction solvent to form hydrophobic droplets in the process of ionic DLLME, followed by removal of ions from the sample solution containing Fe3O4@GO nano-materials. The magnetic nano-materials were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. Some parameters affecting the efficiency of extraction were optimized using Box-Behnken design. Under optimized conditions, the limit of detection for all the preservatives was less than 0.135 mg/L and the accuracy ranged from 88.5% to 101%. This technology could determine the trace amount of preservatives in cosmetics with comparatively higher accuracy and sensitivity.
{"title":"Determination of four parabens in cosmetics by high-performance liquid chromatography with magnetic solid-phase and ionic dispersive liquid–liquid extraction","authors":"Xun Gao, Kai Xu, Miaomiao Chi, Jiaojiao Li, Lingzhe Suo, Lin Zhu, Kexin Chen, J. Mu","doi":"10.1515/revac-2021-0133","DOIUrl":"https://doi.org/10.1515/revac-2021-0133","url":null,"abstract":"Abstract To determine the trace amount of four benzoic acid esters in cosmetics, ionic dispersive liquid–liquid microextraction (DLLME) and magnetic solid-phase extraction were combined and optimized. After solvent optimization, 1-octyl-3-methylimidazolium hexafluorophosphate was selected as the extraction solvent to form hydrophobic droplets in the process of ionic DLLME, followed by removal of ions from the sample solution containing Fe3O4@GO nano-materials. The magnetic nano-materials were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. Some parameters affecting the efficiency of extraction were optimized using Box-Behnken design. Under optimized conditions, the limit of detection for all the preservatives was less than 0.135 mg/L and the accuracy ranged from 88.5% to 101%. This technology could determine the trace amount of preservatives in cosmetics with comparatively higher accuracy and sensitivity.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"27 3-4","pages":"161 - 172"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/revac-2021-0133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72485721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Galstyan, A. D’arco, M. Di Fabrizio, N. Poli, S. Lupi, E. Comini
Abstract Volatile organic compounds are released by different sources causing air pollution. Moreover, some of these carbon-based organic chemicals are considered as biomarkers in the exhaled breath of individuals and can be used to identify various kinds of diseases. Hence, the increasing demand to control air quality and human health has promoted the development of monitoring systems based on high-performance gas sensing structures. This review highlights the achievements in sensing technologies for the detection of volatile organic compounds. Particularly, chemiresistive gas sensors and detection systems based on the terahertz spectroscopy method are outlined. The progress in research studies is discussed and the potential of both techniques is evaluated considering the current challenges. Afterward, a brief summary is also provided along with the advances and issues for future investigations and the manufacturing of highly sensitive and selective monitoring systems.
{"title":"Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy","authors":"V. Galstyan, A. D’arco, M. Di Fabrizio, N. Poli, S. Lupi, E. Comini","doi":"10.1515/revac-2021-0127","DOIUrl":"https://doi.org/10.1515/revac-2021-0127","url":null,"abstract":"Abstract Volatile organic compounds are released by different sources causing air pollution. Moreover, some of these carbon-based organic chemicals are considered as biomarkers in the exhaled breath of individuals and can be used to identify various kinds of diseases. Hence, the increasing demand to control air quality and human health has promoted the development of monitoring systems based on high-performance gas sensing structures. This review highlights the achievements in sensing technologies for the detection of volatile organic compounds. Particularly, chemiresistive gas sensors and detection systems based on the terahertz spectroscopy method are outlined. The progress in research studies is discussed and the potential of both techniques is evaluated considering the current challenges. Afterward, a brief summary is also provided along with the advances and issues for future investigations and the manufacturing of highly sensitive and selective monitoring systems.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"3 1","pages":"33 - 57"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76088530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harshala J. Parab, J. Ramkumar, A. Dudwadkar, Sangita D. Kumar
Abstract Accurate, precise, and rapid analytical monitoring of various nuclear materials is essential for the smooth functioning of nuclear reactors. Ion chromatography (IC) has emerged as an effective analytical tool for simultaneous detection of different ions in a wide range of materials used in the nuclear industry. The major advantages over other techniques include superior selectivity and sensitivity for detection of anions and cations, wide dynamic range, and speciation studies of ions. This article provides an overview of different ion chromatographic methodologies developed for the analyses of various nuclear materials such as fuel, control rods, moderator, coolant, and process streams. Comparison of various analytical aspects of IC over the other routine techniques reveals the ease and multidimensional capability of the technique. An insight is given to the modern variations in the field such as coupling of IC with other techniques for the characterization of nuclear matrices, implementation of capillary IC in terms of miniaturization, and so on. The information presented herein will serve as a very useful resource for investigators in the field of characterization of nuclear materials.
{"title":"Overview of ion chromatographic applications for the analysis of nuclear materials: Case studies","authors":"Harshala J. Parab, J. Ramkumar, A. Dudwadkar, Sangita D. Kumar","doi":"10.1515/revac-2021-0135","DOIUrl":"https://doi.org/10.1515/revac-2021-0135","url":null,"abstract":"Abstract Accurate, precise, and rapid analytical monitoring of various nuclear materials is essential for the smooth functioning of nuclear reactors. Ion chromatography (IC) has emerged as an effective analytical tool for simultaneous detection of different ions in a wide range of materials used in the nuclear industry. The major advantages over other techniques include superior selectivity and sensitivity for detection of anions and cations, wide dynamic range, and speciation studies of ions. This article provides an overview of different ion chromatographic methodologies developed for the analyses of various nuclear materials such as fuel, control rods, moderator, coolant, and process streams. Comparison of various analytical aspects of IC over the other routine techniques reveals the ease and multidimensional capability of the technique. An insight is given to the modern variations in the field such as coupling of IC with other techniques for the characterization of nuclear matrices, implementation of capillary IC in terms of miniaturization, and so on. The information presented herein will serve as a very useful resource for investigators in the field of characterization of nuclear materials.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"12 1","pages":"204 - 219"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74531983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Neonicotinoid insecticides are widely used to kill and prevent unwanted insects from attacking growing crops. Extensive use of insecticides in various compartments of the environment has led to adverse effect on the health of living organisms. Several analytical methodologies have been reported for extraction and quantification of neonicotinoid insecticides in various matrices. The analytical detection techniques range from traditional to modern or state of the art quantification methods. The traditional analytical techniques include gas chromatography and high-performance liquid chromatography. These methods require extensive sample pretreatment before identification, separation, and quantification of target analytes. Advanced detection techniques refer to the sensor technologies based on optical, biorecognition, molecular imprinted polymers chemical, and piezoelectric. In this review, a summary and explanation of the various traditional analytical and advanced methodologies for extraction, separation, detection, and quantification of neonicotinoid insecticides residue in water samples have been discussed.
{"title":"A review of extraction, analytical, and advanced methods for the determination of neonicotinoid insecticides in environmental water matrices","authors":"S. K. Selahle, Anele Mpupa, P. Nomngongo","doi":"10.1515/revac-2021-0134","DOIUrl":"https://doi.org/10.1515/revac-2021-0134","url":null,"abstract":"Abstract Neonicotinoid insecticides are widely used to kill and prevent unwanted insects from attacking growing crops. Extensive use of insecticides in various compartments of the environment has led to adverse effect on the health of living organisms. Several analytical methodologies have been reported for extraction and quantification of neonicotinoid insecticides in various matrices. The analytical detection techniques range from traditional to modern or state of the art quantification methods. The traditional analytical techniques include gas chromatography and high-performance liquid chromatography. These methods require extensive sample pretreatment before identification, separation, and quantification of target analytes. Advanced detection techniques refer to the sensor technologies based on optical, biorecognition, molecular imprinted polymers chemical, and piezoelectric. In this review, a summary and explanation of the various traditional analytical and advanced methodologies for extraction, separation, detection, and quantification of neonicotinoid insecticides residue in water samples have been discussed.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"4 1","pages":"187 - 203"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82810592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Ramtekey, Susmita Cherukuri, K. Modha, Ashutosh Kumar, Udaya Bhaskar Kethineni, G. Pal, A. Singh, Sanjay Kumar
Abstract Rice is the main staple food after wheat for more than half of the world’s population in Asia. Apart from carbohydrate source, rice is gaining significant interest in terms of functional foods owing to the presence of aromatic compounds that impart health benefits by lowering glycemic index and rich availability of dietary fibers. The demand for aromatic rice especially basmati rice is expanding in local and global markets as aroma is considered as the best quality and desirable trait among consumers. There are more than 500 volatile aromatic compounds (VACs) vouched for excellent aroma and flavor in cooked aromatic rice due to the presence of aromatic hydrocarbons, aldehydes, phenols, alcohols, ketones, and esters. The predominant VAC contributing to aroma is 2 acetyl-1-pyrroline, which is commonly found in aerial parts of the crop and deposits during seed maturation. So far, literature has been focused on reporting about aromatic compounds in rice but its extraction, characterization, and quantification using analytical techniques are limited. Hence, in the present review, extraction, characterization, and application of aromatic compound have been elucidated. These VACs can give a new way to food processing and beverage industry as bioflavor and bioaroma compounds that enhance value addition of beverages, food, and fermented products such as gluten-free rice breads. Furthermore, owing to their nutritional values these VACs can be used in biofortification that ultimately addresses the food nutrition security.
{"title":"Extraction, characterization, quantification, and application of volatile aromatic compounds from Asian rice cultivars","authors":"V. Ramtekey, Susmita Cherukuri, K. Modha, Ashutosh Kumar, Udaya Bhaskar Kethineni, G. Pal, A. Singh, Sanjay Kumar","doi":"10.1515/revac-2021-0137","DOIUrl":"https://doi.org/10.1515/revac-2021-0137","url":null,"abstract":"Abstract Rice is the main staple food after wheat for more than half of the world’s population in Asia. Apart from carbohydrate source, rice is gaining significant interest in terms of functional foods owing to the presence of aromatic compounds that impart health benefits by lowering glycemic index and rich availability of dietary fibers. The demand for aromatic rice especially basmati rice is expanding in local and global markets as aroma is considered as the best quality and desirable trait among consumers. There are more than 500 volatile aromatic compounds (VACs) vouched for excellent aroma and flavor in cooked aromatic rice due to the presence of aromatic hydrocarbons, aldehydes, phenols, alcohols, ketones, and esters. The predominant VAC contributing to aroma is 2 acetyl-1-pyrroline, which is commonly found in aerial parts of the crop and deposits during seed maturation. So far, literature has been focused on reporting about aromatic compounds in rice but its extraction, characterization, and quantification using analytical techniques are limited. Hence, in the present review, extraction, characterization, and application of aromatic compound have been elucidated. These VACs can give a new way to food processing and beverage industry as bioflavor and bioaroma compounds that enhance value addition of beverages, food, and fermented products such as gluten-free rice breads. Furthermore, owing to their nutritional values these VACs can be used in biofortification that ultimately addresses the food nutrition security.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"11 1","pages":"272 - 292"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88681314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Food safety and quality have gained much attention and the capability to evaluate food quality and safety in a sensitive, rapid, and reliable manner is of great importance in the food industry. Surface-enhanced Raman scattering (SERS) with the advantages of excellent sensitivity, high selectivity, non-destructive nature, and significant enhancement to identify the target has demonstrated a great potential for quick detection of the food sample. The enhancement of Raman signals for SERS is not only related to the interactions between substrates and samples but also the functionalization of substrates to gain SERS active substrates. In the present review, this paper summarized the progress of SERS quantitative analysis and application in food safety detection. The future trends and perspectives were also given.
{"title":"Application of SERS quantitative analysis method in food safety detection","authors":"Hualan Zhou, Xiaodi Li, Lehui Wang, Y. Liang, Aikedan Jialading, Zishuo Wang, Jianguo Zhang","doi":"10.1515/revac-2021-0132","DOIUrl":"https://doi.org/10.1515/revac-2021-0132","url":null,"abstract":"Abstract Food safety and quality have gained much attention and the capability to evaluate food quality and safety in a sensitive, rapid, and reliable manner is of great importance in the food industry. Surface-enhanced Raman scattering (SERS) with the advantages of excellent sensitivity, high selectivity, non-destructive nature, and significant enhancement to identify the target has demonstrated a great potential for quick detection of the food sample. The enhancement of Raman signals for SERS is not only related to the interactions between substrates and samples but also the functionalization of substrates to gain SERS active substrates. In the present review, this paper summarized the progress of SERS quantitative analysis and application in food safety detection. The future trends and perspectives were also given.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"1 1","pages":"173 - 186"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89805073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fugang Xu, M. Xuan, Zixiang Ben, Wenjuan Shang, Guangran Ma
Abstract Surface enhanced Raman is a powerful analytical tool with high sensitivity and unique specificity and promising applications in various branches of analytical chemistry. Despite the fabrication of ingenious enhancement substrate used in laboratory research, the development of simple, flexible, and cost-effective substrate is also great important for promoting the application of SERS in practical analysis. Recently, paper and filter membrane as support to fabricate flexible SERS substrates received considerable attentions. Paper-based SERS substrate has been reviewed but no summary on filter-based SERS substrate is available. Compared with paper, filter membrane has unique advantage in robust mechanics, diverse component, and tunable pore size. These characteristics endow the filter-based substrates great advantages for practical SERS analysis including simple and low-cost substrate preparation, high efficiency in preconcentration, separation and detection procedure. Therefore, filter-based substrates have shown great promise in SERS analysis in environment monitoring, food safety with high sensitivity and efficiency. As more and more work has been emerged, it is necessary to summarize the state of such a research topic. Here, the research on filter involved SERS analysis in the past eight years is summarized. A short introduction was presented to understand the background, and then the brief history of filter-based substrate is introduced. After that, the preparation of filter-based substrate and the role of filter are summarized. Then, the application of filter involved SERS substrate in analysis is presented. Finally, the challenges and perspective on this topic is discussed.
{"title":"Surface enhanced Raman scattering analysis with filter-based enhancement substrates: A mini review","authors":"Fugang Xu, M. Xuan, Zixiang Ben, Wenjuan Shang, Guangran Ma","doi":"10.1515/revac-2021-0126","DOIUrl":"https://doi.org/10.1515/revac-2021-0126","url":null,"abstract":"Abstract Surface enhanced Raman is a powerful analytical tool with high sensitivity and unique specificity and promising applications in various branches of analytical chemistry. Despite the fabrication of ingenious enhancement substrate used in laboratory research, the development of simple, flexible, and cost-effective substrate is also great important for promoting the application of SERS in practical analysis. Recently, paper and filter membrane as support to fabricate flexible SERS substrates received considerable attentions. Paper-based SERS substrate has been reviewed but no summary on filter-based SERS substrate is available. Compared with paper, filter membrane has unique advantage in robust mechanics, diverse component, and tunable pore size. These characteristics endow the filter-based substrates great advantages for practical SERS analysis including simple and low-cost substrate preparation, high efficiency in preconcentration, separation and detection procedure. Therefore, filter-based substrates have shown great promise in SERS analysis in environment monitoring, food safety with high sensitivity and efficiency. As more and more work has been emerged, it is necessary to summarize the state of such a research topic. Here, the research on filter involved SERS analysis in the past eight years is summarized. A short introduction was presented to understand the background, and then the brief history of filter-based substrate is introduced. After that, the preparation of filter-based substrate and the role of filter are summarized. Then, the application of filter involved SERS substrate in analysis is presented. Finally, the challenges and perspective on this topic is discussed.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"21 1","pages":"75 - 92"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89254254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The widespread coronavirus 2019 (COVID-19) pandemic, attributed to the severe acute respiratory syndrome coronavirus-2, has resulted in global lockdowns and excess mortality. Remdesivir (RM) is the first and only antiviral drug that the US Food and Drug Administration (FDA) has approved so far for COVID-19. The treatment protocol involves multidrug combinations, basically depending on RM, in addition to antimicrobials, antipyretics, corticosteroids, and anticoagulants. This study develops and validates sensitive and selective RM screening in spiked human plasma in the presence of commonly co-administered drugs. Hydroxychloroquine, azithromycin, paracetamol, dexamethasone, and anticoagulants (rivaroxaban and edoxaban) have been detected simultaneously with RM in the same biological matrix. Separation has been efficiently achieved by simple reversed phase HPLC with dual detectors. Diode array detector and fluorimetric detection have been used to compare their sensitivity and selectivity. Both assays have been validated according to bioanalytical FDA validation parameters. Chromatographic separation and quantitation of RM along with concomitant drugs instantly bioscreen COVID-19 multiple therapy medication in 10 min run time. Furthermore, the proposed in vitro study takes the lead for prospective testing of possible drug–drug interactions that alter the pharmacokinetic profiles of drugs.
{"title":"Rapid sensitive bioscreening of remdesivir in COVID-19 medication: Selective drug determination in the presence of six co-administered therapeutics","authors":"Mona M. Abdel Moneim, Miranda F. Kamal, M. Hamdy","doi":"10.1515/revac-2021-0141","DOIUrl":"https://doi.org/10.1515/revac-2021-0141","url":null,"abstract":"Abstract The widespread coronavirus 2019 (COVID-19) pandemic, attributed to the severe acute respiratory syndrome coronavirus-2, has resulted in global lockdowns and excess mortality. Remdesivir (RM) is the first and only antiviral drug that the US Food and Drug Administration (FDA) has approved so far for COVID-19. The treatment protocol involves multidrug combinations, basically depending on RM, in addition to antimicrobials, antipyretics, corticosteroids, and anticoagulants. This study develops and validates sensitive and selective RM screening in spiked human plasma in the presence of commonly co-administered drugs. Hydroxychloroquine, azithromycin, paracetamol, dexamethasone, and anticoagulants (rivaroxaban and edoxaban) have been detected simultaneously with RM in the same biological matrix. Separation has been efficiently achieved by simple reversed phase HPLC with dual detectors. Diode array detector and fluorimetric detection have been used to compare their sensitivity and selectivity. Both assays have been validated according to bioanalytical FDA validation parameters. Chromatographic separation and quantitation of RM along with concomitant drugs instantly bioscreen COVID-19 multiple therapy medication in 10 min run time. Furthermore, the proposed in vitro study takes the lead for prospective testing of possible drug–drug interactions that alter the pharmacokinetic profiles of drugs.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"204 S619","pages":"323 - 333"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72407644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Antidepressants are a class of compounds widely used in clinical settings for the treatment of several diseases. In the last years there has been a considerable increase in their consumption, representing an important public health issue in several countries. Because they are substances with narrow therapeutic windows, and since they are capable of interacting with other classes of compounds, monitoring of these compounds is of relevance, minimizing the risk of medical interactions as well as side and toxic effects. In addition, understanding the extent of their use, their detection through routine toxicology tests and development of new methods for detection and monitoring is of extreme importance concerning public health, patient well-being, and implications in clinical and forensic situations. The main objective of this work is to perform a critical review on the biological samples used in the detection and quantification of antidepressants with special focus on the techniques for sample preparation.
{"title":"A review of current bioanalytical approaches in sample pretreatment techniques for the determination of antidepressants in biological specimens","authors":"Sofia Soares, M. Barroso, E. Gallardo","doi":"10.1515/revac-2021-0124","DOIUrl":"https://doi.org/10.1515/revac-2021-0124","url":null,"abstract":"Abstract Antidepressants are a class of compounds widely used in clinical settings for the treatment of several diseases. In the last years there has been a considerable increase in their consumption, representing an important public health issue in several countries. Because they are substances with narrow therapeutic windows, and since they are capable of interacting with other classes of compounds, monitoring of these compounds is of relevance, minimizing the risk of medical interactions as well as side and toxic effects. In addition, understanding the extent of their use, their detection through routine toxicology tests and development of new methods for detection and monitoring is of extreme importance concerning public health, patient well-being, and implications in clinical and forensic situations. The main objective of this work is to perform a critical review on the biological samples used in the detection and quantification of antidepressants with special focus on the techniques for sample preparation.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"38 1","pages":"12 - 32"},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75800547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}