Paraoxonase (PON) proteins have various hydrolytic activities. The PON family is able to detoxify oxidized low-density lipoprotein. Additionally, differentiation of monocytes into macrophages, as the first stage in the development of atherosclerosis, is suppressed by PON 1. The effects of polyphenols including curcumin on PON1 have been investigated in studies. In this study, our main goal is to investigate curcumin’s effect on PON1 protein levels, gene expression, and enzyme activity in animal interventional studies.
Methods
The literature was searched through the online databases including PubMed, SCOPUS, Embase, and Google Scholar until May 2022.
Results
Curcumin administration can increase the PON1 enzyme activity. Also, it probably has a positive role in increasing the PON1 gene expression. However, concerning the PON1 protein values, results are contradictory.
Conclusions
The findings of this study suggested positive role of curcumin in increasing PON1 enzyme activities, gene expression, and protein levels.
Data Availability
Data are available from the corresponding author ([email protected])
{"title":"The effect of curcumin on paraoxonase 1 protein levels, gene expression, and enzyme activity: A systematic review of animal interventional studies","authors":"Fatemeh Hamedi-Kalajahi , Mohammad Alizadeh , Sorayya Kheirouri , Roghayeh Molani-Gol","doi":"10.1016/j.prostaglandins.2024.106849","DOIUrl":"10.1016/j.prostaglandins.2024.106849","url":null,"abstract":"<div><h3>Background and aims</h3><p>Paraoxonase (PON) proteins have various hydrolytic activities. The PON family is able to detoxify oxidized low-density lipoprotein. Additionally, differentiation of monocytes into macrophages, as the first stage in the development of atherosclerosis, is suppressed by PON 1. The effects of polyphenols including curcumin on PON1 have been investigated in studies. In this study, our main goal is to investigate curcumin’s effect on PON1 protein levels, gene expression, and enzyme activity in animal interventional studies.</p></div><div><h3>Methods</h3><p>The literature was searched through the online databases including PubMed, SCOPUS, Embase, and Google Scholar until May 2022.</p></div><div><h3>Results</h3><p>Curcumin administration can increase the PON1 enzyme activity. Also, it probably has a positive role in increasing the PON1 gene expression. However, concerning the PON1 protein values, results are contradictory.</p></div><div><h3>Conclusions</h3><p>The findings of this study suggested positive role of curcumin in increasing PON1 enzyme activities, gene expression, and protein levels.</p></div><div><h3>Data Availability</h3><p>Data are available from the corresponding author (<span><span>[email protected]</span></span><svg><path></path></svg>)</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"174 ","pages":"Article 106849"},"PeriodicalIF":2.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.prostaglandins.2024.106840
Genesee J. Martinez , Zachary A. Kipp , Wang-Hsin Lee , Evelyn A. Bates , Andrew J. Morris , Joseph S. Marino , Terry D. Hinds Jr.
We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction. To determine the effect of GRβ on hepatic lipid classes and molecular species, we overexpressed GRβ (GRβ-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRβ. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRβ-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRβ-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.
{"title":"Glucocorticoid resistance remodels liver lipids and prompts lipogenesis, eicosanoid, and inflammatory pathways","authors":"Genesee J. Martinez , Zachary A. Kipp , Wang-Hsin Lee , Evelyn A. Bates , Andrew J. Morris , Joseph S. Marino , Terry D. Hinds Jr.","doi":"10.1016/j.prostaglandins.2024.106840","DOIUrl":"10.1016/j.prostaglandins.2024.106840","url":null,"abstract":"<div><p>We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction. To determine the effect of GRβ on hepatic lipid classes and molecular species, we overexpressed GRβ (GRβ-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRβ. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRβ-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRβ-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106840"},"PeriodicalIF":2.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.prostaglandins.2024.106854
Yoshiyuki Kiyasu , Xiangsheng Zuo , Yi Liu , James C. Yao , Imad Shureiqi
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplements have exhibited inconsistent effects on cancer risk, and their potential efficacy as cancer preventive agents has been increasingly questioned, especially in recent large randomized clinical trials. The role of host factors that govern EPA and DHA metabolism in relation to their impact on carcinogenesis remains understudied. Resolvins, the products of EPA and DHA oxidative metabolism, demonstrate intriguing antitumorigenic effects through mechanisms such as promoting macrophage phagocytosis of cell debris and inhibiting the production of proinflammatory chemokines and cytokines by tumor–associated macrophages (TAMs), which are crucial for cancer progression. However, clinical studies have not yet shown a significant increase in target tissue levels of resolvins with EPA and DHA supplementation. 15-Lipoxygenase-1 (ALOX15), a key enzyme in EPA and DHA oxidative metabolism, is often lost in various major human cancers, including precancerous and advanced colorectal cancers. Further research is needed to elucidate whether the loss of ALOX15 expression in colorectal precancerous and cancerous cells affects EPA and DHA oxidative metabolism, the formation of resolvins, and subsequently carcinogenesis. The findings from these studies could aid in the development of novel and effective chemoprevention interventions to reduce cancer risk.
二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)补充剂对癌症风险的影响并不一致,它们作为癌症预防剂的潜在功效受到越来越多的质疑,尤其是在最近的大型随机临床试验中。EPA 和 DHA 代谢的宿主因素对其致癌影响的作用仍未得到充分研究。EPA和DHA氧化代谢的产物--Resolvins通过促进巨噬细胞吞噬细胞碎片和抑制肿瘤相关巨噬细胞(TAMs)产生促炎趋化因子和细胞因子等机制显示出令人感兴趣的抗肿瘤作用,而这些机制对癌症的发展至关重要。然而,临床研究尚未显示补充 EPA 和 DHA 能显著提高目标组织的 resolvins 水平。15-脂氧合酶-1(ALOX15)是 EPA 和 DHA 氧化代谢过程中的一种关键酶,在人类各种主要癌症(包括癌前病变和晚期结直肠癌)中经常丢失。需要开展进一步研究,以阐明 ALOX15 在结直肠癌前病变和癌变细胞中的表达缺失是否会影响 EPA 和 DHA 氧化代谢、溶血素的形成以及随后的癌变。这些研究结果将有助于开发新型、有效的化学预防干预措施,以降低癌症风险。
{"title":"EPA, DHA, and resolvin effects on cancer risk: The underexplored mechanisms","authors":"Yoshiyuki Kiyasu , Xiangsheng Zuo , Yi Liu , James C. Yao , Imad Shureiqi","doi":"10.1016/j.prostaglandins.2024.106854","DOIUrl":"10.1016/j.prostaglandins.2024.106854","url":null,"abstract":"<div><p>Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplements have exhibited inconsistent effects on cancer risk, and their potential efficacy as cancer preventive agents has been increasingly questioned, especially in recent large randomized clinical trials. The role of host factors that govern EPA and DHA metabolism in relation to their impact on carcinogenesis remains understudied. Resolvins, the products of EPA and DHA oxidative metabolism, demonstrate intriguing antitumorigenic effects through mechanisms such as promoting macrophage phagocytosis of cell debris and inhibiting the production of proinflammatory chemokines and cytokines by tumor–associated macrophages (TAMs), which are crucial for cancer progression. However, clinical studies have not yet shown a significant increase in target tissue levels of resolvins with EPA and DHA supplementation. 15-Lipoxygenase-1 (ALOX15), a key enzyme in EPA and DHA oxidative metabolism, is often lost in various major human cancers, including precancerous and advanced colorectal cancers. Further research is needed to elucidate whether the loss of ALOX15 expression in colorectal precancerous and cancerous cells affects EPA and DHA oxidative metabolism, the formation of resolvins, and subsequently carcinogenesis. The findings from these studies could aid in the development of novel and effective chemoprevention interventions to reduce cancer risk.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"174 ","pages":"Article 106854"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA4-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot+ software. Further, the leukocytes were treated with zerumbone (1–20 μM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 μM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.
{"title":"Zerumbone exhibits anti-inflammatory effects by suppressing eicosanoid signaling: Evidence from LPS-induced peripheral blood leukocytes","authors":"Vinayak Uppin , Mehrdad Zarei , Pooja Acharya , Devika Nair , Bettadaiah Kempaiah , Ramaprasad Talahalli","doi":"10.1016/j.prostaglandins.2024.106852","DOIUrl":"10.1016/j.prostaglandins.2024.106852","url":null,"abstract":"<div><p>Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA<sub>4</sub>-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot<sup>+</sup> software. Further, the leukocytes were treated with zerumbone (1–20 μM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 μM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106852"},"PeriodicalIF":2.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.prostaglandins.2024.106853
Fuying Liang , Shanshan Huang
Periodontitis is a chronic infectious disease that affects the oral health of adults. Periodontal stem cells (PDLSCs) have good self-renewal and multipotential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. This study aimed to elucidate the role of peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) in lipopolysaccharide (LPS)-induced PDLSCs and the underlying mechanisms related to predicated that pyrin domain (PYD)-only protein 1 (POP1). Notably downregulated PGC-1α and POP1 expression was observed in LPS-induced PDLSCs. PGC-1α or POP1 overexpression significantly reduced the inflammation and enhanced the osteogenic differentiation of LPS-treated PDLSCs. Particularly, PGC-1 bound to POP1 promoter region and upregulated POP1 expression. Moreover, POP1 knockdown ameliorated the impacts of PGC-1α overexpression on the inflammation and osteogenic differentiation in LPS-induced PDLSCs. Besides, PGC-1α inactivated NLRP3 signaling in LPS-treated PDLSCs, which was reversed by POP1 knockdown. Taken together, PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1, thereby alleviating inflammation and strengthening osteogenic differentiation of LPS-induced PDLSCs.
{"title":"PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1 to alleviate inflammation and strengthen osteogenic differentiation of lipopolysaccharide-induced human periodontal stem cells","authors":"Fuying Liang , Shanshan Huang","doi":"10.1016/j.prostaglandins.2024.106853","DOIUrl":"10.1016/j.prostaglandins.2024.106853","url":null,"abstract":"<div><p>Periodontitis is a chronic infectious disease that affects the oral health of adults. Periodontal stem cells (PDLSCs) have good self-renewal and multipotential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. This study aimed to elucidate the role of peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) in lipopolysaccharide (LPS)-induced PDLSCs and the underlying mechanisms related to predicated that pyrin domain (PYD)-only protein 1 (POP1). Notably downregulated PGC-1α and POP1 expression was observed in LPS-induced PDLSCs. PGC-1α or POP1 overexpression significantly reduced the inflammation and enhanced the osteogenic differentiation of LPS-treated PDLSCs. Particularly, PGC-1 bound to POP1 promoter region and upregulated POP1 expression. Moreover, POP1 knockdown ameliorated the impacts of PGC-1α overexpression on the inflammation and osteogenic differentiation in LPS-induced PDLSCs. Besides, PGC-1α inactivated NLRP3 signaling in LPS-treated PDLSCs, which was reversed by POP1 knockdown. Taken together, PGC-1α inhibits NLRP3 signaling through transcriptional activation of POP1, thereby alleviating inflammation and strengthening osteogenic differentiation of LPS-induced PDLSCs.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"174 ","pages":"Article 106853"},"PeriodicalIF":2.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141043844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.prostaglandins.2024.106851
Samar H. Gerges, Ayman O.S. El-Kadi
Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.
{"title":"Changes in cardiovascular arachidonic acid metabolism in experimental models of menopause and implications on postmenopausal cardiac hypertrophy","authors":"Samar H. Gerges, Ayman O.S. El-Kadi","doi":"10.1016/j.prostaglandins.2024.106851","DOIUrl":"10.1016/j.prostaglandins.2024.106851","url":null,"abstract":"<div><p>Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106851"},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1098882324000455/pdfft?md5=db3c6b155f60db3cd67bf382d758af8e&pid=1-s2.0-S1098882324000455-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.prostaglandins.2024.106850
Thierno M. Bah , Catherine M. Davis , Elyse M. Allen , Rohan N. Borkar , Ruby Perez , Marjorie R. Grafe , Jacob Raber , Martin M. Pike , Nabil J. Alkayed
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
{"title":"Soluble epoxide hydrolase inhibition reverses cognitive dysfunction in a mouse model of metabolic syndrome by modulating inflammation","authors":"Thierno M. Bah , Catherine M. Davis , Elyse M. Allen , Rohan N. Borkar , Ruby Perez , Marjorie R. Grafe , Jacob Raber , Martin M. Pike , Nabil J. Alkayed","doi":"10.1016/j.prostaglandins.2024.106850","DOIUrl":"10.1016/j.prostaglandins.2024.106850","url":null,"abstract":"<div><p>Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[<em>trans</em>-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106850"},"PeriodicalIF":2.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1016/j.prostaglandins.2024.106848
Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani
New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A2 (TXA2) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.
{"title":"Platelets and extracellular vesicles in disease promotion via cellular cross-talk and eicosanoid biosynthesis","authors":"Annalisa Contursi , Stefania Tacconelli , Sara Di Berardino , Alessandra De Michele , Paola Patrignani","doi":"10.1016/j.prostaglandins.2024.106848","DOIUrl":"10.1016/j.prostaglandins.2024.106848","url":null,"abstract":"<div><p>New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A<sub>2</sub> (TXA<sub>2</sub>) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis. Platelet-derived extracellular vesicles (PEVs) are released when platelets are activated and can transfer their cargo to other cell types, thus contributing to the development of diseases. Inhibitors of the internalization of PEVs can potentially represent novel therapeutic tools. Both platelets and PEVs contain a significant number of different types of molecules, and their omics assessment and integration with clinical data using computational approaches have the potential to detect early disease development and monitor drug treatments.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106848"},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S109888232400042X/pdfft?md5=4e3e0cad97e751a2ff6bfb5f9a8809c7&pid=1-s2.0-S109888232400042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1016/j.prostaglandins.2024.106839
Hannah C. Huff , Justin S. Kim , Abhishek Ojha , Saurabh Sinha , Aditi Das
Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.
{"title":"Real time changes in the expression of eicosanoid synthesizing enzymes during inflammation","authors":"Hannah C. Huff , Justin S. Kim , Abhishek Ojha , Saurabh Sinha , Aditi Das","doi":"10.1016/j.prostaglandins.2024.106839","DOIUrl":"10.1016/j.prostaglandins.2024.106839","url":null,"abstract":"<div><p>Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"174 ","pages":"Article 106839"},"PeriodicalIF":2.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1016/j.prostaglandins.2024.106838
Dyari H. Ahmed , Hawal Lateef Fateh
Since the effects of flaxseed supplementation on lipid profile and liver enzymes are still controversial, a meta-analysis of randomized controlled trials was conducted in the present study to assess the effect of flaxseed supplementation on lipid profile and liver enzymes. The study was designed, conducted, and reported according to the guidelines of the 2020 preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement. A systematic and comprehensive search was performed in several databases from inception up to January 10, 2024. The meta-analysis on the impact of flaxseed supplementation on lipid profile and liver enzymes indicates that the overall effect of flaxseed supplementation on triglycerides, combining different doses, revealed a significant reduction with a WMD of − 230.72 (-53.95, − 27.49) and a P-value of 0.010. High-density lipoprotein (HDL) demonstrated a positive effect, with an overall WMD of 1.82 (0.27, 3.38) and a P-value of 0.021, indicating an increase in HDL levels. The liver enzymes AST and ALT displayed reductions in their levels, with overall WMDs of − 21.18 (-2.95, 0.59) and − 24.83 (-8.74, − 20.91), respectively. Subgroup analysis based on dosage revealed more pronounced reductions in ALT levels for doses below 2000 mg/day. Findings from this study suggest that a flaxseed supplement might be beneficial to modulate the blood lipid profile and liver enzymes.
{"title":"Impact of flaxseed supplementation on lipid profile and liver enzymes in patients with non-alcoholic fatty liver disease: Systematic review and meta-analysis of randomized controlled trials","authors":"Dyari H. Ahmed , Hawal Lateef Fateh","doi":"10.1016/j.prostaglandins.2024.106838","DOIUrl":"10.1016/j.prostaglandins.2024.106838","url":null,"abstract":"<div><p>Since the effects of flaxseed supplementation on lipid profile and liver enzymes are still controversial, a meta-analysis of randomized controlled trials was conducted in the present study to assess the effect of flaxseed supplementation on lipid profile and liver enzymes. The study was designed, conducted, and reported according to the guidelines of the 2020 preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement. A systematic and comprehensive search was performed in several databases from inception up to January 10, 2024. The meta-analysis on the impact of flaxseed supplementation on lipid profile and liver enzymes indicates that the overall effect of flaxseed supplementation on triglycerides, combining different doses, revealed a significant reduction with a WMD of − 230.72 (-53.95, − 27.49) and a P-value of 0.010. High-density lipoprotein (HDL) demonstrated a positive effect, with an overall WMD of 1.82 (0.27, 3.38) and a P-value of 0.021, indicating an increase in HDL levels. The liver enzymes AST and ALT displayed reductions in their levels, with overall WMDs of − 21.18 (-2.95, 0.59) and − 24.83 (-8.74, − 20.91), respectively. Subgroup analysis based on dosage revealed more pronounced reductions in ALT levels for doses below 2000 mg/day. Findings from this study suggest that a flaxseed supplement might be beneficial to modulate the blood lipid profile and liver enzymes.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"173 ","pages":"Article 106838"},"PeriodicalIF":2.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140773449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}