首页 > 最新文献

RNA Biology最新文献

英文 中文
Correction. 更正。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-09 DOI: 10.1080/15476286.2024.2413227
{"title":"Correction.","authors":"","doi":"10.1080/15476286.2024.2413227","DOIUrl":"10.1080/15476286.2024.2413227","url":null,"abstract":"","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-2"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial RNA maturation. 线粒体 RNA 成熟。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-10 DOI: 10.1080/15476286.2024.2414157
Zofia M Chrzanowska-Lightowlers, Robert N Lightowlers

The vast majority of oxygen-utilizing eukaryotes need to express their own mitochondrial genome, mtDNA, to survive. In comparison to size of their nuclear genome, mtDNA is minimal, even in the most exceptional examples. Having evolved from bacteria in an endosymbiotic event, it might be expected that the process of mtDNA expression would be relatively simple. The aim of this short review is to illustrate just how wrong this assumption is. The production of functional mitochondrial RNA across species evolved in many directions. Organelles use a dizzying array of RNA processing, modifying, editing, splicing and maturation events that largely require the import of nuclear-encoded proteins from the cytosol. These processes are sometimes driven by the unusual behaviour of the mitochondrial genome from which the RNA is originally transcribed, but in many examples the complex processes that are essential for the production of functional RNA in the organelle, are fascinating and bewildering.

绝大多数利用氧气的真核生物需要表达自己的线粒体基因组(mtDNA)才能生存。与核基因组的大小相比,线粒体 DNA 微乎其微,即使在最特殊的例子中也是如此。由于线粒体 DNA 是在内共生过程中从细菌进化而来的,因此人们可能认为线粒体 DNA 的表达过程会相对简单。本短文旨在说明这一假设是多么错误。不同物种的线粒体 RNA 功能的产生是朝着多个方向进化的。细胞器使用一系列令人眼花缭乱的 RNA 处理、修饰、编辑、剪接和成熟过程,这些过程在很大程度上需要从细胞质中输入核编码的蛋白质。这些过程有时受线粒体基因组不寻常行为的驱动,而 RNA 最初就是由线粒体基因组转录而来的,但在许多例子中,细胞器中产生功能性 RNA 所必需的复杂过程令人着迷和困惑。
{"title":"Mitochondrial RNA maturation.","authors":"Zofia M Chrzanowska-Lightowlers, Robert N Lightowlers","doi":"10.1080/15476286.2024.2414157","DOIUrl":"10.1080/15476286.2024.2414157","url":null,"abstract":"<p><p>The vast majority of oxygen-utilizing eukaryotes need to express their own mitochondrial genome, mtDNA, to survive. In comparison to size of their nuclear genome, mtDNA is minimal, even in the most exceptional examples. Having evolved from bacteria in an endosymbiotic event, it might be expected that the process of mtDNA expression would be relatively simple. The aim of this short review is to illustrate just how wrong this assumption is. The production of functional mitochondrial RNA across species evolved in many directions. Organelles use a dizzying array of RNA processing, modifying, editing, splicing and maturation events that largely require the import of nuclear-encoded proteins from the cytosol. These processes are sometimes driven by the unusual behaviour of the mitochondrial genome from which the RNA is originally transcribed, but in many examples the complex processes that are essential for the production of functional RNA in the organelle, are fascinating and bewildering.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"28-39"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retrotransposon life cycle and its impacts on cellular responses. 逆转录转座子的生命周期及其对细胞反应的影响。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-13 DOI: 10.1080/15476286.2024.2409607
Ahmad Luqman-Fatah, Kei Nishimori, Shota Amano, Yukiko Fumoto, Tomoichiro Miyoshi

Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.

人类基因组中约有 45% 由可转座元件(Transposable elements,TEs)组成,TEs 也被称为移动遗传元件。然而,它们的生物功能在很大程度上仍然未知。其中,逆转录转座子的数量尤为丰富,部分拷贝还能通过 RNA 中间体在基因组内移动。这篇综述主要介绍人类逆转录转座子的生命周期,总结它们的调控机制及其对细胞过程的影响。逆转录病毒座子在体细胞中通常是表观遗传沉默的,但在某些条件下,如肿瘤发生、发育、应激和老化,会转录重新激活,从而可能导致遗传不稳定性。我们探讨了反转座子作为基因组寄生虫和调控元件的双重性质,重点关注它们在遗传多样性和先天免疫中的作用。此外,我们还讨论了宿主因子如何通过结合、修饰和降解来调控逆转录病毒 RNA 和 cDNA 中间体。逆转录病毒载体与宿主机制之间的相互作用让我们深入了解了逆转录病毒载体的复杂调控以及逆转录病毒载体调控失调导致炎症和自身免疫疾病的异常反应的可能性。
{"title":"Retrotransposon life cycle and its impacts on cellular responses.","authors":"Ahmad Luqman-Fatah, Kei Nishimori, Shota Amano, Yukiko Fumoto, Tomoichiro Miyoshi","doi":"10.1080/15476286.2024.2409607","DOIUrl":"10.1080/15476286.2024.2409607","url":null,"abstract":"<p><p>Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"11-27"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of circular RNAs in DNA repair. 环状 RNA 在 DNA 修复中的作用。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-11-17 DOI: 10.1080/15476286.2024.2429945
Francisco Alejandro Lagunas-Rangel

Circular RNAs (circRNAs) exhibit a wide range of activities that allow them to participate in numerous cellular processes and make them relevant in a variety of diseases. In this regard, a key process in which circRNAs are involved, and which is the focus of this article, is DNA damage repair (DDR). This study aims to illustrate how circRNAs influence different DNA repair pathways, with particular emphasis on the underlying mechanisms. In addition, the potential medical applications of this knowledge are discussed, particularly in the diagnosis, prognosis and treatment of diseases. In this sense, circRNAs were found to play a crucial role in DNA repair processes by regulating the expression and activity of proteins involved in various DNA repair pathways. They influence the expression of DNA repair proteins by interacting with their mRNAs, sponging miRNAs that target these mRNAs, regulating transcription factors that bind to their promoters, modulating upstream signalling pathways, and affecting mRNA translation. Furthermore, circRNAs regulate the activity of DNA repair proteins by interacting directly with them, sequestering them in specific cellular compartments and controlling activation signalling or upstream DDR signalling.

环状 RNA(circRNA)具有广泛的活性,可参与多种细胞过程,并与多种疾病相关。在这方面,circRNAs 参与的一个关键过程是 DNA 损伤修复(DDR),这也是本文的重点。本研究旨在说明 circRNA 如何影响不同的 DNA 修复途径,并特别强调其潜在机制。此外,还讨论了这一知识在医学上的潜在应用,特别是在疾病诊断、预后和治疗方面。从这个意义上说,研究发现 circRNAs 通过调节参与各种 DNA 修复途径的蛋白质的表达和活性,在 DNA 修复过程中发挥着至关重要的作用。它们通过与 DNA 修复蛋白的 mRNA 相互作用、与靶向这些 mRNA 的 miRNA 相互作用、调节与其启动子结合的转录因子、调节上游信号通路以及影响 mRNA 翻译,从而影响 DNA 修复蛋白的表达。此外,circRNAs 还可通过直接与 DNA 修复蛋白相互作用、将其封存在特定细胞区室以及控制激活信号或上游 DDR 信号来调节 DNA 修复蛋白的活性。
{"title":"Role of circular RNAs in DNA repair.","authors":"Francisco Alejandro Lagunas-Rangel","doi":"10.1080/15476286.2024.2429945","DOIUrl":"10.1080/15476286.2024.2429945","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) exhibit a wide range of activities that allow them to participate in numerous cellular processes and make them relevant in a variety of diseases. In this regard, a key process in which circRNAs are involved, and which is the focus of this article, is DNA damage repair (DDR). This study aims to illustrate how circRNAs influence different DNA repair pathways, with particular emphasis on the underlying mechanisms. In addition, the potential medical applications of this knowledge are discussed, particularly in the diagnosis, prognosis and treatment of diseases. In this sense, circRNAs were found to play a crucial role in DNA repair processes by regulating the expression and activity of proteins involved in various DNA repair pathways. They influence the expression of DNA repair proteins by interacting with their mRNAs, sponging miRNAs that target these mRNAs, regulating transcription factors that bind to their promoters, modulating upstream signalling pathways, and affecting mRNA translation. Furthermore, circRNAs regulate the activity of DNA repair proteins by interacting directly with them, sequestering them in specific cellular compartments and controlling activation signalling or upstream DDR signalling.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"149-161"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly(G)7 box: a functional element of mammalian 18S rRNA involved in translation. Poly(G)7 box:哺乳动物 18S rRNA 中参与翻译的一个功能元件。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-09-05 DOI: 10.1080/15476286.2024.2399310
Dahao Wei, Zhangyu Mai, Xinan Li, Tianli Yu, Jiangchao Li

In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process. Herein, a special sequence located in mammalian 18S rRNA named Poly(G)7box, which is composed of seven guanines, was found. Poly(G)7 can form a special and stable secondary structure by binding to the translation elongation factor subunit eEF1D and the ribosomal protein RPL32. Poly(G)7box was transfected into cells, and the translation efficiency of cells was inhibited. We believe that Poly(G)7box is an important translation-related functional element located on mammalian 18S rRNA, meanwhile the Poly(G)7 located on mRNA 5' and 3' box does not affect mRNA translation.

在真核生物中,核糖体小亚基(40S)由 18S rRNA 和 33 种核糖体蛋白组成。18S rRNA 具有特殊的二级结构,是翻译过程中不可或缺的一部分。在这里,我们发现了哺乳动物 18S rRNA 中的一个特殊序列,名为 Poly(G)7box ,由 7 个鸟嘌呤组成。Poly(G)7 能与翻译延伸因子亚基 eEF1D 和核糖体蛋白 RPL32 结合,形成特殊而稳定的二级结构。将 Poly(G)7box 转染细胞后,细胞的翻译效率受到抑制。我们认为Poly(G)7box是位于哺乳动物18S rRNA上的一个重要的翻译相关功能元件,而位于mRNA 5'和3'框上的Poly(G)7并不影响mRNA的翻译。
{"title":"Poly(G)<sub>7</sub> box: a functional element of mammalian 18S rRNA involved in translation.","authors":"Dahao Wei, Zhangyu Mai, Xinan Li, Tianli Yu, Jiangchao Li","doi":"10.1080/15476286.2024.2399310","DOIUrl":"10.1080/15476286.2024.2399310","url":null,"abstract":"<p><p>In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process. Herein, a special sequence located in mammalian 18S rRNA named Poly(G)<sub>7</sub>box, which is composed of seven guanines, was found. Poly(G)<sub>7</sub> can form a special and stable secondary structure by binding to the translation elongation factor subunit eEF1D and the ribosomal protein RPL32. Poly(G)<sub>7</sub>box was transfected into cells, and the translation efficiency of cells was inhibited. We believe that Poly(G)<sub>7</sub>box is an important translation-related functional element located on mammalian 18S rRNA, meanwhile the Poly(G)<sub>7</sub> located on mRNA 5' and 3' box does not affect mRNA translation.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"8-18"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Oligo assisted RNA Pulldown via Hybridization followed by Mass Spectrometry (MORPH-MS) for exploring the RNA-Protein interactions. 通过杂交和质谱分析(MORPH-MS)的多重寡核苷酸辅助 RNA Pulldown,用于探索 RNA 与蛋白质之间的相互作用。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-12-17 DOI: 10.1080/15476286.2023.2287302
Priyanka Pant, Regalla Kumarswamy

Understanding RNA-protein interactions is crucial for deciphering the cellular functions and molecular mechanisms of regulatory RNAs. Consequently, there is a constant need to develop innovative and cost-effective methods to uncover such interactions. We developed a simple and cost-effective technique called Multiple Oligo assisted RNA Pulldown via Hybridization (MORPH) to identify proteins interacting with a specific RNA. MORPH employs a tiling array of antisense oligos (ASOs) to efficiently capture the RNA of interest along with proteins associated with it. Unlike existing techniques that rely on multiple individually biotinylated oligos spanning the entire RNA length, MORPH stands out by utilizing a single biotinylated oligo to capture all the ASOs. To evaluate MORPH's efficacy, we applied this technique combined with mass spectrometry to identify proteins interacting with lncRNA NEAT1, which has previously been studied using various methods. Our results demonstrate that despite being a simple and inexpensive procedure, MORPH performs on par with existing methods.Abbreviations: ASO, Antisense oligo; lncRNA, long non-coding RNA; MORPH, Multiple Oligo assisted RNA Pulldown via Hybridization.

了解 RNA 与蛋白质的相互作用对于破译调控 RNA 的细胞功能和分子机制至关重要。因此,不断需要开发创新且经济有效的方法来揭示这种相互作用。我们开发了一种简单而经济有效的技术,称为 "多寡核苷酸辅助 RNA 杂交下拉(MORPH)",用于鉴定与特定 RNA 相互作用的蛋白质。MORPH 采用反义寡核苷酸(ASOs)平铺阵列,有效捕获感兴趣的 RNA 以及与其相关的蛋白质。现有技术依赖于跨越整个 RNA 长度的多个单独生物素化寡聚物,而 MORPH 则不同,它利用单一生物素化寡聚物捕获所有 ASOs。为了评估 MORPH 的功效,我们将该技术与质谱法相结合,鉴定了与 lncRNA NEAT1 相互作用的蛋白质。我们的结果表明,尽管 MORPH 是一种简单而廉价的方法,但其性能与现有方法不相上下:缩写:ASO,反义寡聚物;lncRNA,长非编码 RNA;MORPH,多重寡聚物通过杂交辅助 RNA 下拉。
{"title":"Multiple Oligo assisted RNA Pulldown via Hybridization followed by Mass Spectrometry (MORPH-MS) for exploring the RNA-Protein interactions.","authors":"Priyanka Pant, Regalla Kumarswamy","doi":"10.1080/15476286.2023.2287302","DOIUrl":"10.1080/15476286.2023.2287302","url":null,"abstract":"<p><p>Understanding RNA-protein interactions is crucial for deciphering the cellular functions and molecular mechanisms of regulatory RNAs. Consequently, there is a constant need to develop innovative and cost-effective methods to uncover such interactions. We developed a simple and cost-effective technique called Multiple Oligo assisted RNA Pulldown via Hybridization (MORPH) to identify proteins interacting with a specific RNA. MORPH employs a tiling array of antisense oligos (ASOs) to efficiently capture the RNA of interest along with proteins associated with it. Unlike existing techniques that rely on multiple individually biotinylated oligos spanning the entire RNA length, MORPH stands out by utilizing a single biotinylated oligo to capture all the ASOs. To evaluate MORPH's efficacy, we applied this technique combined with mass spectrometry to identify proteins interacting with lncRNA NEAT1, which has previously been studied using various methods. Our results demonstrate that despite being a simple and inexpensive procedure, MORPH performs on par with existing methods.<b>Abbreviations</b>: ASO, Antisense oligo; lncRNA, long non-coding RNA; MORPH, Multiple Oligo assisted RNA Pulldown via Hybridization.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138809126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urea supplementation improves mRNA in vitro transcription by decreasing both shorter and longer RNA byproducts. 补充尿素可减少较短和较长的 RNA 副产物,从而改善 mRNA 的体外转录。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-02-27 DOI: 10.1080/15476286.2024.2321764
Combes Francis, Pettersson Frida J, Bui Thanh-Huong, Molska Alicja, Komissarov Artem, Parot Jérémie, Borgos Sven Even

The current letter to the editor describes the presence of RNA byproducts in small-scale in vitro transcription (IVT) reactions as evaluated by capillary gel electrophoresis, asymmetric flow field flow fractionation, immunoblotting, cell-free translation assays, and in IFN reporter cells. We compare standard T7 RNA polymerase (RNAP) based IVT reactions to two recently described protocols employing either urea supplementation or using the VSW3 RNAP. Our results indicate that urea supplementation yields considerably less RNA byproducts and positively affects the overall number of full-length transcripts. In contrast, VSW3 IVT reactions demonstrated a low yield and generated a higher fraction of truncated transcripts. Lastly, both urea mRNA and VSW3 mRNA elicited considerably less IFN responses after transfection in mouse macrophages.

这封致编辑的信描述了通过毛细管凝胶电泳、非对称流场流动分馏、免疫印迹、无细胞翻译检测以及在 IFN 报告细胞中评估的小规模体外转录(IVT)反应中 RNA 副产物的存在情况。我们将基于标准 T7 RNA 聚合酶(RNAP)的 IVT 反应与最近描述的采用尿素补充或使用 VSW3 RNAP 的两种方案进行了比较。结果表明,补充尿素可大大减少 RNA 副产物的产生,并对全长转录本的总体数量产生积极影响。相比之下,VSW3 IVT 反应的产量较低,产生的截短转录本比例较高。最后,尿素 mRNA 和 VSW3 mRNA 转染小鼠巨噬细胞后引起的 IFN 反应都要少得多。
{"title":"Urea supplementation improves mRNA in vitro transcription by decreasing both shorter and longer RNA byproducts.","authors":"Combes Francis, Pettersson Frida J, Bui Thanh-Huong, Molska Alicja, Komissarov Artem, Parot Jérémie, Borgos Sven Even","doi":"10.1080/15476286.2024.2321764","DOIUrl":"10.1080/15476286.2024.2321764","url":null,"abstract":"<p><p>The current letter to the editor describes the presence of RNA byproducts in small-scale in vitro transcription (IVT) reactions as evaluated by capillary gel electrophoresis, asymmetric flow field flow fractionation, immunoblotting, cell-free translation assays, and in IFN reporter cells. We compare standard T7 RNA polymerase (RNAP) based IVT reactions to two recently described protocols employing either urea supplementation or using the VSW3 RNAP. Our results indicate that urea supplementation yields considerably less RNA byproducts and positively affects the overall number of full-length transcripts. In contrast, VSW3 IVT reactions demonstrated a low yield and generated a higher fraction of truncated transcripts. Lastly, both urea mRNA and VSW3 mRNA elicited considerably less IFN responses after transfection in mouse macrophages.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-6"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The RNA-DNA world and the emergence of DNA-encoded heritable traits. RNA-DNA 世界和 DNA 编码遗传性状的出现。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-05-24 DOI: 10.1080/15476286.2024.2355391
Suvam Roy, Supratim Sengupta

The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.

RNA 世界假说认为,RNA 分子在信息编码和催化方面发挥着核心作用。尽管实验和计算建模都积累了支持这一假说的证据,但从 RNA 世界过渡到由 DNA 编码可遗传遗传信息的世界仍是一个悬而未决的问题。最近的实验表明,RNA 和 DNA 模板都能利用游离的 RNA/DNA 核苷酸,以非酶方式或在复制酶核糖酶的作用下延伸互补引物。在这些实验的指导下,我们分析了通过 DNA 核苷酸的存在而扩展的一系列反应途径的原细胞进化。通过将这些反应封装在三种不同类型的原细胞区室(每种区室都受到不同模式的选择)中,我们展示了含有低拷贝数 DNA 编码复制酶和高拷贝数复制酶的原细胞如何在种群中占主导地位。在通过非酶促反应偶然出现复制酶后,复制酶核糖酶从编码复制酶的 DNA 模板中自动催化合成的反应促进了这一现象的发生。我们的研究揭示了一条从 RNA 世界过渡到以达尔文进化论为特征的 RNA-DNA 混合世界的途径,在这个世界中,DNA 序列编码可遗传的表型。
{"title":"The RNA-DNA world and the emergence of DNA-encoded heritable traits.","authors":"Suvam Roy, Supratim Sengupta","doi":"10.1080/15476286.2024.2355391","DOIUrl":"10.1080/15476286.2024.2355391","url":null,"abstract":"<p><p>The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational impacts of enzymes that modify ribosomal RNA around the peptidyl transferase centre. 围绕肽基转移酶中心修改核糖体 RNA 的酶对转录的影响。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-07-01 DOI: 10.1080/15476286.2024.2368305
Letian Bao, Josefine Liljeruhm, Rubén Crespo Blanco, Gerrit Brandis, Jaanus Remme, Anthony C Forster

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.

大型核糖体 RNA(rRNA)在转录后对重要功能区进行了大量修饰,但矛盾的是,单个修饰酶的敲除(KO)对大肠杆菌的生长影响很小。此外,我们最近构建了一种菌株,该菌株对 23S rRNA 肽基转移酶中心(PTC)"关键区域 "的五种修饰酶(RluC、RlmKL、RlmN、RlmM 和 RluE)进行了联合 KO。然而,我们对修饰酶 RluC 和 RlmE(而不是 RluE)的联合 KO 导致了有条件的致死(在 20°C 时)。虽然这两种多重 KO 株系的生长率都有特征,但这种缺陷的分子原因仍不清楚。在此,我们确定了这些菌株的生化缺陷。在 20 摄氏度和 37 摄氏度条件下,用从这两种菌株中纯化的核糖体进行体外快速动力学研究,结果发现,与直觉相反的是,转运速度减慢,而不是肽键形成或肽基释放速度减慢。根据β-半乳糖苷酶诱导的动力学判断,体内蛋白质合成的伸长率也减慢了。对于 5-KO 菌株,37°C 时最大的缺陷是 70S 核糖体组装,这可以从 5 mM Mg2+ 时核糖体蔗糖梯度图中的 50S 峰判断出来。从纯化的 5-KO rRNA 和核糖体蛋白中重组出的 50S 亚基支持 PTC 区域修饰本身而不是修饰酶在核糖体生物发生中的直接作用。这些结果澄清了神秘的 rRNA 修饰的重要性和作用。
{"title":"Translational impacts of enzymes that modify ribosomal RNA around the peptidyl transferase centre.","authors":"Letian Bao, Josefine Liljeruhm, Rubén Crespo Blanco, Gerrit Brandis, Jaanus Remme, Anthony C Forster","doi":"10.1080/15476286.2024.2368305","DOIUrl":"10.1080/15476286.2024.2368305","url":null,"abstract":"<p><p>Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on <i>Escherichia coli</i> growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. <i>In vitro</i> fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis <i>in vivo</i>, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg<sup>2+</sup>. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications <i>per se</i>, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"31-41"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-sensing riboceptors. 温度感应核糖受体
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-07-17 DOI: 10.1080/15476286.2024.2379118
Savani Anbalagan

Understanding how cells sense temperature is a fundamental question in biology and is pivotal for the evolution of life. In numerous organisms, temperature is not only sensed but also generated due to cellular processes. Consequently, the mechanisms governing temperature sensation in various organisms have been experimentally elucidated. Extending upon others' proposals and demonstration of protein- and nucleic acid-based thermosensors, and utilizing a colonial India 'punkah-wallahs' analogy, I present my rationale for the necessity of temperature sensing in every organelle in a cell. Finally, I propose temperature-sensing riboceptors (ribonucleic acid receptors) to integrate all the RNA molecules (mRNA, non-coding RNA, and so forth) capable of sensing temperature and triggering a signaling event, which I call as thermocrine signaling. This approach could enable the identification of riboceptors in every cell of almost every organism, not only for temperature but also for other classes of ligands, including gaseous solutes, and water.

了解细胞如何感知温度是生物学的一个基本问题,对生命进化至关重要。在许多生物体中,温度不仅能被感知,还能通过细胞过程产生。因此,人们已经通过实验阐明了各种生物体感知温度的机制。根据其他人对基于蛋白质和核酸的温度传感器的建议和论证,并利用殖民时期印度的 "punkah-wallahs "类比,我提出了细胞中每个细胞器都必须具有温度感应的理由。最后,我提出了温度感应核糖核酸受体(riboceptors),以整合所有能够感应温度并触发信号事件的 RNA 分子(mRNA、非编码 RNA 等),我将其称为温度信号传导(thermocrine signaling)。这种方法可以识别几乎所有生物体每个细胞中的核糖核酸受体,不仅可以识别温度,还可以识别其他类型的配体,包括气态溶质和水。
{"title":"Temperature-sensing riboceptors.","authors":"Savani Anbalagan","doi":"10.1080/15476286.2024.2379118","DOIUrl":"10.1080/15476286.2024.2379118","url":null,"abstract":"<p><p>Understanding how cells sense temperature is a fundamental question in biology and is pivotal for the evolution of life. In numerous organisms, temperature is not only sensed but also generated due to cellular processes. Consequently, the mechanisms governing temperature sensation in various organisms have been experimentally elucidated. Extending upon others' proposals and demonstration of protein- and nucleic acid-based thermosensors, and utilizing a colonial India 'punkah-wallahs' analogy, I present my rationale for the necessity of temperature sensing in every organelle in a cell. Finally, I propose temperature-sensing <b>riboceptors</b> (<b>ribo</b>nucleic acid re<b>ceptors</b>) to integrate all the RNA molecules (mRNA, non-coding RNA, and so forth) capable of sensing temperature and triggering a signaling event, which I call as thermocrine signaling. This approach could enable the identification of riboceptors in every cell of almost every organism, not only for temperature but also for other classes of ligands, including gaseous solutes, and water.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-6"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RNA Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1