Pub Date : 2024-11-07DOI: 10.1016/j.rcim.2024.102892
João Sousa , Armando Sousa , Frank Brueckner , Luís Paulo Reis , Ana Reis
Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in a real setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.
{"title":"Human-in-the-loop Multi-objective Bayesian Optimization for Directed Energy Deposition with in-situ monitoring","authors":"João Sousa , Armando Sousa , Frank Brueckner , Luís Paulo Reis , Ana Reis","doi":"10.1016/j.rcim.2024.102892","DOIUrl":"10.1016/j.rcim.2024.102892","url":null,"abstract":"<div><div>Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in a real setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102892"},"PeriodicalIF":9.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.rcim.2024.102895
Zijian Ma , Fugui Xie , Xin-Jun Liu
In the coming decades, robotized mobile machining equipment (RMME) is possible to evolve as a new branch of machine tools due to its exceptional flexibility. The frequency response function (FRF) serves as a theoretical foundation in controlling the vibration deformations that significantly limit the material removal efficiency of RMME. Model updating, aimed at minimizing errors between the theoretical model and the physical prototype, is essential to predict the FRF accurately. However, updating the dynamic model of RMME, characterized by non-mechanical boundary conditions, complex lightweight components, and low-stiffness structures, presents difficulties in computational efficiency and updating posture-dependent parameters. To solve these issues, the prediction error generation mechanism is first analyzed to confirm the error types that need to be eliminated in model updating. A two-stage model updating method that can separately update the robot structure and boundary-related parameters is proposed to rapidly update the dynamic model under various machining tasks. The interface reduction technique that can decrease the model order is introduced to reduce the computational consumption, and an approach to fast update such interface reduction substructures is put forward to avoid the reiterative model reduction during updating. An updating method for posture-dependent parameters based on multi-objective optimization is designed to control the multiple solution issues by generating many feasible solutions, ensuring the prediction effects for non-updated postures. The experimental results indicate that updating structural parameters in stage I and adsorption surface parameters in stage II results in mean error reduction percentages of 58.79 % and 48.30 %, respectively. Additionally, the natural frequencies and the mode shapes can also be predicted by the updated model. Comparative analysis with various controlled groups confirms the advantages of utilizing posture-dependent parameters in prediction accuracy and adopting the two-stage model updating method in efficiency. The proposed method can also be applied to other RMMEs.
{"title":"A two-stage dynamic model updating method for the FRF prediction of the robotized mobile machining equipment","authors":"Zijian Ma , Fugui Xie , Xin-Jun Liu","doi":"10.1016/j.rcim.2024.102895","DOIUrl":"10.1016/j.rcim.2024.102895","url":null,"abstract":"<div><div>In the coming decades, robotized mobile machining equipment (RMME) is possible to evolve as a new branch of machine tools due to its exceptional flexibility. The frequency response function (FRF) serves as a theoretical foundation in controlling the vibration deformations that significantly limit the material removal efficiency of RMME. Model updating, aimed at minimizing errors between the theoretical model and the physical prototype, is essential to predict the FRF accurately. However, updating the dynamic model of RMME, characterized by non-mechanical boundary conditions, complex lightweight components, and low-stiffness structures, presents difficulties in computational efficiency and updating posture-dependent parameters. To solve these issues, the prediction error generation mechanism is first analyzed to confirm the error types that need to be eliminated in model updating. A two-stage model updating method that can separately update the robot structure and boundary-related parameters is proposed to rapidly update the dynamic model under various machining tasks. The interface reduction technique that can decrease the model order is introduced to reduce the computational consumption, and an approach to fast update such interface reduction substructures is put forward to avoid the reiterative model reduction during updating. An updating method for posture-dependent parameters based on multi-objective optimization is designed to control the multiple solution issues by generating many feasible solutions, ensuring the prediction effects for non-updated postures. The experimental results indicate that updating structural parameters in stage I and adsorption surface parameters in stage II results in mean error reduction percentages of 58.79 % and 48.30 %, respectively. Additionally, the natural frequencies and the mode shapes can also be predicted by the updated model. Comparative analysis with various controlled groups confirms the advantages of utilizing posture-dependent parameters in prediction accuracy and adopting the two-stage model updating method in efficiency. The proposed method can also be applied to other RMMEs.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102895"},"PeriodicalIF":9.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.rcim.2024.102896
Zhengxue Zhou, Xingyu Yang, Xuping Zhang
Variable impedance control (VIC) endows robots with the ability to adjust their compliance, enhancing safety and adaptability in contact-rich tasks. However, determining suitable variable impedance parameters for specific tasks remains challenging. To address this challenge, this paper proposes an imitation learning-based VIC policy that employs observations integrated with RGBD and force/torque (F/T) data enabling a collaborative mobile manipulator to execute contact-rich tasks by learning from human demonstrations. The VIC policy is learned through training the robot in a customized simulation environment, utilizing an inverse reinforcement learning (IRL) algorithm. High-dimensional demonstration data is encoded by integrating a 16-layer convolutional neural network (CNN) into the IRL environment. To minimize the sim-to-real gap, contact dynamic parameters in the training environment are calibrated. Then, the learning-based VIC policy is comprehensively trained in the customized environment and its transferability is validated through an industrial production case involving a high precision peg-in-hole task using a collaborative mobile manipulator. The training and testing results indicate that the proposed imitation learning-based VIC policy ensures robust performance for contact-rich tasks.
{"title":"Variable impedance control on contact-rich manipulation of a collaborative industrial mobile manipulator: An imitation learning approach","authors":"Zhengxue Zhou, Xingyu Yang, Xuping Zhang","doi":"10.1016/j.rcim.2024.102896","DOIUrl":"10.1016/j.rcim.2024.102896","url":null,"abstract":"<div><div>Variable impedance control (VIC) endows robots with the ability to adjust their compliance, enhancing safety and adaptability in contact-rich tasks. However, determining suitable variable impedance parameters for specific tasks remains challenging. To address this challenge, this paper proposes an imitation learning-based VIC policy that employs observations integrated with RGBD and force/torque (F/T) data enabling a collaborative mobile manipulator to execute contact-rich tasks by learning from human demonstrations. The VIC policy is learned through training the robot in a customized simulation environment, utilizing an inverse reinforcement learning (IRL) algorithm. High-dimensional demonstration data is encoded by integrating a 16-layer convolutional neural network (CNN) into the IRL environment. To minimize the sim-to-real gap, contact dynamic parameters in the training environment are calibrated. Then, the learning-based VIC policy is comprehensively trained in the customized environment and its transferability is validated through an industrial production case involving a high precision peg-in-hole task using a collaborative mobile manipulator. The training and testing results indicate that the proposed imitation learning-based VIC policy ensures robust performance for contact-rich tasks.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102896"},"PeriodicalIF":9.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.rcim.2024.102891
Andrea Monguzzi, Tommaso Dotti, Lorenzo Fattorelli, Andrea Maria Zanchettin, Paolo Rocco
The robotic manipulation of deformable linear objects (DLOs), such as cables, is a valuable yet complex skill. In particular, to realize tasks like cable routing and wire harness assembly, it is required that two robotic arms, grasping the ends of a DLO, move it from an initial shape to a final one where cable assembly can be performed. The manipulation must be performed following a collision-free path and avoiding stretching and excessively deforming it. We address this problem by proposing an optimal model-based path planning strategy. Specifically, a hierarchical optimization strategy is defined to perform path planning, exploiting a mass–spring DLO dynamic model that we enhance to handle a generic equilibrium condition for the DLO. Furthermore, we model the interaction of the DLO with objects like clips used in assembly operations. We also deal with the estimation of the DLO stiffness to properly tune the model parameters. The effectiveness of our methodology is assessed via experimental tests, where a dual-arm robot executes the planned paths manipulating several DLOs with different mechanical properties. Finally, the method is exploited to execute a wire harness assembly task.
{"title":"Optimal model-based path planning for the robotic manipulation of deformable linear objects","authors":"Andrea Monguzzi, Tommaso Dotti, Lorenzo Fattorelli, Andrea Maria Zanchettin, Paolo Rocco","doi":"10.1016/j.rcim.2024.102891","DOIUrl":"10.1016/j.rcim.2024.102891","url":null,"abstract":"<div><div>The robotic manipulation of deformable linear objects (DLOs), such as cables, is a valuable yet complex skill. In particular, to realize tasks like cable routing and wire harness assembly, it is required that two robotic arms, grasping the ends of a DLO, move it from an initial shape to a final one where cable assembly can be performed. The manipulation must be performed following a collision-free path and avoiding stretching and excessively deforming it. We address this problem by proposing an optimal model-based path planning strategy. Specifically, a hierarchical optimization strategy is defined to perform path planning, exploiting a mass–spring DLO dynamic model that we enhance to handle a generic equilibrium condition for the DLO. Furthermore, we model the interaction of the DLO with objects like clips used in assembly operations. We also deal with the estimation of the DLO stiffness to properly tune the model parameters. The effectiveness of our methodology is assessed via experimental tests, where a dual-arm robot executes the planned paths manipulating several DLOs with different mechanical properties. Finally, the method is exploited to execute a wire harness assembly task.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102891"},"PeriodicalIF":9.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.rcim.2024.102893
Hieu Giang Le , Nhat Linh Ho , Thanh-Phong Dao
In robotic and automation industry, micromanipulation and micromanipulator have recognized significant advancements due to they are involved in handling of micro-sized parts from a few to hundreds of micrometers. In order to perform such precise grasping tasks, compliant grippers have been increasingly developed, and they have critically significant contributions in the high precision micromanipulation and micromanipulator. This article aims to present a comprehensive review on the state-of-the-art development of compliant grippers. This review focuses on design synthesis, modeling methods, control strategies, and fabrication technologies for compliant grippers. Each section is deeply analyzed and discussed. This paper identifies ongoing challenges and outlines future prospects for developing compliant grippers. The achieved results of this review can provide and inspire helpful insights in ultra-high precision micromanipulation and micromanipulator.
{"title":"Design synthesis, modeling, control strategies, and fabrication methods of compliant grippers for micromanipulation and micromanipulator: A comprehensive review","authors":"Hieu Giang Le , Nhat Linh Ho , Thanh-Phong Dao","doi":"10.1016/j.rcim.2024.102893","DOIUrl":"10.1016/j.rcim.2024.102893","url":null,"abstract":"<div><div>In robotic and automation industry, micromanipulation and micromanipulator have recognized significant advancements due to they are involved in handling of micro-sized parts from a few to hundreds of micrometers. In order to perform such precise grasping tasks, compliant grippers have been increasingly developed, and they have critically significant contributions in the high precision micromanipulation and micromanipulator. This article aims to present a comprehensive review on the state-of-the-art development of compliant grippers. This review focuses on design synthesis, modeling methods, control strategies, and fabrication technologies for compliant grippers. Each section is deeply analyzed and discussed. This paper identifies ongoing challenges and outlines future prospects for developing compliant grippers. The achieved results of this review can provide and inspire helpful insights in ultra-high precision micromanipulation and micromanipulator.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102893"},"PeriodicalIF":9.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.rcim.2024.102890
Haonan Wang , Quanzhi Sun , Jun Wu , Xuxia Zhang , Weipeng Liu , Tao Peng , Renzhong Tang
The revolutionary advances in integrated components in current automotive industry have led to a sharply rising demand for aluminum alloy castings. Targeted quality inspection is thus proposed for components manufacturers to achieve high responsiveness and low operational cost. This suggests casting machine manufacturers to integrate advanced quality prediction functions into the next generation of intelligent casting machines. However, acquiring ample quality inspection data is essential for implementing such functions, which is often challenging, if not infeasible, due to practical issues such as data proprietorship or privacy. Self-training is a good candidate for dealing with scarce labeled data, and XGBoost is commonly used as the base classifier. However, misclassification of unlabeled data happens using XGBoost, which could lead to incorrect pseudo-label assignments, eventually resulting in higher misclassification rate. To address this challenge, a self-training and improved XGBoost-based aluminum alloy casting quality prediction approach is proposed. This approach integrates the classification loss of unlabeled data in the objective function as a new regularization term and considers first and second partial derivatives of the classification loss function for unlabeled data in the leaf node's weight score. The proposed approach penalizes those classification models that misclassify unlabeled data, thereby improves quality prediction performance. To evaluate the effectiveness of our approach, a casting machine manufacturer was collaborated to conduct a case study. The results on three-type casting quality prediction demonstrate that our approach could achieve an accuracy, precision, recall and F1 score of 93.2 %, 90 %, 64.2 %, and 0.75, respectively, outperforming all compared approaches. The approach supports casting machine manufacturers to pre-train a casting quality prediction models with scarce labeled data, enabling swift deployment and customization for targeted quality inspection.
{"title":"Self-training-based approach with improved XGBoost for aluminum alloy casting quality prediction","authors":"Haonan Wang , Quanzhi Sun , Jun Wu , Xuxia Zhang , Weipeng Liu , Tao Peng , Renzhong Tang","doi":"10.1016/j.rcim.2024.102890","DOIUrl":"10.1016/j.rcim.2024.102890","url":null,"abstract":"<div><div>The revolutionary advances in integrated components in current automotive industry have led to a sharply rising demand for aluminum alloy castings. Targeted quality inspection is thus proposed for components manufacturers to achieve high responsiveness and low operational cost. This suggests casting machine manufacturers to integrate advanced quality prediction functions into the next generation of intelligent casting machines. However, acquiring ample quality inspection data is essential for implementing such functions, which is often challenging, if not infeasible, due to practical issues such as data proprietorship or privacy. Self-training is a good candidate for dealing with scarce labeled data, and XGBoost is commonly used as the base classifier. However, misclassification of unlabeled data happens using XGBoost, which could lead to incorrect pseudo-label assignments, eventually resulting in higher misclassification rate. To address this challenge, a self-training and improved XGBoost-based aluminum alloy casting quality prediction approach is proposed. This approach integrates the classification loss of unlabeled data in the objective function as a new regularization term and considers first and second partial derivatives of the classification loss function for unlabeled data in the leaf node's weight score. The proposed approach penalizes those classification models that misclassify unlabeled data, thereby improves quality prediction performance. To evaluate the effectiveness of our approach, a casting machine manufacturer was collaborated to conduct a case study. The results on three-type casting quality prediction demonstrate that our approach could achieve an accuracy, precision, recall and F1 score of 93.2 %, 90 %, 64.2 %, and 0.75, respectively, outperforming all compared approaches. The approach supports casting machine manufacturers to pre-train a casting quality prediction models with scarce labeled data, enabling swift deployment and customization for targeted quality inspection.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102890"},"PeriodicalIF":9.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.rcim.2024.102877
Sam Pratt , Tadeusz Kosmal , Christopher Williams
Digital twin tools for additive manufacturing (AM) are constrained by the underlying representations of component geometry that are currently in wide use. Mesh, voxel, and parametric surface representations require numerous conversions to intermediate representations at multiple points throughout the processing chain. Each conversion introduces additional error in the geometric representation and complicates comparison of in-situ process sensor data to the as-designed component. Additionally, the limited interoperability of the various representations produced throughout the process chain limit the insights available from current digital twin tools. We introduce a novel framework based on a unifying geometric representation that serves the complete AM digital thread. The presented GPU-accelerated, adaptively sampled distance function (ASDF) framework serves as a foundation for component design and path planning tools, especially for real-time path planning in AM, as well as provides a baseline representation of geometry from control systems, and enables rapid comparison of in-situ sensor data to the as-designed model without intermediate conversion, greatly reducing the burden of reducing such data to usable process insights.
用于增材制造(AM)的数字孪生工具受到目前广泛使用的组件几何图形底层表示法的限制。网格、体素和参数化曲面表示法需要在整个加工链的多个环节进行大量的中间表示法转换。每次转换都会在几何表示法中引入额外的误差,并使原位工艺传感器数据与设计组件的比较变得复杂。此外,在整个加工链中产生的各种表征的互操作性有限,限制了当前数字孪生工具的洞察力。我们引入了一个基于统一几何表示法的新型框架,该表示法可用于整个 AM 数字线程。所介绍的 GPU 加速自适应采样距离函数(ASDF)框架可作为组件设计和路径规划工具的基础,尤其适用于 AM 中的实时路径规划,还可提供来自控制系统的几何基准表示法,并可将现场传感器数据与设计模型进行快速比较,而无需进行中间转换,从而大大减轻了将此类数据还原为可用工艺见解的负担。
{"title":"Adaptively sampled distance functions: A unifying digital twin representation for advanced manufacturing","authors":"Sam Pratt , Tadeusz Kosmal , Christopher Williams","doi":"10.1016/j.rcim.2024.102877","DOIUrl":"10.1016/j.rcim.2024.102877","url":null,"abstract":"<div><div>Digital twin tools for additive manufacturing (AM) are constrained by the underlying representations of component geometry that are currently in wide use. Mesh, voxel, and parametric surface representations require numerous conversions to intermediate representations at multiple points throughout the processing chain. Each conversion introduces additional error in the geometric representation and complicates comparison of <em>in-situ</em> process sensor data to the as-designed component. Additionally, the limited interoperability of the various representations produced throughout the process chain limit the insights available from current digital twin tools. We introduce a novel framework based on a unifying geometric representation that serves the complete AM digital thread. The presented GPU-accelerated, adaptively sampled distance function (ASDF) framework serves as a foundation for component design and path planning tools, especially for real-time path planning in AM, as well as provides a baseline representation of geometry from control systems, and enables rapid comparison of <em>in-situ</em> sensor data to the as-designed model without intermediate conversion, greatly reducing the burden of reducing such data to usable process insights.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102877"},"PeriodicalIF":9.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trajectory accuracy, a crucial metric in assessing the dynamic performance of grinding robots, is influenced by the uncertain movement of the tool center point, directly impacting the surface quality of processed workpieces. This article introduces an innovative method for compensating trajectory errors. Initially, a strategy for error compensation is derived using differential kinematics theory. Subsequently, a robot kinematic calibration method utilizing ring particle swarm optimization (RPSO) is proposed to address static errors in the grinding robot. Simultaneously, a method for predicting robot joint variables based on a dual-channel feedforward neural network (DCFNN) is designed to mitigate dynamic errors. Finally, a simulation platform is developed to validate the proposed method. Simulation analysis using extensive data demonstrates an 89.3% improvement in absolute position accuracy and a 74.2% reduction in error fluctuation range, outperforming sparrow search algorithm (SSA), improved mayfly algorithm (IMA), multi-representation integrated predictive neural network (MRIPNN), etc. Algorithmic comparison reveals that kinematic calibration significantly reduces the average trajectory error, while joint variable prediction notably minimizes error fluctuation. Validation through trajectory straightness testing and a 3D printing propeller grinding experiment achieves a trajectory straightness of 0.2425 mm. Implementing this method enables achieving 86.1% surface machining allowance within tolerance, making it an optimal solution for grinding robots.
轨迹精度是评估打磨机器人动态性能的关键指标,它受到刀具中心点不确定运动的影响,直接影响加工工件的表面质量。本文介绍了一种创新的轨迹误差补偿方法。首先,利用微分运动学理论推导出一种误差补偿策略。随后,提出了一种利用环形粒子群优化(RPSO)的机器人运动学校准方法,以解决打磨机器人的静态误差问题。同时,设计了一种基于双通道前馈神经网络(DCFNN)的机器人关节变量预测方法,以减少动态误差。最后,开发了一个仿真平台来验证所提出的方法。利用大量数据进行的仿真分析表明,绝对位置精度提高了 89.3%,误差波动范围缩小了 74.2%,优于麻雀搜索算法(SSA)、改进的蜉蝣算法(IMA)、多表征集成预测神经网络(MRIPNN)等。通过算法比较发现,运动校准能显著降低平均轨迹误差,而联合变量预测则能显著减少误差波动。通过轨迹直线度测试和 3D 打印螺旋桨研磨实验验证,轨迹直线度达到 0.2425 毫米。采用这种方法后,表面加工余量在公差范围内达到了 86.1%,成为打磨机器人的最佳解决方案。
{"title":"Trajectory error compensation method for grinding robots based on kinematic calibration and joint variable prediction","authors":"Kaiwei Ma , Fengyu Xu , Qingyu Xu , Shuang Gao , Guo-Ping Jiang","doi":"10.1016/j.rcim.2024.102889","DOIUrl":"10.1016/j.rcim.2024.102889","url":null,"abstract":"<div><div>Trajectory accuracy, a crucial metric in assessing the dynamic performance of grinding robots, is influenced by the uncertain movement of the tool center point, directly impacting the surface quality of processed workpieces. This article introduces an innovative method for compensating trajectory errors. Initially, a strategy for error compensation is derived using differential kinematics theory. Subsequently, a robot kinematic calibration method utilizing ring particle swarm optimization (RPSO) is proposed to address static errors in the grinding robot. Simultaneously, a method for predicting robot joint variables based on a dual-channel feedforward neural network (DCFNN) is designed to mitigate dynamic errors. Finally, a simulation platform is developed to validate the proposed method. Simulation analysis using extensive data demonstrates an 89.3% improvement in absolute position accuracy and a 74.2% reduction in error fluctuation range, outperforming sparrow search algorithm (SSA), improved mayfly algorithm (IMA), multi-representation integrated predictive neural network (MRIPNN), etc. Algorithmic comparison reveals that kinematic calibration significantly reduces the average trajectory error, while joint variable prediction notably minimizes error fluctuation. Validation through trajectory straightness testing and a 3D printing propeller grinding experiment achieves a trajectory straightness of 0.2425 mm. Implementing this method enables achieving 86.1% surface machining allowance within tolerance, making it an optimal solution for grinding robots.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102889"},"PeriodicalIF":9.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.rcim.2024.102887
Ali Khishtan , Seong Hyeon Kim , Jihyun Lee
The joint deflection of robots in machining degrades product accuracy. Compliance error compensation has been investigated to reduce the static deflection of robotic machining. The challenge in compliance error compensation is accurately measuring the deflection or cutting force. External sensors have been used to measure them in robotic machining, but it is not practical. The authors proposed a nonlinear disturbance observer to indirectly measure the cutting force online in robotic machining in the previous study. The observer, however, needs to utilize the robot model that includes characteristics of high nonlinearity, uncertainty, and high dynamic variation for different robot postures. After investigating these challenges of modeling, this paper proposes a hybrid modeling approach combining a physics-based model with a new empirical friction model, and a data-driven model to accurately estimate the cutting force while minimizing the error of the robot's mathematical model. The joint torque calculated from the hybrid model can cover the effect of joints' postures and speeds on the varying dynamic in its workspace. Real-time optimization just before cutting is also proposed to adapt to the real-time joint's motion conditions. The experimental results from aluminum multi-axis cutting show that the estimated cutting force via the nonlinear disturbance observer based on the proposed hybrid modeling approach can improve its accuracy up to 45% and 74% in the x and y directions respectively, compared to the physics-based modeling approach. The deflection of the tool center point can be compensated by using a compliance error compensation method up to 79.1% and 75.4% in the x and y directions, respectively, at 0.5 mm/s feed rate, and up to 77.2% and 78.9% at 3 mm/s feed rate. Consequently, the approaches developed in this paper can solve the problems of conventional robot modeling and improve the accuracy of robot machining.
机器人在加工过程中的关节挠度会降低产品精度。为了减少机器人加工中的静态挠度,人们对顺应误差补偿进行了研究。顺应性误差补偿的难点在于精确测量挠度或切削力。在机器人加工中,外部传感器被用来测量它们,但这并不实用。作者在之前的研究中提出了一种非线性干扰观测器,用于间接在线测量机器人加工中的切削力。然而,该观测器需要利用机器人模型,而机器人模型包括高非线性、不确定性和不同机器人姿态下的高动态变化等特点。在研究了建模所面临的这些挑战后,本文提出了一种混合建模方法,将基于物理的模型与新的经验摩擦模型和数据驱动模型相结合,在精确估算切削力的同时,最大限度地减小机器人数学模型的误差。混合模型计算出的关节扭矩可以涵盖关节姿态和速度对其工作空间内动态变化的影响。此外,还提出了切割前的实时优化,以适应关节的实时运动条件。铝材多轴切削的实验结果表明,与基于物理的建模方法相比,通过基于混合建模方法的非线性扰动观测器估算的切削力在 x 和 y 方向的精度分别提高了 45% 和 74%。在进给速度为 0.5 mm/s 的情况下,使用顺应性误差补偿方法,刀具中心点的偏移在 x 和 y 方向的补偿率分别可达 79.1% 和 75.4%;在进给速度为 3 mm/s 的情况下,补偿率分别可达 77.2% 和 78.9%。因此,本文开发的方法可以解决传统机器人建模的问题,提高机器人加工的精度。
{"title":"A hybrid model in a nonlinear disturbance observer for improving compliance error compensation of robotic machining","authors":"Ali Khishtan , Seong Hyeon Kim , Jihyun Lee","doi":"10.1016/j.rcim.2024.102887","DOIUrl":"10.1016/j.rcim.2024.102887","url":null,"abstract":"<div><div>The joint deflection of robots in machining degrades product accuracy. Compliance error compensation has been investigated to reduce the static deflection of robotic machining. The challenge in compliance error compensation is accurately measuring the deflection or cutting force. External sensors have been used to measure them in robotic machining, but it is not practical. The authors proposed a nonlinear disturbance observer to indirectly measure the cutting force online in robotic machining in the previous study. The observer, however, needs to utilize the robot model that includes characteristics of high nonlinearity, uncertainty, and high dynamic variation for different robot postures. After investigating these challenges of modeling, this paper proposes a hybrid modeling approach combining a physics-based model with a new empirical friction model, and a data-driven model to accurately estimate the cutting force while minimizing the error of the robot's mathematical model. The joint torque calculated from the hybrid model can cover the effect of joints' postures and speeds on the varying dynamic in its workspace. Real-time optimization just before cutting is also proposed to adapt to the real-time joint's motion conditions. The experimental results from aluminum multi-axis cutting show that the estimated cutting force via the nonlinear disturbance observer based on the proposed hybrid modeling approach can improve its accuracy up to 45% and 74% in the <em>x</em> and <em>y</em> directions respectively, compared to the physics-based modeling approach. The deflection of the tool center point can be compensated by using a compliance error compensation method up to 79.1% and 75.4% in the <em>x</em> and <em>y</em> directions, respectively, at 0.5 <em>mm/s</em> feed rate, and up to 77.2% and 78.9% at 3 <em>mm/s</em> feed rate. Consequently, the approaches developed in this paper can solve the problems of conventional robot modeling and improve the accuracy of robot machining.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102887"},"PeriodicalIF":9.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.rcim.2024.102888
Yinghao Cheng , Yingguang Li , Guangxu Li , Xu Liu , Jinyu Xia , Changqing Liu , Xiaozhong Hao
Monitoring tool breakage during computer numerical control machining is essential to ensure machining quality and equipment safety. In consideration of the low cost in long-term use and the non-invasiveness to workspace, using servo signals of machine tools to monitor tool breakage has been viewed as the solution that has great potential to be applied in real industry. However, because machine tool servo signals can only partially and indirectly reflect tool conditions, the accuracy and reliability of existing methods still need to be improved. To overcome this challenge, a novel two-step data-driven tool breakage monitoring method using spindle servo signals is proposed. Since spindle cutting torque is acknowledged as one of the most effective and reliable physical signals for detecting tool breakage, it is introduced as the key intermediate variable from spindle servo signals to tool conditions. The monitored spindle servo signals are used to predict the spindle cutting torque in real time based on a long short-term memory neural network, and then the predicted spindle cutting torque is used to detect tool breakage based on a one-dimensional convolutional neural network. The experimental results show that the proposed method can accurately predict the spindle cutting torque for normal tools and broken tools. Compared with the tool breakage monitoring methods that directly use spindle servo signals, the proposed method has higher detection accuracy and more reliable detection results, and the performance is more stable when increasing the detection frequency and decreasing training data.
{"title":"Tool breakage monitoring driven by the real-time predicted spindle cutting torque using spindle servo signals","authors":"Yinghao Cheng , Yingguang Li , Guangxu Li , Xu Liu , Jinyu Xia , Changqing Liu , Xiaozhong Hao","doi":"10.1016/j.rcim.2024.102888","DOIUrl":"10.1016/j.rcim.2024.102888","url":null,"abstract":"<div><div>Monitoring tool breakage during computer numerical control machining is essential to ensure machining quality and equipment safety. In consideration of the low cost in long-term use and the non-invasiveness to workspace, using servo signals of machine tools to monitor tool breakage has been viewed as the solution that has great potential to be applied in real industry. However, because machine tool servo signals can only partially and indirectly reflect tool conditions, the accuracy and reliability of existing methods still need to be improved. To overcome this challenge, a novel two-step data-driven tool breakage monitoring method using spindle servo signals is proposed. Since spindle cutting torque is acknowledged as one of the most effective and reliable physical signals for detecting tool breakage, it is introduced as the key intermediate variable from spindle servo signals to tool conditions. The monitored spindle servo signals are used to predict the spindle cutting torque in real time based on a long short-term memory neural network, and then the predicted spindle cutting torque is used to detect tool breakage based on a one-dimensional convolutional neural network. The experimental results show that the proposed method can accurately predict the spindle cutting torque for normal tools and broken tools. Compared with the tool breakage monitoring methods that directly use spindle servo signals, the proposed method has higher detection accuracy and more reliable detection results, and the performance is more stable when increasing the detection frequency and decreasing training data.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102888"},"PeriodicalIF":9.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}