Pub Date : 2023-09-29DOI: 10.30987/2223-4608-2023-16-26
Mihail Tamarkin, Elina Tischenko
The problem of mechanical technology design for machining parts in granulated media in the conditions of digital produc-tion is viewed. The peculiarities of part process in abrasive media and with steel balls (finish- machining and strengthening treatment techniques) are shown. Dependences for determining the parameters of a single interaction of a medium particle with the surface of a part during processing in granulated media are obtained. Dependences for depth maximizing in cases of particle penetration into the surface of the machined part, the parameters of a single trace, surface roughness, processing time are found. For finish- machining and strengthening treatment techniques for granulated working media, dependences for determining the depth of the hardened layer and the degree of deformation are also obtained. The obtained theoretical dependences have been tested for adequacy through drawing an analogy with the results of experimental studies. During the research, it was found that the developed system of models does not take into account the peculiarities of various processing methods and their dynamics, and shape of the particles of the medium. To account all these parameters, the Rocky DEM ap-plication software package is used. The package allows modeling the processing chamber, the dynamic parameters of the machining process, the number of particles in the working space according to their mass, the shape and dimensions of the particles, the mass and shape of the machined part and its location in the processing chamber, the material of the machined part, the ratio of the mass of the part and the mass of the abrasive medium, some physical properties of the material of the processed part, slip coefficient of the abrasive medium on the part surface, process liquid properties and other parameters. The package made it possible to refine theoretical models and obtain results closer to production conditions. Based on the research carried out and being aimed at their introduction into modern digital production, the design technique of techno-logical processes has been developed and a software product has been proposed allowing to select possible working meth-ods in granulated media (in order of preference) according to the characteristics of the part, and to determine the technolog-ical modes for each of them and characteristics of working environments.
{"title":"Design of processing technology in granulated media in the conditions of digital production","authors":"Mihail Tamarkin, Elina Tischenko","doi":"10.30987/2223-4608-2023-16-26","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-16-26","url":null,"abstract":"The problem of mechanical technology design for machining parts in granulated media in the conditions of digital produc-tion is viewed. The peculiarities of part process in abrasive media and with steel balls (finish- machining and strengthening treatment techniques) are shown. Dependences for determining the parameters of a single interaction of a medium particle with the surface of a part during processing in granulated media are obtained. Dependences for depth maximizing in cases of particle penetration into the surface of the machined part, the parameters of a single trace, surface roughness, processing time are found. For finish- machining and strengthening treatment techniques for granulated working media, dependences for determining the depth of the hardened layer and the degree of deformation are also obtained. The obtained theoretical dependences have been tested for adequacy through drawing an analogy with the results of experimental studies. During the research, it was found that the developed system of models does not take into account the peculiarities of various processing methods and their dynamics, and shape of the particles of the medium. To account all these parameters, the Rocky DEM ap-plication software package is used. The package allows modeling the processing chamber, the dynamic parameters of the machining process, the number of particles in the working space according to their mass, the shape and dimensions of the particles, the mass and shape of the machined part and its location in the processing chamber, the material of the machined part, the ratio of the mass of the part and the mass of the abrasive medium, some physical properties of the material of the processed part, slip coefficient of the abrasive medium on the part surface, process liquid properties and other parameters. The package made it possible to refine theoretical models and obtain results closer to production conditions. Based on the research carried out and being aimed at their introduction into modern digital production, the design technique of techno-logical processes has been developed and a software product has been proposed allowing to select possible working meth-ods in granulated media (in order of preference) according to the characteristics of the part, and to determine the technolog-ical modes for each of them and characteristics of working environments.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135131460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.30987/2223-4608-2023-27-38
Vladimir Makarov, Mihail Pesin, Artem Volkovsky
An urgent problem for improving the efficiency and machining operation quality for new polymer composite materials (PCM) based on carbon fiber in the operation of rocket and space equipment and aircraft engineering parts is solved in the article. One of the breakthroughs of the Russian domestic engineering is the introduction of wing elements of the new MS-21 civil airliner, the production of noise suppression bodies, compressor blades and other parts of gas turbine engines made of carbon fiber, requiring high-quality and productive machining. Machining operation of these products involves difficulties caused by the requirements of the design documentation to ensure the necessary degree of roughness, soundness of the machined surface and high strength of the finish-machined component. This article presents the results of a study of the application of high-performance technology of sequential blade-abrasive processing of carbon fiber-based PCM products. This article presents the results of a study of the application of high-performance technology of sequential blade-abrasive operation of carbon fiber-based PCM products. The rational geometry of the blade cutting tool for primary machining of the PCM is determined. An adequate empirical mathematical model of cutting modes influence on the surface layer roughness in the milling operation has been developed, as well as rational processing modes have been determined.
The results of experimental studies of the abrasion of PCM with rigid grinding wheels made of white electrocorundum, green silicon carbide and elborum are presented. The dependences of the surface layer roughness on the grinding modes are given. According to the research results and the developed mathematical model, the rational characteristics of grinding wheels and processing modes are determined. For the first time, the issues of the influence of machining defects on the strength of PCM are viewed. Comparative tensile and tear strength tests of samples made by traditional edge cutting machining and sequential edge-cutting-abrasive operation are presented. The increase in tensile and tear strength of PCM parts manufactured according to the technology of sequential edge-cutting-abrasive operation by 20.30% compared to traditional edge-cutting operation has been proved.
{"title":"Innovative technologies for improving the efficiency and machining operating quality for polymer composite materials","authors":"Vladimir Makarov, Mihail Pesin, Artem Volkovsky","doi":"10.30987/2223-4608-2023-27-38","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-27-38","url":null,"abstract":"An urgent problem for improving the efficiency and machining operation quality for new polymer composite materials (PCM) based on carbon fiber in the operation of rocket and space equipment and aircraft engineering parts is solved in the article. One of the breakthroughs of the Russian domestic engineering is the introduction of wing elements of the new MS-21 civil airliner, the production of noise suppression bodies, compressor blades and other parts of gas turbine engines made of carbon fiber, requiring high-quality and productive machining. Machining operation of these products involves difficulties caused by the requirements of the design documentation to ensure the necessary degree of roughness, soundness of the machined surface and high strength of the finish-machined component. This article presents the results of a study of the application of high-performance technology of sequential blade-abrasive processing of carbon fiber-based PCM products. This article presents the results of a study of the application of high-performance technology of sequential blade-abrasive operation of carbon fiber-based PCM products. The rational geometry of the blade cutting tool for primary machining of the PCM is determined. An adequate empirical mathematical model of cutting modes influence on the surface layer roughness in the milling operation has been developed, as well as rational processing modes have been determined.
 The results of experimental studies of the abrasion of PCM with rigid grinding wheels made of white electrocorundum, green silicon carbide and elborum are presented. The dependences of the surface layer roughness on the grinding modes are given. According to the research results and the developed mathematical model, the rational characteristics of grinding wheels and processing modes are determined. For the first time, the issues of the influence of machining defects on the strength of PCM are viewed. Comparative tensile and tear strength tests of samples made by traditional edge cutting machining and sequential edge-cutting-abrasive operation are presented. The increase in tensile and tear strength of PCM parts manufactured according to the technology of sequential edge-cutting-abrasive operation by 20.30% compared to traditional edge-cutting operation has been proved.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135131462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.30987/2223-4608-2023-7-3-7
V. Chudin
The processes of spread and reduction of a heated rough piece under visco-plasticity conditions are viewed. The ratio for force stress calculating in operations, damage to the material of the rough pieces is obtained. In the branches of special en-gineering, high-strength alloys based on titanium and aluminum are used. In the branches of special engineering, high-strength alloys based on titanium and aluminum are used. These alloys have mechanical properties anisotropy. Processing of these alloys is difficult. For this reason, the pressure treatment operation is performed with heating of the deformation zone. The material in the deformation zone exhibits viscous properties. Deformation hardening and softening (stress relaxa-tion) of the material take place simultaneously. Besides, the lower the deformation rate, the greater the softening. In this regard, a constitutive equation representing these processes is found. The factor of hardening and softening creates condi-tions for reducing the power mode of pressure treatment operations and increasing the degree of primary part forming. Stress relaxation calculation with the help of analytical dependencies is necessary at the stage of expansion and pressing development. The calculated ratios are recorded as a function of the speed of these operations. In this case, the specified deformation (the change in the degree of forming) is taken into account, adjusted depending on the speed and mechanical characteristics of the bearing alloy anisotropy. The calculated ratios are obtained under conditions of a flat voltage scheme, which corresponds to expansion and pressing. Stress equilibrium equation and yield condition of anisotropic material are used. The joint solutions of this equation and yield conditions determine values of the meridional and circumferential stress-es arising in the piece part material. The values of the stresses allow calculating the forces of operations. It is shown that the speed of expansion and pressing and mechanical properties anisotropy affect the damage to the material of the «green body». Dependences for the calculation of damage are obtained on the basis of energy and deformation strength criteria. These dependencies allow predicting the quality of products. It is also shown that anisotropy affects the technological modes of expansion and pressing. As the anisotropy coefficient increases, the stresses and forces of operations decrease. Calculations of stresses, forces and material damage in the process of expansion of anisotropic titanium alloy VT14 at 875 ℃ are made.
{"title":"Technological modes of expansion and pressing under selective heating","authors":"V. Chudin","doi":"10.30987/2223-4608-2023-7-3-7","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-7-3-7","url":null,"abstract":"The processes of spread and reduction of a heated rough piece under visco-plasticity conditions are viewed. The ratio for force stress calculating in operations, damage to the material of the rough pieces is obtained. In the branches of special en-gineering, high-strength alloys based on titanium and aluminum are used. In the branches of special engineering, high-strength alloys based on titanium and aluminum are used. These alloys have mechanical properties anisotropy. Processing of these alloys is difficult. For this reason, the pressure treatment operation is performed with heating of the deformation zone. The material in the deformation zone exhibits viscous properties. Deformation hardening and softening (stress relaxa-tion) of the material take place simultaneously. Besides, the lower the deformation rate, the greater the softening. In this regard, a constitutive equation representing these processes is found. The factor of hardening and softening creates condi-tions for reducing the power mode of pressure treatment operations and increasing the degree of primary part forming. Stress relaxation calculation with the help of analytical dependencies is necessary at the stage of expansion and pressing development. The calculated ratios are recorded as a function of the speed of these operations. In this case, the specified deformation (the change in the degree of forming) is taken into account, adjusted depending on the speed and mechanical characteristics of the bearing alloy anisotropy. The calculated ratios are obtained under conditions of a flat voltage scheme, which corresponds to expansion and pressing. Stress equilibrium equation and yield condition of anisotropic material are used. The joint solutions of this equation and yield conditions determine values of the meridional and circumferential stress-es arising in the piece part material. The values of the stresses allow calculating the forces of operations. It is shown that the speed of expansion and pressing and mechanical properties anisotropy affect the damage to the material of the «green body». Dependences for the calculation of damage are obtained on the basis of energy and deformation strength criteria. These dependencies allow predicting the quality of products. It is also shown that anisotropy affects the technological modes of expansion and pressing. As the anisotropy coefficient increases, the stresses and forces of operations decrease. Calculations of stresses, forces and material damage in the process of expansion of anisotropic titanium alloy VT14 at 875 ℃ are made.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74871970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.30987/2223-4608-2023-7-8-14
P. Bochkarev
The trends of working methods development based on the analysis of certain working methods using loose abrasive are giv-en. Along with wide technological capabilities and relatively low cost, the existing irregularities of methods are noted. The elimination of them will ensure prospective viability for the development of machining operations with the use of loose abra-sive. An approach was suggested. It consists in forming the structure of databases of working methods according to struc-tural and technological features and generating groups of methods differing in homogeneous design procedures for their development using a mathematical tools technique of cluster analysis. The article describes and provides diagrams of the developed methods of external and internal surfacing of rotation body type using a compacted layer of abrasive medium. They make it possible to get not varying qualitative characteristics, finishing through forming an area of abrasive material in the chamber with equal compaction in the places of interaction of the treated surface and abrasive grains, and to provide conditions for equalization of contact pressures on the working surface. Based on the performed research and testing of the presented methods, scientific and technical tasks have been identified, the solution of which will make it possible to imple-ment the technological support of their effective application. For the purpose of reducing the complexity of the created mod-els and the volume of experimental research, a strategy for conducting research based on the unification of individual pro-ject procedures for technological preparation of production is proposed. The obtained results allowed making theoretical substantiation of a systematic approach to the formation of an environment for automated planning of operations using loose abrasive, which consists in the creation of formalized homogeneous design procedures for grouped working methods.
{"title":"The development of engineering support for loose abrasive working methods","authors":"P. Bochkarev","doi":"10.30987/2223-4608-2023-7-8-14","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-7-8-14","url":null,"abstract":"The trends of working methods development based on the analysis of certain working methods using loose abrasive are giv-en. Along with wide technological capabilities and relatively low cost, the existing irregularities of methods are noted. The elimination of them will ensure prospective viability for the development of machining operations with the use of loose abra-sive. An approach was suggested. It consists in forming the structure of databases of working methods according to struc-tural and technological features and generating groups of methods differing in homogeneous design procedures for their development using a mathematical tools technique of cluster analysis. The article describes and provides diagrams of the developed methods of external and internal surfacing of rotation body type using a compacted layer of abrasive medium. They make it possible to get not varying qualitative characteristics, finishing through forming an area of abrasive material in the chamber with equal compaction in the places of interaction of the treated surface and abrasive grains, and to provide conditions for equalization of contact pressures on the working surface. Based on the performed research and testing of the presented methods, scientific and technical tasks have been identified, the solution of which will make it possible to imple-ment the technological support of their effective application. For the purpose of reducing the complexity of the created mod-els and the volume of experimental research, a strategy for conducting research based on the unification of individual pro-ject procedures for technological preparation of production is proposed. The obtained results allowed making theoretical substantiation of a systematic approach to the formation of an environment for automated planning of operations using loose abrasive, which consists in the creation of formalized homogeneous design procedures for grouped working methods.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"8 14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84738630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.30987/2223-4608-2023-7-24-32
L. Petrova, A. Sergeeva, V. Vdovin
Research significance is contingent on the requirement strengthening for high-speed cutting tools performance and wide-spread introduction of automatic lines and NC-machines. An increase of the tool service life is also necessary for the reduc-tion of putting expensive alloying elements to use, primarily, tungsten. The solution of these problems requires the use of technologies for hardening cutting surfaces. Combined processes of thermochemical treatment processes, uniting diffusive surface alloying with nitrogen saturation have shown their effectiveness in the surface hardening of various steels. Now the aim is to study the process of combined surface tungsten and nitrogen saturation of high-speed steel for increasing small-sized tool durability. Experimental studies were carried out on samples and small-diameter drills made of P6M5 steel. For laboratory experiments connected with combined process of thermochemical treatment an installation for nitriding in multi-component media was used. Metallization with tungsten was carried out by the slip method with parallel nitriding of the tool in a glow discharge. To determine the regime that provides the necessary temperatures for oxygen and nitrogen saturation, the temperatures of the control steel samples were measured on the surface and in the core at different durations of the cur-rent pulse in the heating phase. Metallographic analysis proved that thermochemical treatment resulted in a modified sur-face layer with a thickness of 10…15 microns, formed in P6M5 steel. The structure of the layer is an internal nitriding zone, which consists of a solid tungsten and nitrogen solution in iron and dispersed inclusions of tungsten nitrides. Dispersion and solid solution hardening provide a two-fold increase in the microhardness of the modified W-N layer compared to the alloy base. A transitional diffusion zone of nitrogenous martensite has been revealed under the hardened layer, creating a smooth microhardness gradient from the layer to the core, protecting it from embrittlement, peeling and staining. Using a metallophysical simulated test in predeveloped methodology, the calculation of the hardening index of the modified layer (yield point increase) was made. It showed that with increase in the concentration of tungsten in the layer, the proportion of the component of the dispersion hardening by W2N particles also increases. Full-scale tests in production conditions showed that the tool with a hardened layer had increased resistance. The durability of drills, determined by the number of drilled holes made before its dropping-out, increases by 2,2 times when drilling on 30XGSA steel and by more than 7,0 times when drilling a titanium alloy VT-23.
{"title":"Modification of a high-speed cutting tool surface by combined tungsten steel and nitrogen saturation","authors":"L. Petrova, A. Sergeeva, V. Vdovin","doi":"10.30987/2223-4608-2023-7-24-32","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-7-24-32","url":null,"abstract":"Research significance is contingent on the requirement strengthening for high-speed cutting tools performance and wide-spread introduction of automatic lines and NC-machines. An increase of the tool service life is also necessary for the reduc-tion of putting expensive alloying elements to use, primarily, tungsten. The solution of these problems requires the use of technologies for hardening cutting surfaces. Combined processes of thermochemical treatment processes, uniting diffusive surface alloying with nitrogen saturation have shown their effectiveness in the surface hardening of various steels. Now the aim is to study the process of combined surface tungsten and nitrogen saturation of high-speed steel for increasing small-sized tool durability. Experimental studies were carried out on samples and small-diameter drills made of P6M5 steel. For laboratory experiments connected with combined process of thermochemical treatment an installation for nitriding in multi-component media was used. Metallization with tungsten was carried out by the slip method with parallel nitriding of the tool in a glow discharge. To determine the regime that provides the necessary temperatures for oxygen and nitrogen saturation, the temperatures of the control steel samples were measured on the surface and in the core at different durations of the cur-rent pulse in the heating phase. Metallographic analysis proved that thermochemical treatment resulted in a modified sur-face layer with a thickness of 10…15 microns, formed in P6M5 steel. The structure of the layer is an internal nitriding zone, which consists of a solid tungsten and nitrogen solution in iron and dispersed inclusions of tungsten nitrides. Dispersion and solid solution hardening provide a two-fold increase in the microhardness of the modified W-N layer compared to the alloy base. A transitional diffusion zone of nitrogenous martensite has been revealed under the hardened layer, creating a smooth microhardness gradient from the layer to the core, protecting it from embrittlement, peeling and staining. Using a metallophysical simulated test in predeveloped methodology, the calculation of the hardening index of the modified layer (yield point increase) was made. It showed that with increase in the concentration of tungsten in the layer, the proportion of the component of the dispersion hardening by W2N particles also increases. Full-scale tests in production conditions showed that the tool with a hardened layer had increased resistance. The durability of drills, determined by the number of drilled holes made before its dropping-out, increases by 2,2 times when drilling on 30XGSA steel and by more than 7,0 times when drilling a titanium alloy VT-23.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80903144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.30987/2223-4608-2023-7-15-23
Georgiy Matlygin, A. Savilov, Andrey Nikolaev, S. Timofeev
Investigation of form deviations of cylindrical high-speed steel (HSS) products made under turning-milling operation by CNC-controlled lathe machining center (further CNC) with auxiliary drive axle is given. Technological support of high-speed steel products quality made by turning milling operation on a CNC lathe machining center with an auxiliary drive axle takes effect owing to the shape deviation reduction. Planning of experiments was carried out according to the Taguchi method for four factors and three levels. The experiment was conducted on a DMG NEF 400 lathe machining center having an auxiliary drive axle, which allows machining modes to be performed with a rotating tool. Samples of high-speed steel R6M5K5-MP were used. Machining operation was made according to the scheme of orthogonal turning by milling. A core carbide mill CCM 4321 was used as a cutting tool. Out-of-roundness (lobing) was estimated using optical method. All measurements were carried out on the Bruker Contour GT-K1 optical profilometer. Surface micro-dimensions were measured by optical scanning of the surface. Surface optical scanning resulted in a point cloud was obtained that mirrors micro-dimensions of the cylindrical profile of the piece partmeasured section. The obtained data obtained made it possible to measure a lobing that occurs under orthogonal milling turning method. The influence of cutting modes on the shape and size of the maximum peaks of the cut is proved. The smallest facet pattern value is observed for milling width a_e in the range of 3,5...5,5 mm with high feed values for the tooth f_z and low cutting speed v_c. The largest cut height is observed at the average values of a_e, a_p, v_c. It is an optical profilometer that is an effective means of measuring facet patterns or lobings. The results obtained in the work allow predicting form deviations of a blank made of high-speed steel under turning milling operations on CNC machines. The results of the study can be used to improve rotary cutting tools quality in the tool industry.
{"title":"Investigation of form deviations of high-speed steel (HSS) products under turning-milling operation using automatically programmed tools","authors":"Georgiy Matlygin, A. Savilov, Andrey Nikolaev, S. Timofeev","doi":"10.30987/2223-4608-2023-7-15-23","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-7-15-23","url":null,"abstract":"Investigation of form deviations of cylindrical high-speed steel (HSS) products made under turning-milling operation by CNC-controlled lathe machining center (further CNC) with auxiliary drive axle is given. Technological support of high-speed steel products quality made by turning milling operation on a CNC lathe machining center with an auxiliary drive axle takes effect owing to the shape deviation reduction. Planning of experiments was carried out according to the Taguchi method for four factors and three levels. The experiment was conducted on a DMG NEF 400 lathe machining center having an auxiliary drive axle, which allows machining modes to be performed with a rotating tool. Samples of high-speed steel R6M5K5-MP were used. Machining operation was made according to the scheme of orthogonal turning by milling. A core carbide mill CCM 4321 was used as a cutting tool. Out-of-roundness (lobing) was estimated using optical method. All measurements were carried out on the Bruker Contour GT-K1 optical profilometer. Surface micro-dimensions were measured by optical scanning of the surface. Surface optical scanning resulted in a point cloud was obtained that mirrors micro-dimensions of the cylindrical profile of the piece partmeasured section. The obtained data obtained made it possible to measure a lobing that occurs under orthogonal milling turning method. The influence of cutting modes on the shape and size of the maximum peaks of the cut is proved. The smallest facet pattern value is observed for milling width a_e in the range of 3,5...5,5 mm with high feed values for the tooth f_z and low cutting speed v_c. The largest cut height is observed at the average values of a_e, a_p, v_c. It is an optical profilometer that is an effective means of measuring facet patterns or lobings. The results obtained in the work allow predicting form deviations of a blank made of high-speed steel under turning milling operations on CNC machines. The results of the study can be used to improve rotary cutting tools quality in the tool industry.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"116 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87926628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.30987/2223-4608-2023-7-39-48
E. Pryakhin, E. Troshina
To identify products at all stages of production, a code mark is used by two-dimensional DataMatrix barcoding. Due to the fact that there are different types of surfaces, marking with the help of self-adhesive polymer film materials, where the infor-mation is recorded by a laser using the DPM (Direct Part Marking) method, is becoming increasingly popular. These films, called "laser films", are often used in manufacturing, especially in the automotive industry, as they have a number of ad-vantages compared to other information carriers. However, such films (tesa 6930, 3M 7847) are mostly imported and expen-sive, and also have an operating temperature limit of up to 250 °C, which is sometimes insufficient. The article discusses foreign and domestic films, including polymer NPM012 and organosilicon LP2. LP series are a new group of organosilox-ane–based laser films allowing the use of laser marking for parts operating up to 1000 °C. The article provides a compara-tive analysis of the labeling of polymer films and organosilicon films in accordance with international standards of auto-matic identification and data collection technologies. Laser marking is performed using a nanosecond fiber laser with a power of 30 watts and a wavelength of 1,064 microns. DataMatrix (GS1) is used as a barcode according to the Russian sys-tem of marking and keeping track of goods "Honest Mark". Marking quality assessment is carried out by scanning verifier to check the compliance validation for ISO/IEC standards. The article describes the adjustment of laser barcoding technologi-cal parameters for ensuring high-quality marking.
{"title":"Comparative test for polymer and organosilicon film quality marking in nanosecond fiber laser processing","authors":"E. Pryakhin, E. Troshina","doi":"10.30987/2223-4608-2023-7-39-48","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-7-39-48","url":null,"abstract":"To identify products at all stages of production, a code mark is used by two-dimensional DataMatrix barcoding. Due to the fact that there are different types of surfaces, marking with the help of self-adhesive polymer film materials, where the infor-mation is recorded by a laser using the DPM (Direct Part Marking) method, is becoming increasingly popular. These films, called \"laser films\", are often used in manufacturing, especially in the automotive industry, as they have a number of ad-vantages compared to other information carriers. However, such films (tesa 6930, 3M 7847) are mostly imported and expen-sive, and also have an operating temperature limit of up to 250 °C, which is sometimes insufficient. The article discusses foreign and domestic films, including polymer NPM012 and organosilicon LP2. LP series are a new group of organosilox-ane–based laser films allowing the use of laser marking for parts operating up to 1000 °C. The article provides a compara-tive analysis of the labeling of polymer films and organosilicon films in accordance with international standards of auto-matic identification and data collection technologies. Laser marking is performed using a nanosecond fiber laser with a power of 30 watts and a wavelength of 1,064 microns. DataMatrix (GS1) is used as a barcode according to the Russian sys-tem of marking and keeping track of goods \"Honest Mark\". Marking quality assessment is carried out by scanning verifier to check the compliance validation for ISO/IEC standards. The article describes the adjustment of laser barcoding technologi-cal parameters for ensuring high-quality marking.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79459674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.30987/2223-4608-2023-7-33-38
A. Breki
The analysis of the known friction-temperature laws is carried out in the article. A mathematical model of external friction of F.F. Ling and E. Seibel coefficient dependence on temperature, activation energies of formation and destruction of friction bonds and other factors, developed using the equations of absolute rates of chemical reactions, is analyzed. An approxima-tion of this model is implemented in temperature independence case for Bowden and Tabor shear strength. A mathematical model, describing sliding friction force-temperature relation under frictional interaction of spatially ordered rubbers hav-ing steel surface, is proposed. A distinctive feature of the proposed mathematical model is that it can simultaneously describe areas of constancy, friction force linear and nonlinear scaling under temperature changes. The testing and verification of the developed mathematical model is fulfilled through digitizing and processing experimental data, obtained by the fric-tional interaction of bars, made of spatially ordered natural rubber and spatially ordered rubber SCS-50 with a prism made of steel st.3. Analyzing the approximating dependencies, it is found, that for spatially ordered natural rubber, the maximum value of the friction force is 2,0 kgf under the temperature of approximately 37,6 ℃, and the average value of the friction coefficient is 0,987, for spatially ordered natural rubber, the maximum value of the friction force is 1.84 kgf under the tem-perature of approximately 31,4 ℃, while the average value of the coefficient of friction is 0,853. New tribotechnical charac-teristics have been introduced making possible to give a more detailed characterization of the frictional interaction in the rubber-steel system for the cases of temperature changes.
{"title":"Analytic representation of the friction force-temperature relations under the conditions of frictional interaction of spatially-ordered rubbers having steel surface","authors":"A. Breki","doi":"10.30987/2223-4608-2023-7-33-38","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-7-33-38","url":null,"abstract":"The analysis of the known friction-temperature laws is carried out in the article. A mathematical model of external friction of F.F. Ling and E. Seibel coefficient dependence on temperature, activation energies of formation and destruction of friction bonds and other factors, developed using the equations of absolute rates of chemical reactions, is analyzed. An approxima-tion of this model is implemented in temperature independence case for Bowden and Tabor shear strength. A mathematical model, describing sliding friction force-temperature relation under frictional interaction of spatially ordered rubbers hav-ing steel surface, is proposed. A distinctive feature of the proposed mathematical model is that it can simultaneously describe areas of constancy, friction force linear and nonlinear scaling under temperature changes. The testing and verification of the developed mathematical model is fulfilled through digitizing and processing experimental data, obtained by the fric-tional interaction of bars, made of spatially ordered natural rubber and spatially ordered rubber SCS-50 with a prism made of steel st.3. Analyzing the approximating dependencies, it is found, that for spatially ordered natural rubber, the maximum value of the friction force is 2,0 kgf under the temperature of approximately 37,6 ℃, and the average value of the friction coefficient is 0,987, for spatially ordered natural rubber, the maximum value of the friction force is 1.84 kgf under the tem-perature of approximately 31,4 ℃, while the average value of the coefficient of friction is 0,853. New tribotechnical charac-teristics have been introduced making possible to give a more detailed characterization of the frictional interaction in the rubber-steel system for the cases of temperature changes.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84207215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-10DOI: 10.30987/2223-4608-2023-20-26
V. Prikhodko, R. Nigmetzyanov, S. Sundukov, D. Fatyukhin
Having analyzed the literature sources, it is revealed that digital production includes not only full automation of production processes, but also the creation of a multi-level infrastructure for their control on the basis of information technologies. Technical solutions based on this approach will significantly intensify production processes. The possibilities of automation and digitalization of ultrasonic technological processes are viewed through the creation of a hardware and software com-plex that includes technological and measuring equipment, as well as software to select the most effective technical solu-tions. Some general principles of creating ultrasonic technologies are substantiated, their stages of development include setting the task, analysis of the processing object, selection of the processing scheme and equipment, process control and quality monitoring. Methodological approaches to the implementation of production processes with a multi-level process control infrastructure based on information technologies are proposed. Examples of developed software products are given, with the help of which search engine optimization methods are used to select equipment and rational processing modes. It shows not only the possibility of using automated technology, but also the creation of a self-learning technological system based on it. The development and creation of equipment for the implementation of the proposed technical solutions has in its basis general principles of using numerical control software. The proposed algorithm can be used for a wide range of ultra-sonic technologies: cleaning, surface plastic deformation, coating, cutting, etc. In addition, the combination of the choice of technical and information solutions makes quick switch from one type of processing to another possible. Recommendations on the implementation of the proposed technical and information solutions are given.
{"title":"Automation and digitalization of ultrasonic technological processes","authors":"V. Prikhodko, R. Nigmetzyanov, S. Sundukov, D. Fatyukhin","doi":"10.30987/2223-4608-2023-20-26","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-20-26","url":null,"abstract":"Having analyzed the literature sources, it is revealed that digital production includes not only full automation of production processes, but also the creation of a multi-level infrastructure for their control on the basis of information technologies. Technical solutions based on this approach will significantly intensify production processes. The possibilities of automation and digitalization of ultrasonic technological processes are viewed through the creation of a hardware and software com-plex that includes technological and measuring equipment, as well as software to select the most effective technical solu-tions. Some general principles of creating ultrasonic technologies are substantiated, their stages of development include setting the task, analysis of the processing object, selection of the processing scheme and equipment, process control and quality monitoring. Methodological approaches to the implementation of production processes with a multi-level process control infrastructure based on information technologies are proposed. Examples of developed software products are given, with the help of which search engine optimization methods are used to select equipment and rational processing modes. It shows not only the possibility of using automated technology, but also the creation of a self-learning technological system based on it. The development and creation of equipment for the implementation of the proposed technical solutions has in its basis general principles of using numerical control software. The proposed algorithm can be used for a wide range of ultra-sonic technologies: cleaning, surface plastic deformation, coating, cutting, etc. In addition, the combination of the choice of technical and information solutions makes quick switch from one type of processing to another possible. Recommendations on the implementation of the proposed technical and information solutions are given.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91208006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.30987/2223-4608-2023-12-19
M. Kheyfets
The world trends over the last half century and prospects for the development of technological equipment complexes for the coming decades are viewed. A comprehensive analysis of the applied stages and stages of designing processing machinery with the help of the construction of traditional mechanical design models is carried out. It is shown that the prospects of using energy flows to intensify machining processes should be analyzed at the early stages of design, using thermal and elec-trophysical criteria to study the emerging connections in the system. It is proposed to start designing mechatronic systems of machine complexes by analyzing structural connections of information technologies in hybrid production, including tradi-tional and additive technologies. It is recommended to use sequences of transfer criteria to analyze the processes of for-mation of material structures and the surface layer under thermomechanical and electrophysical processing. The criteria of heat and mass transfer sequence the structure formation in the finished material with an increase in the power of stimula-tion. The criteria characterizing energy flows within electrophysical processing influence the sequence of surface phenome-na and determine the process of material properties formation. Feedbacks linkage in the control of production machinery is shown through the degrees of tool freedom, particles of the applied material and the layer to be removed, by means of addi-tional effects of energy flows. Taking into account direct and feedback loops in the technological system, numerical control systems should be selected and the machining facility complex should be designed as a mechatronic system. The complex of hybrid technological equipment from the standpoint of computerization of production activities, as well as its modules, should be designed as computer peripherals devices based on the same architecture like a computer.
{"title":"Design of mechatronic systems of hybrid machine complexes","authors":"M. Kheyfets","doi":"10.30987/2223-4608-2023-12-19","DOIUrl":"https://doi.org/10.30987/2223-4608-2023-12-19","url":null,"abstract":"The world trends over the last half century and prospects for the development of technological equipment complexes for the coming decades are viewed. A comprehensive analysis of the applied stages and stages of designing processing machinery with the help of the construction of traditional mechanical design models is carried out. It is shown that the prospects of using energy flows to intensify machining processes should be analyzed at the early stages of design, using thermal and elec-trophysical criteria to study the emerging connections in the system. It is proposed to start designing mechatronic systems of machine complexes by analyzing structural connections of information technologies in hybrid production, including tradi-tional and additive technologies. It is recommended to use sequences of transfer criteria to analyze the processes of for-mation of material structures and the surface layer under thermomechanical and electrophysical processing. The criteria of heat and mass transfer sequence the structure formation in the finished material with an increase in the power of stimula-tion. The criteria characterizing energy flows within electrophysical processing influence the sequence of surface phenome-na and determine the process of material properties formation. Feedbacks linkage in the control of production machinery is shown through the degrees of tool freedom, particles of the applied material and the layer to be removed, by means of addi-tional effects of energy flows. Taking into account direct and feedback loops in the technological system, numerical control systems should be selected and the machining facility complex should be designed as a mechatronic system. The complex of hybrid technological equipment from the standpoint of computerization of production activities, as well as its modules, should be designed as computer peripherals devices based on the same architecture like a computer.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79763790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}