首页 > 最新文献

Scientific Data最新文献

英文 中文
Chromosome-level genome assembly of the ivory shell Babylonia areolata. 象牙贝壳 Babylonia areolata 的染色体级基因组组装。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-06 DOI: 10.1038/s41597-024-04001-9
Yu Zou, Jingqiang Fu, Yuan Liang, Xuan Luo, Minghui Shen, Miaoqin Huang, Yexin Chen, Weiwei You, Caihuan Ke

The ivory shell Babylonia areolata is an economically important marine benthic gastropod known for its rapid growth and high nutritional value. B. areolata is distributed in Southeast Asia and the southeast coastal areas of China. In this study, we constructed a high-quality genome for B. areolata using PacBio, Illumina, and Hi-C sequencing technologies. The genome assembly comprised 35 chromosomal sequences with a total length of 1.65 Gb. The scaffold and contig N50 lengths were 53.17 Mb and 2.64 Mb, respectively, with repeat sequences constituting 64.46% of the genome. Furthermore, 26,130 protein-coding genes and 96.75% of the genome's BUSCOs were identified. This inaugural report of a B. areolata genome provides crucial foundational information for further investigations into the biology, genomics, and genetic improvement of economic traits of this species.

象牙贝Babylonia areolata是一种具有重要经济价值的海洋底栖腹足类动物,以生长迅速和营养价值高而闻名。象牙贝分布于东南亚和中国东南沿海地区。在这项研究中,我们利用 PacBio、Illumina 和 Hi-C 测序技术构建了 B. areolata 的高质量基因组。基因组组装包括 35 个染色体序列,总长度为 1.65 Gb。支架和等位基因 N50 长度分别为 53.17 Mb 和 2.64 Mb,重复序列占基因组的 64.46%。此外,还鉴定了 26 130 个编码蛋白质的基因和基因组中 96.75% 的 BUSCOs。该首次报告的 B. areolata 基因组为进一步研究该物种的生物学、基因组学和经济性状的遗传改良提供了重要的基础信息。
{"title":"Chromosome-level genome assembly of the ivory shell Babylonia areolata.","authors":"Yu Zou, Jingqiang Fu, Yuan Liang, Xuan Luo, Minghui Shen, Miaoqin Huang, Yexin Chen, Weiwei You, Caihuan Ke","doi":"10.1038/s41597-024-04001-9","DOIUrl":"10.1038/s41597-024-04001-9","url":null,"abstract":"<p><p>The ivory shell Babylonia areolata is an economically important marine benthic gastropod known for its rapid growth and high nutritional value. B. areolata is distributed in Southeast Asia and the southeast coastal areas of China. In this study, we constructed a high-quality genome for B. areolata using PacBio, Illumina, and Hi-C sequencing technologies. The genome assembly comprised 35 chromosomal sequences with a total length of 1.65 Gb. The scaffold and contig N50 lengths were 53.17 Mb and 2.64 Mb, respectively, with repeat sequences constituting 64.46% of the genome. Furthermore, 26,130 protein-coding genes and 96.75% of the genome's BUSCOs were identified. This inaugural report of a B. areolata genome provides crucial foundational information for further investigations into the biology, genomics, and genetic improvement of economic traits of this species.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1201"},"PeriodicalIF":5.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in-air synthetic aperture sonar dataset of target scattering in environments of varying complexity. 不同复杂环境中目标散射的空中合成孔径声纳数据集。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-05 DOI: 10.1038/s41597-024-04050-0
Thomas E Blanford, David P Williams, J Daniel Park, Brian T Reinhardt, Kyle S Dalton, Shawn F Johnson, Daniel C Brown

This paper describes a synthetic aperture sonar (SAS) dataset collected in-air consisting of four types of targets in four environments of different complexity. The in-air laboratory based experiments produced data with a level of fidelity and ground truth accuracy that is not easily attainable in data collected underwater. The range of complexity, high level of data fidelity, and accurate ground truth provides a rich dataset with acoustic features on multiple scales. It can be used to develop new signal-processing and image reconstruction algorithms, as well as machine learning models for object detection and classification. It may also find application in model verification and validation for acoustic simulators. The dataset consists of raw acoustic time series returns, associated environmental conditions, hardware configuration, array motion, as well as the reconstructed imagery.

本文介绍了在空中采集的合成孔径声纳(SAS)数据集,该数据集由四种不同复杂环境中的四类目标组成。基于实验室的空中实验生成的数据具有水下数据难以达到的保真度和地面实况精度。复杂程度的范围、高水平的数据保真度和精确的地面实况提供了一个丰富的数据集,具有多种尺度的声学特征。它可用于开发新的信号处理和图像重建算法,以及用于物体检测和分类的机器学习模型。它还可用于声学模拟器的模型验证和确认。数据集包括原始声学时间序列回波、相关环境条件、硬件配置、阵列运动以及重建图像。
{"title":"An in-air synthetic aperture sonar dataset of target scattering in environments of varying complexity.","authors":"Thomas E Blanford, David P Williams, J Daniel Park, Brian T Reinhardt, Kyle S Dalton, Shawn F Johnson, Daniel C Brown","doi":"10.1038/s41597-024-04050-0","DOIUrl":"10.1038/s41597-024-04050-0","url":null,"abstract":"<p><p>This paper describes a synthetic aperture sonar (SAS) dataset collected in-air consisting of four types of targets in four environments of different complexity. The in-air laboratory based experiments produced data with a level of fidelity and ground truth accuracy that is not easily attainable in data collected underwater. The range of complexity, high level of data fidelity, and accurate ground truth provides a rich dataset with acoustic features on multiple scales. It can be used to develop new signal-processing and image reconstruction algorithms, as well as machine learning models for object detection and classification. It may also find application in model verification and validation for acoustic simulators. The dataset consists of raw acoustic time series returns, associated environmental conditions, hardware configuration, array motion, as well as the reconstructed imagery.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1196"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing water security in Africa with new high-resolution discharge data. 利用新的高分辨率排水数据推进非洲的水安全。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-05 DOI: 10.1038/s41597-024-04034-0
Komlavi Akpoti, Naga Manohar Velpuri, Naoki Mizukami, Stefanie Kagone, Mansoor Leh, Kirubel Mekonnen, Afua Owusu, Primrose Tinonetsana, Michael Phiri, Lahiru Madushanka, Tharindu Perera, Paranamana Thilina Prabhath, Gabriel E L Parrish, Gabriel B Senay, Abdulkarim Seid

VegDischarge v1, which covers over 64,000 river segments in Africa, is a natural river discharge dataset produced by coupled modeling; the agro-hydrologic VegET model and the mizuRoute routing model for the period 2001-2021. Using remote sensing data and hydrological modeling system, the 1-km runoff field simulated by VegET, was routed with mizuRoute. Performance metrics show strong model reliability, with R² of 0.5-0.9, NSE of 0.6-0.9, and KGE of 0.5-0.8 at the continental scale. The total average annual discharge for Africa is quantified at 3271.4 km³·year-1, with contributions to oceanic basins: 1000.0 km³·year-1 to the North Atlantic, primarily from the Senegal, Gambia, Volta, and Niger Rivers; 1327.2 km³·year-1 to the South Atlantic, largely from the Congo River; 214.7 km³·year-1 to the Mediterranean Sea, predominantly from the Nile River; and 729.4 km³·year-1 to the Indian Ocean, with inputs from rivers such as the Zambezi. The dataset is valuable for stakeholders and researchers to understand water availability, its temporal and spatial variations that affect water-related infrastructure planning, sustainable resource allocation, and the development of climate resilience strategies.

VegDischarge v1 覆盖非洲 64,000 多条河段,是通过耦合建模(农业水文 VegET 模型和 mizuRoute 路由模型,2001-2021 年)生成的自然河流排水数据集。利用遥感数据和水文建模系统,使用 mizuRoute 对 VegET 模拟的 1 公里径流场进行了路由。性能指标显示模型可靠性很高,在大陆尺度上,R²为 0.5-0.9,NSE 为 0.6-0.9,KGE 为 0.5-0.8。非洲的年均总排水量为 3271.4 千米³年-1,其中流入大洋盆地的水量为:流入北大西洋的水量为 1000.0 千米³年-1,主要来自塞内加尔河、冈比亚河、沃尔特河和尼日尔河;流入南大西洋的水量为 1327.2 千米³年-1,主要来自刚果河;流入地中海的水量为 214.7 千米³年-1,主要来自尼罗河;流入印度洋的水量为 729.4 千米³年-1,来自赞比西河等河流。该数据集对于利益相关者和研究人员了解水的可用性、影响与水有关的基础设施规划的时间和空间变化、可持续资源分配以及气候适应性战略的制定非常有价值。
{"title":"Advancing water security in Africa with new high-resolution discharge data.","authors":"Komlavi Akpoti, Naga Manohar Velpuri, Naoki Mizukami, Stefanie Kagone, Mansoor Leh, Kirubel Mekonnen, Afua Owusu, Primrose Tinonetsana, Michael Phiri, Lahiru Madushanka, Tharindu Perera, Paranamana Thilina Prabhath, Gabriel E L Parrish, Gabriel B Senay, Abdulkarim Seid","doi":"10.1038/s41597-024-04034-0","DOIUrl":"10.1038/s41597-024-04034-0","url":null,"abstract":"<p><p>VegDischarge v1, which covers over 64,000 river segments in Africa, is a natural river discharge dataset produced by coupled modeling; the agro-hydrologic VegET model and the mizuRoute routing model for the period 2001-2021. Using remote sensing data and hydrological modeling system, the 1-km runoff field simulated by VegET, was routed with mizuRoute. Performance metrics show strong model reliability, with R² of 0.5-0.9, NSE of 0.6-0.9, and KGE of 0.5-0.8 at the continental scale. The total average annual discharge for Africa is quantified at 3271.4 km³·year<sup>-1</sup>, with contributions to oceanic basins: 1000.0 km³·year<sup>-1</sup> to the North Atlantic, primarily from the Senegal, Gambia, Volta, and Niger Rivers; 1327.2 km³·year<sup>-1</sup> to the South Atlantic, largely from the Congo River; 214.7 km³·year<sup>-1</sup> to the Mediterranean Sea, predominantly from the Nile River; and 729.4 km³·year<sup>-1</sup> to the Indian Ocean, with inputs from rivers such as the Zambezi. The dataset is valuable for stakeholders and researchers to understand water availability, its temporal and spatial variations that affect water-related infrastructure planning, sustainable resource allocation, and the development of climate resilience strategies.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1195"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A long-term high-resolution dataset of grasslands grazing intensity in China. 中国草原放牧强度长期高分辨率数据集。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-05 DOI: 10.1038/s41597-024-04045-x
Daju Wang, Qiongyan Peng, Xiangqian Li, Wen Zhang, Xiaosheng Xia, Zhangcai Qin, Peiyang Ren, Shunlin Liang, Wenping Yuan

Grazing is a significant anthropogenic disturbance to grasslands, impacting their function and composition, and affecting carbon budgets and greenhouse gas emissions. However, accurate evaluations of grazing impacts are limited by the absence of long-term high-resolution grazing intensity data (i.e., the number of livestock per unit area). This study utilized census livestock data and a satellite-based vegetation index to develop the first Long-term High-resolution Grazing Intensity (LHGI) dataset of grassland in seven pastoral provinces in western China from 1980 to 2022. The LHGI dataset effectively captured spatial variations in grazing intensity, with validation at 73 sites showing a correlation coefficient (R2) of 0.78. The county-level validation showed an averaged R2 values of 0.73 ± 0.03 from 1980 to 2022. This dataset serves as a vital resource for estimating grassland carbon cycling and livestock system CH4 emissions, as well as contributing to grassland management.

放牧是对草原的重大人为干扰,会影响草原的功能和组成,并影响碳预算和温室气体排放。然而,由于缺乏长期的高分辨率放牧强度数据(即单位面积上的牲畜数量),对放牧影响的准确评估受到了限制。本研究利用牲畜普查数据和卫星植被指数,首次建立了中国西部七个牧区省份从 1980 年到 2022 年的长期高分辨率放牧强度(LHGI)数据集。LHGI数据集有效捕捉了放牧强度的空间变化,在73个地点的验证显示相关系数(R2)为0.78。从 1980 年到 2022 年,县级验证的平均 R2 值为 0.73 ± 0.03。该数据集是估算草地碳循环和畜牧系统甲烷排放量的重要资源,也有助于草地管理。
{"title":"A long-term high-resolution dataset of grasslands grazing intensity in China.","authors":"Daju Wang, Qiongyan Peng, Xiangqian Li, Wen Zhang, Xiaosheng Xia, Zhangcai Qin, Peiyang Ren, Shunlin Liang, Wenping Yuan","doi":"10.1038/s41597-024-04045-x","DOIUrl":"10.1038/s41597-024-04045-x","url":null,"abstract":"<p><p>Grazing is a significant anthropogenic disturbance to grasslands, impacting their function and composition, and affecting carbon budgets and greenhouse gas emissions. However, accurate evaluations of grazing impacts are limited by the absence of long-term high-resolution grazing intensity data (i.e., the number of livestock per unit area). This study utilized census livestock data and a satellite-based vegetation index to develop the first Long-term High-resolution Grazing Intensity (LHGI) dataset of grassland in seven pastoral provinces in western China from 1980 to 2022. The LHGI dataset effectively captured spatial variations in grazing intensity, with validation at 73 sites showing a correlation coefficient (R<sup>2</sup>) of 0.78. The county-level validation showed an averaged R<sup>2</sup> values of 0.73 ± 0.03 from 1980 to 2022. This dataset serves as a vital resource for estimating grassland carbon cycling and livestock system CH<sub>4</sub> emissions, as well as contributing to grassland management.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1194"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: A high-resolution dataset for future compound hot-dry events under climate change. 作者更正:气候变化下未来复合干热事件的高分辨率数据集。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-05 DOI: 10.1038/s41597-024-04054-w
Yizhuo Wen, Junhong Guo, Feng Wang, Zhenda Hao, Yifan Fei, Aili Yang, Yurui Fan, Faith Ka Shun Chan
{"title":"Author Correction: A high-resolution dataset for future compound hot-dry events under climate change.","authors":"Yizhuo Wen, Junhong Guo, Feng Wang, Zhenda Hao, Yifan Fei, Aili Yang, Yurui Fan, Faith Ka Shun Chan","doi":"10.1038/s41597-024-04054-w","DOIUrl":"10.1038/s41597-024-04054-w","url":null,"abstract":"","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1197"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: CESNET-TLS-Year22: A year-spanning TLS network traffic dataset from backbone lines. 作者更正:CESNET-TLS-Year22:来自骨干线路的跨年 TLS 网络流量数据集。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-05 DOI: 10.1038/s41597-024-04055-9
Karel Hynek, Jan Luxemburk, Jaroslav Pešek, Tomáš Čejka, Pavel Šiška
{"title":"Author Correction: CESNET-TLS-Year22: A year-spanning TLS network traffic dataset from backbone lines.","authors":"Karel Hynek, Jan Luxemburk, Jaroslav Pešek, Tomáš Čejka, Pavel Šiška","doi":"10.1038/s41597-024-04055-9","DOIUrl":"10.1038/s41597-024-04055-9","url":null,"abstract":"","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1199"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Historical dataset details the distribution, extent and form of lost Ostrea edulis reef ecosystems. 历史数据集详细记录了消失的虾夷珊瑚礁生态系统的分布、范围和形式。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-05 DOI: 10.1038/s41597-024-04048-8
Ruth H Thurstan, Hannah McCormick, Joanne Preston, Elizabeth C Ashton, Floris P Bennema, Ana Bratoš Cetinić, Janet H Brown, Tom C Cameron, Fiz da Costa, David W Donnan, Christine Ewers, Tomaso Fortibuoni, Eve Galimany, Otello Giovanardi, Romain Grancher, Daniele Grech, Maria Hayden-Hughes, Luke Helmer, K Thomas Jensen, José A Juanes, Janie Latchford, Alec B M Moore, Dimitrios K Moutopoulos, Pernille Nielsen, Henning von Nordheim, Bárbara Ondiviela, Corina Peter, Bernadette Pogoda, Bo Poulsen, Stéphane Pouvreau, Cordula Scherer, Aad C Smaal, David Smyth, Åsa Strand, John A Theodorou, Philine S E Zu Ermgassen

Ocean ecosystems have been subjected to anthropogenic influences for centuries, but the scale of past ecosystem changes is often unknown. For centuries, the European flat oyster (Ostrea edulis), an ecosystem engineer providing biogenic reef habitats, was a culturally and economically significant source of food and trade. These reef habitats are now functionally extinct, and almost no memory of where or at what scales this ecosystem once existed, or its past form, remains. The described datasets present qualitative and quantitative extracts from written records published between 1524 and 2022. These show: (1) locations of past flat oyster fisheries and/or oyster reef habitat described across its biogeographical range, with associated levels of confidence; (2) reported extent of past oyster reef habitats, and; (3) species associated with these habitats. These datasets will be of use to inform accelerating flat oyster restoration activities, to establish reference models for anchoring adaptive management of restoration action, and in contributing to global efforts to recover records on the hidden history of anthropogenic-driven ocean ecosystem degradation.

几个世纪以来,海洋生态系统一直受到人类活动的影响,但过去生态系统变化的规模往往不为人知。几个世纪以来,欧洲平牡蛎(Ostrea edulis)作为提供生物礁栖息地的生态系统工程师,在文化和经济上都是重要的食物和贸易来源。现在,这些珊瑚礁栖息地在功能上已经灭绝,几乎没有任何关于这种生态系统曾经存在的位置或规模,或其过去形态的记忆。所述数据集介绍了 1524 年至 2022 年间出版的书面记录的定性和定量摘录。这些数据集显示:(1) 过去平牡蛎渔业和/或牡蛎礁栖息地在其生物地理范围内的位置,以及相关的置信度;(2) 过去牡蛎礁栖息地的报告范围;(3) 与这些栖息地相关的物种。这些数据集将有助于为加快平牡蛎恢复活动提供信息,建立参考模型以支持恢复行动的适应性管理,并为全球努力恢复人类活动导致的海洋生态系统退化的不为人知的历史记录做出贡献。
{"title":"Historical dataset details the distribution, extent and form of lost Ostrea edulis reef ecosystems.","authors":"Ruth H Thurstan, Hannah McCormick, Joanne Preston, Elizabeth C Ashton, Floris P Bennema, Ana Bratoš Cetinić, Janet H Brown, Tom C Cameron, Fiz da Costa, David W Donnan, Christine Ewers, Tomaso Fortibuoni, Eve Galimany, Otello Giovanardi, Romain Grancher, Daniele Grech, Maria Hayden-Hughes, Luke Helmer, K Thomas Jensen, José A Juanes, Janie Latchford, Alec B M Moore, Dimitrios K Moutopoulos, Pernille Nielsen, Henning von Nordheim, Bárbara Ondiviela, Corina Peter, Bernadette Pogoda, Bo Poulsen, Stéphane Pouvreau, Cordula Scherer, Aad C Smaal, David Smyth, Åsa Strand, John A Theodorou, Philine S E Zu Ermgassen","doi":"10.1038/s41597-024-04048-8","DOIUrl":"10.1038/s41597-024-04048-8","url":null,"abstract":"<p><p>Ocean ecosystems have been subjected to anthropogenic influences for centuries, but the scale of past ecosystem changes is often unknown. For centuries, the European flat oyster (Ostrea edulis), an ecosystem engineer providing biogenic reef habitats, was a culturally and economically significant source of food and trade. These reef habitats are now functionally extinct, and almost no memory of where or at what scales this ecosystem once existed, or its past form, remains. The described datasets present qualitative and quantitative extracts from written records published between 1524 and 2022. These show: (1) locations of past flat oyster fisheries and/or oyster reef habitat described across its biogeographical range, with associated levels of confidence; (2) reported extent of past oyster reef habitats, and; (3) species associated with these habitats. These datasets will be of use to inform accelerating flat oyster restoration activities, to establish reference models for anchoring adaptive management of restoration action, and in contributing to global efforts to recover records on the hidden history of anthropogenic-driven ocean ecosystem degradation.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1198"},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully phased genome assemblies and graph-based genetic variants of the olive flounder, Paralichthys olivaceus. 橄榄鲽(Paralichthys olivaceus)的全阶段基因组组装和基于图谱的遗传变异。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-04 DOI: 10.1038/s41597-024-04033-1
Julan Kim, Yoonsik Kim, Jeongwoen Shin, Yeong-Kuk Kim, Doo Ho Lee, Jong-Won Park, Dain Lee, Hyun-Chul Kim, Jeong-Ho Lee, Seung Hwan Lee, Jun Kim

The olive flounder, Paralichthys olivaceus, also known as the Korean halibut, is an economically important flatfish in East Asian countries. Here, we provided four fully phased genome assemblies of two different olive flounder individuals using high-fidelity long-read sequencing and their parental short-read sequencing data. We obtained 42-44 Gb of ~15-kb and ~Q30 high-fidelity long reads, and their assembly quality values were ~53. We annotated ~30 K genes, ~170-Mb repetitive sequences, and ~3 M 5-methylcytosine positions for each genome assembly, and established a graph-based draft pan-genome of the olive flounder. We identified 5 M single-nucleotide variants and 100 K structural variants with their genotype information, where ~13% of the variants were possibly fixed in the two Korean individuals. Based on our chromosome-level genome assembly, we also explored chromosome evolution in the Pleuronectiformes family, as reported earlier. Our high-quality genomic resources will contribute to future genomic selection for accelerating the breeding process of the olive flounder.

橄榄鲽(Paralichthys olivaceus),又称韩国比目鱼,是东亚国家一种具有重要经济价值的比目鱼。在这里,我们利用高保真长线程测序及其亲本短线程测序数据,提供了两个不同橄榄鲽个体的四个全相位基因组组装。我们获得了 42-44 Gb ~15-kb 和 ~Q30 高保真长读数,其组装质量值为 ~53。我们对每个基因组的 ~30 K 个基因、~170 MB 重复序列和 ~3 M 个 5-甲基胞嘧啶位置进行了注释,并建立了基于图谱的橄榄鲽泛基因组草案。我们发现了 500 万个单核苷酸变异和 100 K 个结构变异及其基因型信息,其中约 13% 的变异在两个韩国个体中可能是固定的。基于染色体水平的基因组组装,我们还探讨了早先报道的胸棘鲷家族的染色体进化。我们的高质量基因组资源将有助于未来的基因组选育,加快橄榄鲽的育种进程。
{"title":"Fully phased genome assemblies and graph-based genetic variants of the olive flounder, Paralichthys olivaceus.","authors":"Julan Kim, Yoonsik Kim, Jeongwoen Shin, Yeong-Kuk Kim, Doo Ho Lee, Jong-Won Park, Dain Lee, Hyun-Chul Kim, Jeong-Ho Lee, Seung Hwan Lee, Jun Kim","doi":"10.1038/s41597-024-04033-1","DOIUrl":"10.1038/s41597-024-04033-1","url":null,"abstract":"<p><p>The olive flounder, Paralichthys olivaceus, also known as the Korean halibut, is an economically important flatfish in East Asian countries. Here, we provided four fully phased genome assemblies of two different olive flounder individuals using high-fidelity long-read sequencing and their parental short-read sequencing data. We obtained 42-44 Gb of ~15-kb and ~Q30 high-fidelity long reads, and their assembly quality values were ~53. We annotated ~30 K genes, ~170-Mb repetitive sequences, and ~3 M 5-methylcytosine positions for each genome assembly, and established a graph-based draft pan-genome of the olive flounder. We identified 5 M single-nucleotide variants and 100 K structural variants with their genotype information, where ~13% of the variants were possibly fixed in the two Korean individuals. Based on our chromosome-level genome assembly, we also explored chromosome evolution in the Pleuronectiformes family, as reported earlier. Our high-quality genomic resources will contribute to future genomic selection for accelerating the breeding process of the olive flounder.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1193"},"PeriodicalIF":5.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A benchmark for domain adaptation and generalization in smartphone-based human activity recognition. 基于智能手机的人类活动识别领域适应性和通用性基准。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-02 DOI: 10.1038/s41597-024-03951-4
Otávio Napoli, Dami Duarte, Patrick Alves, Darlinne Hubert Palo Soto, Henrique Evangelista de Oliveira, Anderson Rocha, Levy Boccato, Edson Borin

Human activity recognition (HAR) using smartphone inertial sensors, like accelerometers and gyroscopes, enhances smartphones' adaptability and user experience. Data distribution from these sensors is affected by several factors including sensor hardware, software, device placement, user demographics, terrain, and more. Most datasets focus on providing variability in user and (sometimes) device placement, limiting domain adaptation and generalization studies. Consequently, models trained on one dataset often perform poorly on others. Despite many publicly available HAR datasets, cross-dataset generalization remains challenging due to data format incompatibilities, such as differences in measurement units, sampling rates, and label encoding. Hence, we introduce the DAGHAR benchmark, a curated collection of datasets for domain adaptation and generalization studies in smartphone-based HAR. We standardized six datasets in terms of accelerometer units, sampling rate, gravity component, activity labels, user partitioning, and time window size, removing trivial biases while preserving intrinsic differences. This enables controlled evaluation of model generalization capabilities. Additionally, we provide baseline performance metrics from state-of-the-art machine learning models, crucial for comprehensive evaluations of generalization in HAR tasks.

利用智能手机惯性传感器(如加速计和陀螺仪)进行人类活动识别(HAR)可增强智能手机的适应性和用户体验。这些传感器的数据分布受多种因素影响,包括传感器硬件、软件、设备位置、用户人口统计、地形等。大多数数据集都侧重于提供用户和(有时)设备位置的可变性,从而限制了领域适应性和泛化研究。因此,在一个数据集上训练的模型往往在其他数据集上表现不佳。尽管有许多公开可用的 HAR 数据集,但由于数据格式不兼容(如测量单位、采样率和标签编码的差异),跨数据集泛化仍具有挑战性。因此,我们引入了 DAGHAR 基准,这是一个经过精心策划的数据集集合,用于基于智能手机的 HAR 领域适应和泛化研究。我们在加速度计单位、采样率、重力分量、活动标签、用户分区和时间窗口大小方面对六个数据集进行了标准化,消除了琐碎的偏差,同时保留了内在差异。这样就能对模型的泛化能力进行有控制的评估。此外,我们还提供了最先进的机器学习模型的基准性能指标,这对于全面评估 HAR 任务中的泛化能力至关重要。
{"title":"A benchmark for domain adaptation and generalization in smartphone-based human activity recognition.","authors":"Otávio Napoli, Dami Duarte, Patrick Alves, Darlinne Hubert Palo Soto, Henrique Evangelista de Oliveira, Anderson Rocha, Levy Boccato, Edson Borin","doi":"10.1038/s41597-024-03951-4","DOIUrl":"10.1038/s41597-024-03951-4","url":null,"abstract":"<p><p>Human activity recognition (HAR) using smartphone inertial sensors, like accelerometers and gyroscopes, enhances smartphones' adaptability and user experience. Data distribution from these sensors is affected by several factors including sensor hardware, software, device placement, user demographics, terrain, and more. Most datasets focus on providing variability in user and (sometimes) device placement, limiting domain adaptation and generalization studies. Consequently, models trained on one dataset often perform poorly on others. Despite many publicly available HAR datasets, cross-dataset generalization remains challenging due to data format incompatibilities, such as differences in measurement units, sampling rates, and label encoding. Hence, we introduce the DAGHAR benchmark, a curated collection of datasets for domain adaptation and generalization studies in smartphone-based HAR. We standardized six datasets in terms of accelerometer units, sampling rate, gravity component, activity labels, user partitioning, and time window size, removing trivial biases while preserving intrinsic differences. This enables controlled evaluation of model generalization capabilities. Additionally, we provide baseline performance metrics from state-of-the-art machine learning models, crucial for comprehensive evaluations of generalization in HAR tasks.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1192"},"PeriodicalIF":5.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing temporal dynamics of nitrogen surplus in Indian agriculture: district scale data from 1966 to 2017. 评估印度农业氮过剩的时间动态:1966 年至 2017 年的地区规模数据。
IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-11-02 DOI: 10.1038/s41597-024-04023-3
Shekhar Sharan Goyal, Rohini Kumar, Udit Bhatia

Nitrogen (N) is essential for agricultural productivity, yet its surplus poses significant environmental risks. Currently, over half of applied nitrogen is lost, resulting in resource wastage, contributing to increased greenhouse gas emissions and biodiversity loss. Excess nitrogen persists in the environment, contaminating soil and water bodies for decades. Quantifying detailed historical N-surplus estimation in India remains limited, despite national and global-scaled assessments. Our study develops a district-level dataset of annual agricultural N-surplus from 1966-2017, integrating 12 different estimates to address uncertainties arising from multiple data sources and methodological choices across major elements of the N surplus. This dataset supports flexible spatial aggregation, aiding policymakers in implementing effective nitrogen management strategies in India. In addition, we verified our estimates by comparing them with previous studies. This work underscores the importance of setting realistic nitrogen management targets that account for inherent uncertainties, paving the way for sustainable agricultural practices in India, reducing environmental impacts, and boosting productivity.

氮(N)对农业生产率至关重要,但其过剩会带来巨大的环境风险。目前,施用的氮有一半以上流失,造成资源浪费,导致温室气体排放增加和生物多样性丧失。过剩的氮在环境中持续存在,污染土壤和水体长达数十年之久。尽管进行了全国和全球范围的评估,但对印度历史上氮盈余的详细估算仍然有限。我们的研究开发了 1966-2017 年地区级年度农业氮盈余数据集,整合了 12 种不同的估算方法,以解决氮盈余主要元素的多种数据来源和方法选择所带来的不确定性。该数据集支持灵活的空间聚合,有助于决策者在印度实施有效的氮管理策略。此外,我们还通过与以前的研究进行比较,验证了我们的估算结果。这项工作强调了制定考虑到固有不确定性的现实氮管理目标的重要性,为印度的可持续农业实践、减少环境影响和提高生产力铺平了道路。
{"title":"Assessing temporal dynamics of nitrogen surplus in Indian agriculture: district scale data from 1966 to 2017.","authors":"Shekhar Sharan Goyal, Rohini Kumar, Udit Bhatia","doi":"10.1038/s41597-024-04023-3","DOIUrl":"10.1038/s41597-024-04023-3","url":null,"abstract":"<p><p>Nitrogen (N) is essential for agricultural productivity, yet its surplus poses significant environmental risks. Currently, over half of applied nitrogen is lost, resulting in resource wastage, contributing to increased greenhouse gas emissions and biodiversity loss. Excess nitrogen persists in the environment, contaminating soil and water bodies for decades. Quantifying detailed historical N-surplus estimation in India remains limited, despite national and global-scaled assessments. Our study develops a district-level dataset of annual agricultural N-surplus from 1966-2017, integrating 12 different estimates to address uncertainties arising from multiple data sources and methodological choices across major elements of the N surplus. This dataset supports flexible spatial aggregation, aiding policymakers in implementing effective nitrogen management strategies in India. In addition, we verified our estimates by comparing them with previous studies. This work underscores the importance of setting realistic nitrogen management targets that account for inherent uncertainties, paving the way for sustainable agricultural practices in India, reducing environmental impacts, and boosting productivity.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1191"},"PeriodicalIF":5.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Scientific Data
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1