Pub Date : 2023-04-23DOI: 10.3390/scipharm91020022
Juliana Andriolli Ribeiro, E. Magri, I. Gonçalves, K. Paese, J. Roman, A. T. Valduga
Yerba-mate contains in its composition a high concentration of phenolic compounds. This class of secondary metabolites exhibits strong values of molar absorptivity on ultraviolet and visible wavelengths. This study evaluated the effect of yerba-mate extracts on the in vitro solar protection factor (SPF) value of sunscreen formulations. The sunscreen formulations were prepared to have non-ionic lotion as a basis and yerba-mate extract and/or avobenzone as active agents. The SPF and resveratrol protective effect of the formulations were determined by UV-vis spectrometry. A synergic effect between the yerba-mate extract and avobenzone on the SPF was found. Yerba-mate extract at 5% improved the SPF of the avobenzone 5% formulation from 28.46 ± 5.45 to 40.48 ± 0.84. Yerba-mate extract at 5% avoided resveratrol degradation by ultraviolet radiation. At this same concentration, avobenzone produced a smaller effect than yerba-mate extracts in resveratrol protection. The formulations with yerba-mate + avobenzone presented smaller changes in pH values during 12 days of storage. The spreadability profile of yerba-mate and avobenzone formulations was similar to the profile of avobenzone formulations. The results reported here show the suitability of the yerba-mate extract use in photoprotective formulations, highlighting their in vitro effect and opening possibilities for new investigations exploring this property.
{"title":"Photoprotector Effect of Emulsions with Yerba-Mate (Ilex paraguariensis) Extract","authors":"Juliana Andriolli Ribeiro, E. Magri, I. Gonçalves, K. Paese, J. Roman, A. T. Valduga","doi":"10.3390/scipharm91020022","DOIUrl":"https://doi.org/10.3390/scipharm91020022","url":null,"abstract":"Yerba-mate contains in its composition a high concentration of phenolic compounds. This class of secondary metabolites exhibits strong values of molar absorptivity on ultraviolet and visible wavelengths. This study evaluated the effect of yerba-mate extracts on the in vitro solar protection factor (SPF) value of sunscreen formulations. The sunscreen formulations were prepared to have non-ionic lotion as a basis and yerba-mate extract and/or avobenzone as active agents. The SPF and resveratrol protective effect of the formulations were determined by UV-vis spectrometry. A synergic effect between the yerba-mate extract and avobenzone on the SPF was found. Yerba-mate extract at 5% improved the SPF of the avobenzone 5% formulation from 28.46 ± 5.45 to 40.48 ± 0.84. Yerba-mate extract at 5% avoided resveratrol degradation by ultraviolet radiation. At this same concentration, avobenzone produced a smaller effect than yerba-mate extracts in resveratrol protection. The formulations with yerba-mate + avobenzone presented smaller changes in pH values during 12 days of storage. The spreadability profile of yerba-mate and avobenzone formulations was similar to the profile of avobenzone formulations. The results reported here show the suitability of the yerba-mate extract use in photoprotective formulations, highlighting their in vitro effect and opening possibilities for new investigations exploring this property.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47560011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-21DOI: 10.3390/scipharm91020021
Kateryna Typlynska, Y. Kondratova, L. Logoyda
Our main target was to develop methods for the quality control of the tablet «ramipril» according to the indicators of «Quantitative determination», «Impurities» and «Dissolution». New, precise, accurate and green HPLC methods were developed for the determination of ramipril and its impurities in tablets. The separation was accomplished using a diode array detector at 210 nm with an isocratic and gradient mobile phase consisting of a 0.2 g/L solution of sodium hexanesulfonate (pH 2.7) and the acetonitrile and chromatographic columns Acclaim 120 C18 and Inertsil ODS-3. The developed method was validated in accordance with ICH guidelines. The analysis of impurities was performed within a run duration of less than 25 min, which is about a two times shorter than that of the official Ph. Eur. method. The analysis of ramipril in tablets was performed with a run duration of less than 4.5 min, which is about three times shorter than that of the official USP method. The developed methods were successfully applied for the quality control of the tablet «ramipril» according to the indicators of «Quantitative determination», «Impurities» and «Dissolution». In addition, they proved its superiority over the reported methods in terms of greenness using different assessment tools.
{"title":"Development of Methods of Quality Control of the Tablets «Ramipril»","authors":"Kateryna Typlynska, Y. Kondratova, L. Logoyda","doi":"10.3390/scipharm91020021","DOIUrl":"https://doi.org/10.3390/scipharm91020021","url":null,"abstract":"Our main target was to develop methods for the quality control of the tablet «ramipril» according to the indicators of «Quantitative determination», «Impurities» and «Dissolution». New, precise, accurate and green HPLC methods were developed for the determination of ramipril and its impurities in tablets. The separation was accomplished using a diode array detector at 210 nm with an isocratic and gradient mobile phase consisting of a 0.2 g/L solution of sodium hexanesulfonate (pH 2.7) and the acetonitrile and chromatographic columns Acclaim 120 C18 and Inertsil ODS-3. The developed method was validated in accordance with ICH guidelines. The analysis of impurities was performed within a run duration of less than 25 min, which is about a two times shorter than that of the official Ph. Eur. method. The analysis of ramipril in tablets was performed with a run duration of less than 4.5 min, which is about three times shorter than that of the official USP method. The developed methods were successfully applied for the quality control of the tablet «ramipril» according to the indicators of «Quantitative determination», «Impurities» and «Dissolution». In addition, they proved its superiority over the reported methods in terms of greenness using different assessment tools.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45666204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.3390/scipharm91020020
Juan Luis Pérez-Salas, M. Moreno‐Jiménez, N. Rocha‐Guzmán, R. González-Laredo, L. Medina‐Torres, J. Gallegos‐Infante
Skin inflammation occurs as an immune response to various stimuli such as ultraviolet light, irritants, or any type of skin barrier injury. Finding safe and effective drugs to combat skin inflammation remains a research challenge. Ethical and legal considerations in animal testing encourage the development of in vitro and ex vivo models for the detection of skin inflammation. This report presents an updated review of non-animal study models available for screening drugs with anti-inflammatory potential. It includes a description of the basic methods used to inhibit protein denaturation and red blood cell membrane stability. Three in vitro inhibition assay methods for enzymes relevant to the skin inflammatory process are then described. The development of cell culture models is described: relatively simple and easy-to-produce two-dimensional (2D) skin cell cultures that allow assessment of response to a given stimulus, three-dimensional (3D) cell cultures that better mimic human skin physiology by more accurately replicating mechanical and chemical signals, and vascularized 3D skin models with dynamic perfusion and microfluidic devices known as skin on a chip. Finally, ex vivo skin models are presented that could more accurately represent human skin in terms of structure, cell signaling mechanisms, and absorption effects. Although the current development of models without the use of animals is promising, improvements and refinements are needed to make the models more suitable as screening platforms for topical anti-inflammatory drugs.
{"title":"In Vitro and Ex Vivo Models for Screening Topical Anti-Inflammatory Drugs","authors":"Juan Luis Pérez-Salas, M. Moreno‐Jiménez, N. Rocha‐Guzmán, R. González-Laredo, L. Medina‐Torres, J. Gallegos‐Infante","doi":"10.3390/scipharm91020020","DOIUrl":"https://doi.org/10.3390/scipharm91020020","url":null,"abstract":"Skin inflammation occurs as an immune response to various stimuli such as ultraviolet light, irritants, or any type of skin barrier injury. Finding safe and effective drugs to combat skin inflammation remains a research challenge. Ethical and legal considerations in animal testing encourage the development of in vitro and ex vivo models for the detection of skin inflammation. This report presents an updated review of non-animal study models available for screening drugs with anti-inflammatory potential. It includes a description of the basic methods used to inhibit protein denaturation and red blood cell membrane stability. Three in vitro inhibition assay methods for enzymes relevant to the skin inflammatory process are then described. The development of cell culture models is described: relatively simple and easy-to-produce two-dimensional (2D) skin cell cultures that allow assessment of response to a given stimulus, three-dimensional (3D) cell cultures that better mimic human skin physiology by more accurately replicating mechanical and chemical signals, and vascularized 3D skin models with dynamic perfusion and microfluidic devices known as skin on a chip. Finally, ex vivo skin models are presented that could more accurately represent human skin in terms of structure, cell signaling mechanisms, and absorption effects. Although the current development of models without the use of animals is promising, improvements and refinements are needed to make the models more suitable as screening platforms for topical anti-inflammatory drugs.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44091979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-10DOI: 10.3390/scipharm91020019
María Taboada-Alquerque, Danilo Pajaro-Valenzuela, K. Caballero-Gallardo, A. Cifuentes, E. Ibáñez, M. Ahumedo-Monterrosa, E. Stashenko, J. Olivero-Verbel
Carnosol is a natural diterpene present in Rosmarinus officinalis L. (rosemary) with anti-tumor and anti-inflammatory properties. Despite its importance, the pharmacological mechanisms underlying the interactions between carnosol and human targets are still unclear. The goal was to identify plausible human target for carnosol and the network pharmacology. Rosemary was analyzed using HPLC-QTOF-MS/MS. Potential carnosol targets were identified using docking and a public database (CTD). Carnosol was screened against 708 human proteins using AutoDock Vina, and affinity values were used as prioritization criteria. The targets set was uploaded to WebGestalt to obtain Gene Ontology (GO) and KEGG pathway enrichment analysis. HPLC-QTOF-MS/MS analyses allowed the tentative annotation of nine chemicals, with carnosol being the most ionized. There were 53 plausible targets for carnosol, with 20 identified using virtual screening, including Hsp90α (−10.9 kcal/mol), AKR1C3 (−10.4 kcal/mol), and Hsp90β (−10.4 kcal/mol), and 33 identified from CTD. The potential targets for carnosol identified with PPI and molecular docking were HSP90AA1, MAPK1, MAPK3, CAT, JUN, AHR, and CASP3. GO terms and KEGG pathways analysis found that carnosol is closely related to infection (Chagas, influenza A, toxoplasmosis, and pertussis) and inflammation (IL-17 and TNF signaling pathway and Th-17 cell differentiation). These results demonstrated that carnosol may induce an immuno-inflammatory response.
{"title":"Mapping Protein Targets of Carnosol, a Molecule Identified in Rosmarinus officinalis: In Silico Docking Studies and Network Pharmacology","authors":"María Taboada-Alquerque, Danilo Pajaro-Valenzuela, K. Caballero-Gallardo, A. Cifuentes, E. Ibáñez, M. Ahumedo-Monterrosa, E. Stashenko, J. Olivero-Verbel","doi":"10.3390/scipharm91020019","DOIUrl":"https://doi.org/10.3390/scipharm91020019","url":null,"abstract":"Carnosol is a natural diterpene present in Rosmarinus officinalis L. (rosemary) with anti-tumor and anti-inflammatory properties. Despite its importance, the pharmacological mechanisms underlying the interactions between carnosol and human targets are still unclear. The goal was to identify plausible human target for carnosol and the network pharmacology. Rosemary was analyzed using HPLC-QTOF-MS/MS. Potential carnosol targets were identified using docking and a public database (CTD). Carnosol was screened against 708 human proteins using AutoDock Vina, and affinity values were used as prioritization criteria. The targets set was uploaded to WebGestalt to obtain Gene Ontology (GO) and KEGG pathway enrichment analysis. HPLC-QTOF-MS/MS analyses allowed the tentative annotation of nine chemicals, with carnosol being the most ionized. There were 53 plausible targets for carnosol, with 20 identified using virtual screening, including Hsp90α (−10.9 kcal/mol), AKR1C3 (−10.4 kcal/mol), and Hsp90β (−10.4 kcal/mol), and 33 identified from CTD. The potential targets for carnosol identified with PPI and molecular docking were HSP90AA1, MAPK1, MAPK3, CAT, JUN, AHR, and CASP3. GO terms and KEGG pathways analysis found that carnosol is closely related to infection (Chagas, influenza A, toxoplasmosis, and pertussis) and inflammation (IL-17 and TNF signaling pathway and Th-17 cell differentiation). These results demonstrated that carnosol may induce an immuno-inflammatory response.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45053483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-28DOI: 10.3390/scipharm91020018
M. Zayed
Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.
{"title":"Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases","authors":"M. Zayed","doi":"10.3390/scipharm91020018","DOIUrl":"https://doi.org/10.3390/scipharm91020018","url":null,"abstract":"Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45393311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research sought to optimize the microwave-assisted extraction of Chatuphalathika as an herbal recipe maximizing the active compounds and the antioxidant activity by the Box–Behnken design. Three factors—microwave power, time, and cycle—were varied. Eight responses—extraction yield, total phenolic content, gallic acid content, corilagin content, chebulagic acid, chebulinic acid, IC50 from DPPH assay, and IC50 from FRAP assay—were monitored. Furthermore, cytotoxicity was evaluated to ensure the safety of the extract. After that, the optimized extract was compressed into tablets. The results showed that the optimal condition of the microwave-assisted extraction gave the simultaneous maximum extraction yield, total phenolic content, and antioxidant activity with a microwave power of 450 W for 30 s and 3 cycles. The extract obtained from the optimal condition exhibited a good safety profile although a concentration of 5 mg/mL was used. The optimized tablets were achieved when a compression force of 1500 psi and magnesium stearate of 1% were applied, and no sodium starch glycolate was added. In conclusion, the optimal green extraction method could be used for the extraction of the Chatuphalathika. Furthermore, the fabrication of Chatuphalathika tablets was successful, as the tablets had low friability with a short disintegration time.
{"title":"Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach","authors":"Chaowalit Monton, Piyapa Keawchay, Chantisa Pokkrong, Pariyakorn Kamnoedthapaya, Abhiruj Navabhatra, Jirapornchai Suksaeree, Thaniya Wunnakup, Natawat Chankana, T. Songsak","doi":"10.3390/scipharm91020017","DOIUrl":"https://doi.org/10.3390/scipharm91020017","url":null,"abstract":"This research sought to optimize the microwave-assisted extraction of Chatuphalathika as an herbal recipe maximizing the active compounds and the antioxidant activity by the Box–Behnken design. Three factors—microwave power, time, and cycle—were varied. Eight responses—extraction yield, total phenolic content, gallic acid content, corilagin content, chebulagic acid, chebulinic acid, IC50 from DPPH assay, and IC50 from FRAP assay—were monitored. Furthermore, cytotoxicity was evaluated to ensure the safety of the extract. After that, the optimized extract was compressed into tablets. The results showed that the optimal condition of the microwave-assisted extraction gave the simultaneous maximum extraction yield, total phenolic content, and antioxidant activity with a microwave power of 450 W for 30 s and 3 cycles. The extract obtained from the optimal condition exhibited a good safety profile although a concentration of 5 mg/mL was used. The optimized tablets were achieved when a compression force of 1500 psi and magnesium stearate of 1% were applied, and no sodium starch glycolate was added. In conclusion, the optimal green extraction method could be used for the extraction of the Chatuphalathika. Furthermore, the fabrication of Chatuphalathika tablets was successful, as the tablets had low friability with a short disintegration time.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48145159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3390/scipharm91010016
Tamam El-Elimat, Haya S. El-Qaderi, Wael M. Hananeh, Mahmoud M. Abu AlSamen, Ahmed H. Al Sharie, Musa A. Alshehabat, Mohammad Al-Gharaibeh, Feras Q. Alali
The wound healing potential of the aerial parts of Hypericum triquetrifolium Turra (Hypericaceae) was evaluated using an in vivo excision wound model in rats. Adult male Sprague Dawley rats were randomly assigned into seven groups; blank vehicles (olive oil and petroleum jelly), negative control, treatments [H. triquetrifolium ethanolic extract in petroleum jelly (5% and 10%) and H. triquetrifolium olive oil macerate (100 and 200 g/L)], and positive control (MEBO). Treatments were applied topically once daily until the wounds had completely healed. Wound areas and contraction rates were calculated, and full-thickness samples of the healed skin were collected for histopathological examination. H. triquetrifolium ointment (5%) showed the best wound healing activity with statistically significant differences when compared with the MEBO, petroleum jelly, and the negative control groups. Tissue sections were histopathologically examined in terms of re-epithelialization, granulation tissue development, collagen deposition, inflammatory cell infiltration, angiogenesis, and ulcer formation to support the in vivo excision wound model findings. H. triquetrifolium ointment (5%) showed the best histopathological scores in both re-epithelialization and ulcer formation. For quality control purposes, a high-performance liquid chromatography (HPLC) method was used to quantify key marker compounds in the extract, namely hypericin and rutin which showed a content of 0.64% and 4.46% (w/w), respectively. Based on the experimental results, H. triquetrifolium ointment (5%) exhibits remarkable wound healing properties at various stages of the wound healing process. Further investigations to prove its safety and efficacy in different types of wounds and to uncover its cellular mechanisms are warranted.
{"title":"Evaluation of the Wound Healing Potential of Hypericum triquetrifolium Turra: An Experimental Animal Study and Histopathological Examination","authors":"Tamam El-Elimat, Haya S. El-Qaderi, Wael M. Hananeh, Mahmoud M. Abu AlSamen, Ahmed H. Al Sharie, Musa A. Alshehabat, Mohammad Al-Gharaibeh, Feras Q. Alali","doi":"10.3390/scipharm91010016","DOIUrl":"https://doi.org/10.3390/scipharm91010016","url":null,"abstract":"The wound healing potential of the aerial parts of Hypericum triquetrifolium Turra (Hypericaceae) was evaluated using an in vivo excision wound model in rats. Adult male Sprague Dawley rats were randomly assigned into seven groups; blank vehicles (olive oil and petroleum jelly), negative control, treatments [H. triquetrifolium ethanolic extract in petroleum jelly (5% and 10%) and H. triquetrifolium olive oil macerate (100 and 200 g/L)], and positive control (MEBO). Treatments were applied topically once daily until the wounds had completely healed. Wound areas and contraction rates were calculated, and full-thickness samples of the healed skin were collected for histopathological examination. H. triquetrifolium ointment (5%) showed the best wound healing activity with statistically significant differences when compared with the MEBO, petroleum jelly, and the negative control groups. Tissue sections were histopathologically examined in terms of re-epithelialization, granulation tissue development, collagen deposition, inflammatory cell infiltration, angiogenesis, and ulcer formation to support the in vivo excision wound model findings. H. triquetrifolium ointment (5%) showed the best histopathological scores in both re-epithelialization and ulcer formation. For quality control purposes, a high-performance liquid chromatography (HPLC) method was used to quantify key marker compounds in the extract, namely hypericin and rutin which showed a content of 0.64% and 4.46% (w/w), respectively. Based on the experimental results, H. triquetrifolium ointment (5%) exhibits remarkable wound healing properties at various stages of the wound healing process. Further investigations to prove its safety and efficacy in different types of wounds and to uncover its cellular mechanisms are warranted.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135080264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.3390/scipharm91010014
So-Yeon Kim, Minjing Hong, P. Deepa, K. Sowndhararajan, Se Jin Park, S. Park, Songmun Kim
This study aimed to elucidate the anti-inflammatory activity of C. tinctorius leaves by measuring inflammatory parameters such as nitric oxide (NO) production and mRNA expression of iNOS, interleukin-6 (IL-6), and IL-1β in lipopolysaccharide (LPS)-induced HaCaT cells. Further, the effect of C. tinctorius ethanol extract on the MAPKs/NF-κB signaling pathway was examined in HaCaT cells. The phytochemical profile of the ethanol extract of C. tinctorius leaves was determined using UPLC-QTOF-MS/MS. The results indicated that the ethanol extract of C. tinctorius effectively attenuated LPS-induced secretion of NO, IL-6, and IL-1β in HaCaT cells. Further, LPS-stimulated mRNA and protein expressions of iNOS were decreased by pre-treatment with C. tinctorius ethanol extract at the transcriptional level in HaCaT cells. Moreover, the ethanol extract of C. tinctorius suppressed NF-κB signaling in LPS-induced HaCaT cells. This suppression was mediated by MAPKs/NF-κB signaling, inhibiting the phosphorylation of p38 and p65 in HaCaT cells. However, there is no significant effect on the phosphorylation of JNK by the ethanol extract. The QTOF-MS/MS analysis revealed the identification of 27 components in the ethanol extract of C. tinctorius leaves. The data demonstrate that the ethanol extract of C. tinctorius leaves protects the LPS-induced HaCaT cells by inhibiting the expression of iNOS, IL-6, and IL-1β and suppressing the phosphorylation of the p38, p65, p-JNK via inactivation of MAPKs/NF-κB signaling pathway. These results demonstrate that C. tinctorius leaves may serve as a potential candidate to prevent inflammation-related diseases.
{"title":"Carthamus tinctorius Suppresses LPS-Induced Anti-Inflammatory Responses by Inhibiting the MAPKs/NF-κB Signaling Pathway in HaCaT Cells","authors":"So-Yeon Kim, Minjing Hong, P. Deepa, K. Sowndhararajan, Se Jin Park, S. Park, Songmun Kim","doi":"10.3390/scipharm91010014","DOIUrl":"https://doi.org/10.3390/scipharm91010014","url":null,"abstract":"This study aimed to elucidate the anti-inflammatory activity of C. tinctorius leaves by measuring inflammatory parameters such as nitric oxide (NO) production and mRNA expression of iNOS, interleukin-6 (IL-6), and IL-1β in lipopolysaccharide (LPS)-induced HaCaT cells. Further, the effect of C. tinctorius ethanol extract on the MAPKs/NF-κB signaling pathway was examined in HaCaT cells. The phytochemical profile of the ethanol extract of C. tinctorius leaves was determined using UPLC-QTOF-MS/MS. The results indicated that the ethanol extract of C. tinctorius effectively attenuated LPS-induced secretion of NO, IL-6, and IL-1β in HaCaT cells. Further, LPS-stimulated mRNA and protein expressions of iNOS were decreased by pre-treatment with C. tinctorius ethanol extract at the transcriptional level in HaCaT cells. Moreover, the ethanol extract of C. tinctorius suppressed NF-κB signaling in LPS-induced HaCaT cells. This suppression was mediated by MAPKs/NF-κB signaling, inhibiting the phosphorylation of p38 and p65 in HaCaT cells. However, there is no significant effect on the phosphorylation of JNK by the ethanol extract. The QTOF-MS/MS analysis revealed the identification of 27 components in the ethanol extract of C. tinctorius leaves. The data demonstrate that the ethanol extract of C. tinctorius leaves protects the LPS-induced HaCaT cells by inhibiting the expression of iNOS, IL-6, and IL-1β and suppressing the phosphorylation of the p38, p65, p-JNK via inactivation of MAPKs/NF-κB signaling pathway. These results demonstrate that C. tinctorius leaves may serve as a potential candidate to prevent inflammation-related diseases.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41363099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.3390/scipharm91010015
M. Iqhrammullah, D. Rizki, Agnia Purnama, T. F. Duta, H. Harapan, R. Idroes, B. Ginting
Essential oils are potential therapeutics for coronavirus disease 2019 (COVID-19), in which some of the volatile compounds of essential oils have been well known for their broad antiviral activities. These therapeutic candidates have been shown to regulate the excessive secretion of pro-inflammatory cytokines, which underlies the pathogenesis of severe COVID-19. We aimed to identify molecular targets of essential oils in disrupting the cell entry and replication of SARS-CoV-2, hence being active as antivirals. Literature searches were performed on PubMed, Scopus, Scillit, and CaPlus/SciFinder (7 December 2022) with a truncated title implying the anti-SARS-CoV-2 activity of essential oil. Data were collected from the eligible studies and described narratively. Quality appraisal was performed on the included studies. A total of eight studies were included in this review; four of which used enzyme inhibition assay, one—pseudo-SARS-CoV-2 culture; two—whole SARS-CoV-2 culture; and one—ACE2-expressing cancer cells. Essential oils may prevent the SARS-CoV-2 infection by targeting its receptors on the cells (ACE2 and TMPRSS2). Menthol, 1,8-cineole, and camphor are among the volatile compounds which serve as potential ACE2 blockers. β-caryophyllene may selectively target the SARS-CoV-2 spike protein and inhibit viral entry. Other interactions with SARS-CoV-2 proteases and RdRp are observed based on molecular docking. In conclusion, essential oils could target proteins related to the SARS-CoV-2 entry and replication. Further studies with improved and uniform study designs should be carried out to optimize essential oils as COVID-19 therapies.
{"title":"Antiviral Molecular Targets of Essential Oils against SARS-CoV-2: A Systematic Review","authors":"M. Iqhrammullah, D. Rizki, Agnia Purnama, T. F. Duta, H. Harapan, R. Idroes, B. Ginting","doi":"10.3390/scipharm91010015","DOIUrl":"https://doi.org/10.3390/scipharm91010015","url":null,"abstract":"Essential oils are potential therapeutics for coronavirus disease 2019 (COVID-19), in which some of the volatile compounds of essential oils have been well known for their broad antiviral activities. These therapeutic candidates have been shown to regulate the excessive secretion of pro-inflammatory cytokines, which underlies the pathogenesis of severe COVID-19. We aimed to identify molecular targets of essential oils in disrupting the cell entry and replication of SARS-CoV-2, hence being active as antivirals. Literature searches were performed on PubMed, Scopus, Scillit, and CaPlus/SciFinder (7 December 2022) with a truncated title implying the anti-SARS-CoV-2 activity of essential oil. Data were collected from the eligible studies and described narratively. Quality appraisal was performed on the included studies. A total of eight studies were included in this review; four of which used enzyme inhibition assay, one—pseudo-SARS-CoV-2 culture; two—whole SARS-CoV-2 culture; and one—ACE2-expressing cancer cells. Essential oils may prevent the SARS-CoV-2 infection by targeting its receptors on the cells (ACE2 and TMPRSS2). Menthol, 1,8-cineole, and camphor are among the volatile compounds which serve as potential ACE2 blockers. β-caryophyllene may selectively target the SARS-CoV-2 spike protein and inhibit viral entry. Other interactions with SARS-CoV-2 proteases and RdRp are observed based on molecular docking. In conclusion, essential oils could target proteins related to the SARS-CoV-2 entry and replication. Further studies with improved and uniform study designs should be carried out to optimize essential oils as COVID-19 therapies.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45512238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-02DOI: 10.3390/scipharm91010013
Y. Konechnyi, A. Lozynskyi, I. Ivasechko, T. Dumych, S. Paryzhak, O. Hrushka, Ulyana Partyka, Iryna Pasichnyuk, D. Khylyuk, R. Lesyk
Searching for new types of biological activities among preliminarily identified hit compounds is a key challenge in modern medicinal chemistry. In our study, a previously studied 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic acid (Les-6614) was screened for antimicrobial, antifungal, anti-allergic, and antitumor activities. Moreover, cytotoxicity, molecular docking, and SwissAdme online target screening were accomplished. It was determined that the Les-6614 has slight antimicrobial and antitumor activity. However, the studied compound decreased IgE levels in sensitized guinea pigs by 33–86% and reduced IgA, IgM, IL-2, and TNF-α, indicating anti-inflammatory and anti-allergic aactivities. According to the SwissADME web tool, target predictions for Les-6614 potentially have an affinity for lysosomal protective protein, Thromboxane-A synthase, and PPARγ. The molecular docking confirmed that the studied 2-thioxo-4-thiazolidinone derivative showed good bonding with LLP and TXAS, leading to stable protein–ligand complexes. Additionally, Les-6614 is a potential PPARγ modulator, which is important in the pathogenesis of allergy, cancer, and cardiovascular diseases.
{"title":"3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic Acid as a Potential Polypharmacological Agent","authors":"Y. Konechnyi, A. Lozynskyi, I. Ivasechko, T. Dumych, S. Paryzhak, O. Hrushka, Ulyana Partyka, Iryna Pasichnyuk, D. Khylyuk, R. Lesyk","doi":"10.3390/scipharm91010013","DOIUrl":"https://doi.org/10.3390/scipharm91010013","url":null,"abstract":"Searching for new types of biological activities among preliminarily identified hit compounds is a key challenge in modern medicinal chemistry. In our study, a previously studied 3-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic acid (Les-6614) was screened for antimicrobial, antifungal, anti-allergic, and antitumor activities. Moreover, cytotoxicity, molecular docking, and SwissAdme online target screening were accomplished. It was determined that the Les-6614 has slight antimicrobial and antitumor activity. However, the studied compound decreased IgE levels in sensitized guinea pigs by 33–86% and reduced IgA, IgM, IL-2, and TNF-α, indicating anti-inflammatory and anti-allergic aactivities. According to the SwissADME web tool, target predictions for Les-6614 potentially have an affinity for lysosomal protective protein, Thromboxane-A synthase, and PPARγ. The molecular docking confirmed that the studied 2-thioxo-4-thiazolidinone derivative showed good bonding with LLP and TXAS, leading to stable protein–ligand complexes. Additionally, Les-6614 is a potential PPARγ modulator, which is important in the pathogenesis of allergy, cancer, and cardiovascular diseases.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44304490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}