One of the paramount challenges confronting global communities is the precise measurement and effective mitigation of carbon dioxide (CO2) emissions, a primary contributor to global warming and its far-reaching impacts. This study focuses on the synthesis and characterization of polyaniline for CO2 capture applications. Through experimentation conducted within a temperature range of 25–65 and a pressure range of 1–9 bar, the adsorption behavior of these polymers was comprehensively evaluated. Notably, polyaniline exhibited an impressive CO2 adsorption capacity of 10.153 mmol/g under optimal conditions. Further analysis revealed the cyclic stability of these polymers, with polyaniline displaying a 96 % adsorption rate in the fifth cycle. Additionally, thin films of this polymer were synthesized to assess their sensing capabilities, with the thin polyaniline film exhibiting a 51.35 % response to pure CO2. Polyaniline demonstrated a linear response trend to varying CO2 concentrations. Moreover, the optimal operating temperatures for the thin film sensors were determined to be 35 . The rapid response and recovery times for this sensor underscore their potential efficacy in real-world CO2 sensing applications. In summary, the findings highlight the promising performance of polyaniline as a versatile material for CO2 adsorption and sensing, offering significant implications for the development of sustainable solutions to address the pressing challenges of carbon emissions.
扫码关注我们
求助内容:
应助结果提醒方式:
