Jari Hyväluoma, Petri Niemi, Sami Kinnunen, Kofi Brobbey, Arttu Miettinen, Riikka Keskinen, Helena Soinne
Soil management significantly affects soil structure. Tillage and grassland renovation may have destructive influences, while conversion of arable land to grassland can improve pore structure and related soil functions. In crop rotations including perennial grasses, soil structure is affected by these counteracting processes. This work aimed to quantify the impacts of different soil management practices on the structure of boreal clay soils. We studied intact topsoil samples taken from two locations by X‐ray computed microtomography, image‐based flow simulations and water retention measurements. At both locations, adjacent field areas with two contrasting soil management histories were compared. Both locations had at least a 30‐year‐old grassland site, which was compared to arable soils either under no‐till management with annual crop rotation or conventional tillage with crop rotation including perennial grasses. Both imaging and water retention measurements showed significant differences in the soil macropore structure between the long‐term grassland and arable no‐till soil such that macroporosity and hydraulic conductivity of the long‐term grassland were higher than those of soil under agricultural production. On the contrary, at the second study location, differences between long‐term grassland and cultivated fields were minor and the long‐term grassland exhibited lower macroporosity. Our results confirm that soil management affects the macropore structure of boreal clay soil and that no‐till annual cropping and periodically tilled crop rotation including perennial phases exert different effects on the soil structure as compared with long‐term grassland.
土壤管理对土壤结构有重大影响。耕作和草地改造可能会产生破坏性影响,而将耕地改成草地则可以改善孔隙结构和相关的土壤功能。在包括多年生牧草在内的轮作中,土壤结构会受到这些抵消过程的影响。这项研究旨在量化不同土壤管理方法对北方粘土结构的影响。我们通过 X 射线计算机显微层析成像、基于图像的流动模拟和保水性测量,研究了取自两个地点的完整表层土样本。在这两个地点,我们对具有两种截然不同的土壤管理历史的相邻田地进行了比较。这两个地点都有至少 30 年历史的草地,并将其与采用免耕管理和一年轮作或传统耕作和包括多年生牧草在内的轮作的耕地土壤进行了比较。成像和保水测量结果显示,长期草地和免耕耕地土壤的大孔隙结构存在显著差异,长期草地的大孔隙度和导水率均高于农业生产条件下的土壤。相反,在第二个研究地点,长期草地与耕地之间的差异较小,长期草地的大孔隙度较低。我们的研究结果证实,土壤管理会影响北方粘土的大孔隙结构,与长期草地相比,免耕一年生作物和包括多年生阶段在内的周期性耕作轮作对土壤结构的影响不同。
{"title":"Comparing structural soil properties of boreal clay fields under contrasting soil management","authors":"Jari Hyväluoma, Petri Niemi, Sami Kinnunen, Kofi Brobbey, Arttu Miettinen, Riikka Keskinen, Helena Soinne","doi":"10.1111/sum.13040","DOIUrl":"https://doi.org/10.1111/sum.13040","url":null,"abstract":"Soil management significantly affects soil structure. Tillage and grassland renovation may have destructive influences, while conversion of arable land to grassland can improve pore structure and related soil functions. In crop rotations including perennial grasses, soil structure is affected by these counteracting processes. This work aimed to quantify the impacts of different soil management practices on the structure of boreal clay soils. We studied intact topsoil samples taken from two locations by X‐ray computed microtomography, image‐based flow simulations and water retention measurements. At both locations, adjacent field areas with two contrasting soil management histories were compared. Both locations had at least a 30‐year‐old grassland site, which was compared to arable soils either under no‐till management with annual crop rotation or conventional tillage with crop rotation including perennial grasses. Both imaging and water retention measurements showed significant differences in the soil macropore structure between the long‐term grassland and arable no‐till soil such that macroporosity and hydraulic conductivity of the long‐term grassland were higher than those of soil under agricultural production. On the contrary, at the second study location, differences between long‐term grassland and cultivated fields were minor and the long‐term grassland exhibited lower macroporosity. Our results confirm that soil management affects the macropore structure of boreal clay soil and that no‐till annual cropping and periodically tilled crop rotation including perennial phases exert different effects on the soil structure as compared with long‐term grassland.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"298 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Tamale, Paolo Nasta, Sebastian Doetterl, John Hutson, Oliver van Straaten, Laban F. Turyagyenda, Peter Fiener
Fertilizer‐intensive sugarcane plantations are expanding in sub‐Saharan Africa (SSA) amidst increased groundwater pollution and carbon footprint concerns. Yet, the impact of nitrogen (N) levels on N losses, productivity and profitability in these plantations remains unclear. To address this gap, we conducted a completely randomized design experiment in a Ugandan sugarcane plantation using three N fertilization rates (low, standard and high) as treatments. N leaching under the different treatments was determined using the average drainage fluxes across a 1‐m‐layered profile which we estimated with a suite of pedotransfer functions (PTFs) and leachate N concentrations from suction cup lysimeters. Soil nitrous oxide fluxes were determined using static vented chamber bases and gas chromatography. Partial factor crop productivity was estimated from the average field fresh weight under each treatment and the amount of N fertilizer applied, while the return on investment was determined from the factory price of the field fresh weight and the market price of fertilizers. Our findings indicate that three out of five PTFs effectively estimated soil hydraulic properties at our test site, based on the close match between measured and predicted soil matric potential values. Notably, N leaching at low and standard N rates were comparable but significantly lower than at higher‐than‐standard N rates. Additionally, we measured comparable soil nitrous oxide emissions and field fresh weight but partial factor productivity and return on investment declined along the fertilizer intensification gradient. In conclusion, the study demonstrates the promising application of certain PTFs in N‐leaching modelling in the data‐scarce SSA. Furthermore, obtaining comparable field fresh weight with minimal N losses at lower‐than‐standard N rates presents an opportunity to mitigate groundwater pollution and greenhouse gas emissions. However, the potential impact of the switch from standard to low N rates on soil organic carbon stocks and sugarcane yields warrants further investigation.
{"title":"Impact of urea fertilization rates on nitrogen losses, productivity and profitability in East African sugarcane plantations","authors":"Joseph Tamale, Paolo Nasta, Sebastian Doetterl, John Hutson, Oliver van Straaten, Laban F. Turyagyenda, Peter Fiener","doi":"10.1111/sum.13030","DOIUrl":"https://doi.org/10.1111/sum.13030","url":null,"abstract":"Fertilizer‐intensive sugarcane plantations are expanding in sub‐Saharan Africa (SSA) amidst increased groundwater pollution and carbon footprint concerns. Yet, the impact of nitrogen (N) levels on N losses, productivity and profitability in these plantations remains unclear. To address this gap, we conducted a completely randomized design experiment in a Ugandan sugarcane plantation using three N fertilization rates (low, standard and high) as treatments. N leaching under the different treatments was determined using the average drainage fluxes across a 1‐m‐layered profile which we estimated with a suite of pedotransfer functions (PTFs) and leachate N concentrations from suction cup lysimeters. Soil nitrous oxide fluxes were determined using static vented chamber bases and gas chromatography. Partial factor crop productivity was estimated from the average field fresh weight under each treatment and the amount of N fertilizer applied, while the return on investment was determined from the factory price of the field fresh weight and the market price of fertilizers. Our findings indicate that three out of five PTFs effectively estimated soil hydraulic properties at our test site, based on the close match between measured and predicted soil matric potential values. Notably, N leaching at low and standard N rates were comparable but significantly lower than at higher‐than‐standard N rates. Additionally, we measured comparable soil nitrous oxide emissions and field fresh weight but partial factor productivity and return on investment declined along the fertilizer intensification gradient. In conclusion, the study demonstrates the promising application of certain PTFs in N‐leaching modelling in the data‐scarce SSA. Furthermore, obtaining comparable field fresh weight with minimal N losses at lower‐than‐standard N rates presents an opportunity to mitigate groundwater pollution and greenhouse gas emissions. However, the potential impact of the switch from standard to low N rates on soil organic carbon stocks and sugarcane yields warrants further investigation.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"27 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Martins, Cátia Brito, Alexandre Gonçalves, José Moutinho‐Pereira, Ermelinda Pereira, Margarida Arrobas, Manuel Â. Rodrigues, Fernando Nunes, Carlos M. Correia
Olive orchards represent a key agricultural system in the Mediterranean Basin. Soil degradation processes associated with unsustainable agronomic practices and climate change could severely impact the sustainability of Mediterranean rainfed olive orchards. In this context, soil amendments are important tools that can be used to enhance soil fertility for sustained environmental quality and plant performance. In this study, a field trial was conducted for 4 years in olive tree (Olea europaea L.) to assess the effects of a mineral fertilizer compound and the combination with a single application of zeolites or biochar on the physiological and biochemical performance, tree nutritional status, crop yield and soil chemical and biological properties to gain knowledge towards more sustainable management. Our results showed that the addition of zeolites and biochar to mineral fertilizer ameliorated the physiological and biochemical performance, as evidenced by consistent increments of relative water content, stomatal conductance and net photosynthesis and by lower signs of oxidative stress during the periods of greater climate adversity. However, crop yield was not significantly different among soil treatments. On the other hand, soil chemical and biological traits at the surface layer (0–10 cm) have shown different and relevant responses after 4 years of soil amendment application. In fact, zeolite supply stood out as increased pH, extractable K, cation exchange capacity, microbial biomass carbon and microbial biomass quotient and reduced extractable Cu. Furthermore, zeolites induced positive changes in soil enzymatic activity, leading to increases in 10 enzymes involved in C, N and P cycles. In contrast, the effects of biochar on soil properties were much more reduced, given that it decreased the microbial biomass nitrogen and enhanced the activities of three P‐cycle enzymes. In summary, our data demonstrated that both soil amendments can be an interesting complement to mineral fertilization, in order to increase trees' resilience under rainfed conditions and to promote soil health, although the use of zeolites appears to be a more promising strategy because of the induction of higher soil sustainability.
{"title":"Differential responses of photosynthesis, yield and soil properties 4 years after a single application of zeolites and biochar in a rainfed olive orchard","authors":"Sandra Martins, Cátia Brito, Alexandre Gonçalves, José Moutinho‐Pereira, Ermelinda Pereira, Margarida Arrobas, Manuel Â. Rodrigues, Fernando Nunes, Carlos M. Correia","doi":"10.1111/sum.13045","DOIUrl":"https://doi.org/10.1111/sum.13045","url":null,"abstract":"Olive orchards represent a key agricultural system in the Mediterranean Basin. Soil degradation processes associated with unsustainable agronomic practices and climate change could severely impact the sustainability of Mediterranean rainfed olive orchards. In this context, soil amendments are important tools that can be used to enhance soil fertility for sustained environmental quality and plant performance. In this study, a field trial was conducted for 4 years in olive tree (<jats:italic>Olea europaea</jats:italic> L.) to assess the effects of a mineral fertilizer compound and the combination with a single application of zeolites or biochar on the physiological and biochemical performance, tree nutritional status, crop yield and soil chemical and biological properties to gain knowledge towards more sustainable management. Our results showed that the addition of zeolites and biochar to mineral fertilizer ameliorated the physiological and biochemical performance, as evidenced by consistent increments of relative water content, stomatal conductance and net photosynthesis and by lower signs of oxidative stress during the periods of greater climate adversity. However, crop yield was not significantly different among soil treatments. On the other hand, soil chemical and biological traits at the surface layer (0–10 cm) have shown different and relevant responses after 4 years of soil amendment application. In fact, zeolite supply stood out as increased pH, extractable K, cation exchange capacity, microbial biomass carbon and microbial biomass quotient and reduced extractable Cu. Furthermore, zeolites induced positive changes in soil enzymatic activity, leading to increases in 10 enzymes involved in C, N and P cycles. In contrast, the effects of biochar on soil properties were much more reduced, given that it decreased the microbial biomass nitrogen and enhanced the activities of three P‐cycle enzymes. In summary, our data demonstrated that both soil amendments can be an interesting complement to mineral fertilization, in order to increase trees' resilience under rainfed conditions and to promote soil health, although the use of zeolites appears to be a more promising strategy because of the induction of higher soil sustainability.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"55 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro Romero‐Ruiz, Dave O'Leary, Eve Daly, Patrick Tuohy, Alice Milne, Kevin Coleman, Andrew P. Whitmore
Soil compaction is a regarded as a major environmental and economical hazard, degrading soils across the world. Changes in soil properties due to compaction are known to lead to decrease in biomass and increase in greenhouse gas emissions, nutrient leaching and soil erosion. Quantifying adverse impacts of soil compaction and developing strategies for amelioration relies on an understanding of soil compaction extent and temporal variability. The main indicators of soil compaction (i.e., reduction of pore space, increase in bulk density and decrease in soil transport properties) are relatively easy to quantify in laboratory conditions but such traditional point‐based methods offer little information on soil compaction extent at the field scale. Recently, geophysical methods have been proposed to provide non‐invasive information about soil compaction. In this work, we developed an agrogeophysical modelling framework to help address the challenges of characterizing soil compaction across grazing paddocks using electromagnetic induction (EMI) data. By integrative modelling of grazing, soil compaction, soil processes and EMI resistivity anomalies, we demonstrate how spatial patterns of EMI observations can be linked to management leading to soil compaction and concurrent modifications of soil functions. The model was tested in a dairy farm in the midlands of Ireland that has been grazed for decades and shows clear signatures of grazing‐induced compaction. EMI data were collected in the summer of 2021 and autumn of 2022 under dry and wet soil moisture conditions, respectively. For both years, we observed decreases of apparent electrical resistivity at locations that with visible signatures of compaction such as decreased vegetation and water ponding (e.g., near the water troughs and gates). A machine learning algorithm was used to cluster EMI data with three unique cluster signatures assumed to be representative of heavy, moderately, and non‐compacted field zones. We conducted 1D process‐based simulations corresponding to non‐compacted and compacted soils. The modelled EMI signatures agree qualitatively and quantitatively with the measured EMI data, linking decreased electrical resistivities to zones that were visibly compacted. By providing a theoretical framework based on mechanistic modelling of soil management and compaction, our work may provide a strategy for utilizing EMI data for detection of soil degradation due to compaction.
{"title":"An agrogeophysical modelling framework for the detection of soil compaction spatial variability due to grazing using field‐scale electromagnetic induction data","authors":"Alejandro Romero‐Ruiz, Dave O'Leary, Eve Daly, Patrick Tuohy, Alice Milne, Kevin Coleman, Andrew P. Whitmore","doi":"10.1111/sum.13039","DOIUrl":"https://doi.org/10.1111/sum.13039","url":null,"abstract":"Soil compaction is a regarded as a major environmental and economical hazard, degrading soils across the world. Changes in soil properties due to compaction are known to lead to decrease in biomass and increase in greenhouse gas emissions, nutrient leaching and soil erosion. Quantifying adverse impacts of soil compaction and developing strategies for amelioration relies on an understanding of soil compaction extent and temporal variability. The main indicators of soil compaction (i.e., reduction of pore space, increase in bulk density and decrease in soil transport properties) are relatively easy to quantify in laboratory conditions but such traditional point‐based methods offer little information on soil compaction extent at the field scale. Recently, geophysical methods have been proposed to provide non‐invasive information about soil compaction. In this work, we developed an agrogeophysical modelling framework to help address the challenges of characterizing soil compaction across grazing paddocks using electromagnetic induction (EMI) data. By integrative modelling of grazing, soil compaction, soil processes and EMI resistivity anomalies, we demonstrate how spatial patterns of EMI observations can be linked to management leading to soil compaction and concurrent modifications of soil functions. The model was tested in a dairy farm in the midlands of Ireland that has been grazed for decades and shows clear signatures of grazing‐induced compaction. EMI data were collected in the summer of 2021 and autumn of 2022 under dry and wet soil moisture conditions, respectively. For both years, we observed decreases of apparent electrical resistivity at locations that with visible signatures of compaction such as decreased vegetation and water ponding (e.g., near the water troughs and gates). A machine learning algorithm was used to cluster EMI data with three unique cluster signatures assumed to be representative of heavy, moderately, and non‐compacted field zones. We conducted 1D process‐based simulations corresponding to non‐compacted and compacted soils. The modelled EMI signatures agree qualitatively and quantitatively with the measured EMI data, linking decreased electrical resistivities to zones that were visibly compacted. By providing a theoretical framework based on mechanistic modelling of soil management and compaction, our work may provide a strategy for utilizing EMI data for detection of soil degradation due to compaction.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"68 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengming Yan, Dongsheng An, Baoshan Zhao, Zhiling Ma, Haiyang Ma, Qiufang Zhao, Ran Kong, Junbo Su
This study aims to understand the characteristics and distribution patterns of soil phosphorus (P) forms in the tropical high‐P orchards under cover cropping and to explore the biotic and abiotic factors driving the changes in P forms. The study collected three kinds of soil (clean tillage [CK, control], Stylosanthes guianensis cover [SC, legume], and Cynodon dactylon (L.) Pers. cover [CC, grass]) from a mango orchard and determined P forms in the water‐stable aggregates and bulk soil, analyzed the environmental factors and the structure of the bacterial‐fungal community. Compared to CK, SC and CC have a significant positive influence on the forms and distribution of soil P, increase the content of organic P (Org‐P) and certain inorganic P forms (Al‐P and Fe‐P), and enhance the content of P within macroaggregates (>0.25 mm), thereby maintaining total P (TP) and Olsen‐P in the top 30 cm of soil, particularly for the SC treatment. SC and CC also improved acid phosphatase (ACP), and water‐stable aggregates while decreasing bulk density (BD) and exchangeable aluminium (Ale) in the topsoil (0–15 cm). Redundant and Pearson analysis revealed these factors significantly affected soil P availability. Moreover, SC and CC increased the relative abundance of Nitrospira, Candidatus‐Udaeobacter, Pseudolabrys, and ADurb.Bin063–1 in the topsoil (0–15 cm), and decreased the relative abundance of Occallatibacter. Redundant and Pearson analysis indicated that these bacterial communities are likely associated with the availability of P. Overall, cover cropping promoted the transformation and distribution of P forms by altering the physical, chemical, and biological environment of the soil, which was beneficial for the sustainable P management in tropical high‐P soils. This research offers practical insights into the use of cover crops as a tool for enhancing soil health and sustainable P management in tropical high‐P orchards.
本研究旨在了解覆盖种植下热带高磷果园土壤磷(P)形态的特征和分布模式,并探讨驱动磷形态变化的生物和非生物因素。研究从芒果园采集了三种土壤(清洁耕作[CK,对照]、Stylosanthes guianensis覆盖[SC,豆科]和Cynodon dactylon (L.) Pers.覆盖[CC,禾本科]),测定了水稳团聚体和块状土壤中的磷形态,分析了环境因素和细菌真菌群落结构。与 CK 相比,SC 和 CC 对土壤中 P 的形态和分布有显著的积极影响,增加了有机 P(Org-P)和某些无机 P 形态(Al-P 和 Fe-P)的含量,提高了大团聚体(>0.25 mm)中 P 的含量,从而保持了土壤顶部 30 cm 中的总 P(TP)和奥尔森-P,尤其是 SC 处理。SC 和 CC 还改善了酸性磷酸酶(ACP)和水稳团聚体,同时降低了表层土壤(0-15 厘米)的容重(BD)和可交换铝(Ale)。冗余和皮尔逊分析表明,这些因素对土壤钾的可用性有显著影响。此外,SC 和 CC 增加了表层土壤(0-15 厘米)中硝化细菌、念珠菌、假菌和 ADurb.Bin063-1 的相对丰度,降低了偶氮细菌的相对丰度。总之,覆盖种植通过改变土壤的物理、化学和生物环境,促进了钾形态的转化和分布,有利于热带高钾盐土壤的可持续钾管理。这项研究为利用覆盖作物作为提高热带高磷果园土壤健康和可持续磷管理的工具提供了实用的见解。
{"title":"Intercropping herbage promoted the availability of soil phosphorus and improved the bacterial genus structure and the abundance of key bacterial taxa in the acidic soil of mango (Mangifera indica L.) orchards","authors":"Chengming Yan, Dongsheng An, Baoshan Zhao, Zhiling Ma, Haiyang Ma, Qiufang Zhao, Ran Kong, Junbo Su","doi":"10.1111/sum.13046","DOIUrl":"https://doi.org/10.1111/sum.13046","url":null,"abstract":"This study aims to understand the characteristics and distribution patterns of soil phosphorus (P) forms in the tropical high‐P orchards under cover cropping and to explore the biotic and abiotic factors driving the changes in P forms. The study collected three kinds of soil (clean tillage [CK, control], <jats:italic>Stylosanthes guianensis</jats:italic> cover [SC, legume], and <jats:italic>Cynodon dactylon</jats:italic> (L.) Pers. cover [CC, grass]) from a mango orchard and determined P forms in the water‐stable aggregates and bulk soil, analyzed the environmental factors and the structure of the bacterial‐fungal community. Compared to CK, SC and CC have a significant positive influence on the forms and distribution of soil P, increase the content of organic P (Org‐P) and certain inorganic P forms (Al‐P and Fe‐P), and enhance the content of P within macroaggregates (>0.25 mm), thereby maintaining total P (TP) and Olsen‐P in the top 30 cm of soil, particularly for the SC treatment. SC and CC also improved acid phosphatase (ACP), and water‐stable aggregates while decreasing bulk density (BD) and exchangeable aluminium (Al<jats:sub>e</jats:sub>) in the topsoil (0–15 cm). Redundant and Pearson analysis revealed these factors significantly affected soil P availability. Moreover, SC and CC increased the relative abundance of <jats:italic>Nitrospira</jats:italic>, <jats:italic>Candidatus‐Udaeobacter</jats:italic>, <jats:italic>Pseudolabrys</jats:italic>, and <jats:italic>ADurb.Bin063–1</jats:italic> in the topsoil (0–15 cm), and decreased the relative abundance of <jats:italic>Occallatibacter</jats:italic>. Redundant and Pearson analysis indicated that these bacterial communities are likely associated with the availability of P. Overall, cover cropping promoted the transformation and distribution of P forms by altering the physical, chemical, and biological environment of the soil, which was beneficial for the sustainable P management in tropical high‐P soils. This research offers practical insights into the use of cover crops as a tool for enhancing soil health and sustainable P management in tropical high‐P orchards.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"15 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noelia Cruz‐Pérez, Gunta Grūbe, Ricardo Ruiz‐Peinado, Alejandro García‐Gil, Juan C. Santamarta
The island of El Hierro is the smallest and youngest island in the Canary archipelago. It has been recognized as a UNESCO Biosphere Reserve since 2000, and it has a population of approximately 10,000 inhabitants. The aim of this study was to determine the amount of CO2 emissions absorbed by the forest stands of the island of El Hierro and compare it to the emissions generated by the population. It is noteworthy that there is a hydro‐wind energy production project on the island that has significantly minimized the emissions linked to energy production. In short, El Hierro's forest stands are capable of capturing 46,785 tons of CO2 annually, while emissions associated with electricity production and emissions linked to road mobility are below the island's carbon sequestration capacity since the Gorona del Viento renewable energy project was built. By working on investment in renewable energies to produce energy and changing mobility with the use of electric vehicles, a small island like El Hierro can adapt to ecological transition by the year 2040. This is a goal set by the government to drastically reduce emissions in the Canary Islands.
{"title":"Carbon neutrality of an island with 100% renewable energy production and forest as carbon sinks: El Hierro (Canary Islands) a pilot for Europe","authors":"Noelia Cruz‐Pérez, Gunta Grūbe, Ricardo Ruiz‐Peinado, Alejandro García‐Gil, Juan C. Santamarta","doi":"10.1111/sum.13042","DOIUrl":"https://doi.org/10.1111/sum.13042","url":null,"abstract":"The island of El Hierro is the smallest and youngest island in the Canary archipelago. It has been recognized as a UNESCO Biosphere Reserve since 2000, and it has a population of approximately 10,000 inhabitants. The aim of this study was to determine the amount of CO<jats:sub>2</jats:sub> emissions absorbed by the forest stands of the island of El Hierro and compare it to the emissions generated by the population. It is noteworthy that there is a hydro‐wind energy production project on the island that has significantly minimized the emissions linked to energy production. In short, El Hierro's forest stands are capable of capturing 46,785 tons of CO<jats:sub>2</jats:sub> annually, while emissions associated with electricity production and emissions linked to road mobility are below the island's carbon sequestration capacity since the <jats:italic>Gorona del Viento</jats:italic> renewable energy project was built. By working on investment in renewable energies to produce energy and changing mobility with the use of electric vehicles, a small island like El Hierro can adapt to ecological transition by the year 2040. This is a goal set by the government to drastically reduce emissions in the Canary Islands.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"57 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The elucidation of the influence of soil erosion on crop yields is of paramount importance to ensure food security. Remote sensing data has facilitated the acquisition of long‐term spatially‐distributed information on soil erosion modulus and crop yields. The Revised Universal Soil Loss Equation (RUSLE) model was employed to estimate the soil erosion modulus, while the Carnegie‐Ames‐Stanford Approach (CASA) model has been utilized to calculate the net primary productivity (NPP). This study integrated models to assess the impact of soil erosion on dryland crop yields in the Songnen Plain from 2000 to 2020. The findings reveal that the annual average soil erosion modulus for dry cropland in black soil region (BSR) of the Songnen Plain is 4.2 (t ha−1 yr−1), which is 1.5 times greater than that of the other region (OR). The greater cropland erosion within the BSR limited the trend for increasing crop yields, whereas the impact of erosion on crop yield dynamics in the OR was not significant. The areas where dryland crop yields diminished in the Songnen Plain because of soil erosion were predominantly concentrated within the BSR. Advancements in agricultural technology have partially mitigated the adverse consequences of erosion on yields.
{"title":"Long‐term effects of soil erosion on dryland crop yields in the Songnen Plain, Northeast China","authors":"Ziyang Yu, Xinlei Zhang, Jiatong Liu, Guoping Lei","doi":"10.1111/sum.13044","DOIUrl":"https://doi.org/10.1111/sum.13044","url":null,"abstract":"The elucidation of the influence of soil erosion on crop yields is of paramount importance to ensure food security. Remote sensing data has facilitated the acquisition of long‐term spatially‐distributed information on soil erosion modulus and crop yields. The Revised Universal Soil Loss Equation (RUSLE) model was employed to estimate the soil erosion modulus, while the Carnegie‐Ames‐Stanford Approach (CASA) model has been utilized to calculate the net primary productivity (NPP). This study integrated models to assess the impact of soil erosion on dryland crop yields in the Songnen Plain from 2000 to 2020. The findings reveal that the annual average soil erosion modulus for dry cropland in black soil region (BSR) of the Songnen Plain is 4.2 (t ha<jats:sup>−1</jats:sup> yr<jats:sup>−1</jats:sup>), which is 1.5 times greater than that of the other region (OR). The greater cropland erosion within the BSR limited the trend for increasing crop yields, whereas the impact of erosion on crop yield dynamics in the OR was not significant. The areas where dryland crop yields diminished in the Songnen Plain because of soil erosion were predominantly concentrated within the BSR. Advancements in agricultural technology have partially mitigated the adverse consequences of erosion on yields.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"96 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathew Edung Etabo, Pablo Lacerda Ribeiro, Britta Pitann, Karl Hermann Mühling
High soil pH can lead to Mn2+ and P deficiency and yield losses. In addition, it is unclear which process, nitrification‐induced acidification of bulk soil or nitrification inhibitor‐driven rhizosphere acidification, is more effective in increasing Mn2+ availability and shoot concentration. Thus, this topic was investigated in this study. Moreover, we also evaluated if applying NIs can avoid P deficiency in soil with high pH and high buffering capacity. Two greenhouse experiments were carried out to investigate the impact of applying 3,4‐Dimethylpyrazole phosphate (DMPP) in sandy soil subjected to the application of different lime rates, simulating several soil pH and buffering capacity conditions. The utilized lime rates were 0, 0.5, 1, 2 and 4 g CaCO3 kg−1. The measured variables were bulk and rhizosphere soil pH, Mn2+ and P availability, maize biomass production, as well as Mn and P shoot concentrations. DMPP significantly reduced shoot biomass by 10% in unlimed soil; however, it promoted the overall shoot biomass by 30% in limed soil in both experiments. In addition, DMPP decreased the overall Mn shoot concentration by 24 and 21% in experiments I and II, respectively. In contrast, DMPP increased the overall P shoot concentration due to rhizosphere acidification by 24 and 17% in experiments I and II, respectively. The DMPP application did not avoid P deficiency under the highest lime rate (4 g CaCO3 kg−1) despite alleviating it. In conclusion, the application of NIs is not beneficial for increasing Mn2+ shoot concentration and, when performed to increase P availability in high pH soils, should consider the likelihood of causing Mn deficiency.
土壤 pH 值过高会导致 Mn2+ 和 P 缺乏,造成产量损失。此外,目前还不清楚硝化诱导的大体积土壤酸化和硝化抑制剂驱动的根瘤层酸化哪个过程更能有效提高 Mn2+ 的可用性和芽的浓度。因此,本研究对这一主题进行了调查。此外,我们还评估了在 pH 值高、缓冲能力强的土壤中施用硝化抑制剂能否避免缺磷。我们进行了两次温室实验,模拟几种土壤 pH 值和缓冲能力条件,研究在施用不同石灰率的沙质土壤中施用 3,4-二甲基吡唑磷酸盐(DMPP)的影响。使用的石灰率分别为 0、0.5、1、2 和 4 g CaCO3 kg-1。测量的变量包括土壤容重和根瘤土壤 pH 值、Mn2+ 和 P 的可用性、玉米生物量产量以及锰和 P 的芽浓度。在两个实验中,DMPP 都使未施肥土壤中的嫩枝生物量明显减少了 10%;但在施肥土壤中,DMPP 使整个嫩枝生物量增加了 30%。此外,在实验 I 和 II 中,DMPP 使锰的总体芽浓度分别降低了 24% 和 21%。与此相反,在实验 I 和 II 中,由于根圈酸化,DMPP 使芽的总磷浓度分别增加了 24% 和 17%。在施用最高石灰率(4 g CaCO3 kg-1)的情况下,施用 DMPP 尽管缓解了缺钾症,但并没有避免缺钾症。总之,施用 NIs 无益于提高 Mn2+ 的芽浓度,在高 pH 值土壤中施用 NIs 以提高钾的可用性时,应考虑导致缺锰的可能性。
{"title":"Manganese and phosphorus maize shoot concentrations are differently affected by nitrification inhibitor‐driven rhizosphere acidification","authors":"Mathew Edung Etabo, Pablo Lacerda Ribeiro, Britta Pitann, Karl Hermann Mühling","doi":"10.1111/sum.13054","DOIUrl":"https://doi.org/10.1111/sum.13054","url":null,"abstract":"High soil pH can lead to Mn<jats:sup>2+</jats:sup> and P deficiency and yield losses. In addition, it is unclear which process, nitrification‐induced acidification of bulk soil or nitrification inhibitor‐driven rhizosphere acidification, is more effective in increasing Mn<jats:sup>2+</jats:sup> availability and shoot concentration. Thus, this topic was investigated in this study. Moreover, we also evaluated if applying NIs can avoid P deficiency in soil with high pH and high buffering capacity. Two greenhouse experiments were carried out to investigate the impact of applying 3,4‐Dimethylpyrazole phosphate (DMPP) in sandy soil subjected to the application of different lime rates, simulating several soil pH and buffering capacity conditions. The utilized lime rates were 0, 0.5, 1, 2 and 4 g CaCO<jats:sub>3</jats:sub> kg<jats:sup>−1</jats:sup>. The measured variables were bulk and rhizosphere soil pH, Mn<jats:sup>2+</jats:sup> and P availability, maize biomass production, as well as Mn and P shoot concentrations. DMPP significantly reduced shoot biomass by 10% in unlimed soil; however, it promoted the overall shoot biomass by 30% in limed soil in both experiments. In addition, DMPP decreased the overall Mn shoot concentration by 24 and 21% in experiments I and II, respectively. In contrast, DMPP increased the overall P shoot concentration due to rhizosphere acidification by 24 and 17% in experiments I and II, respectively. The DMPP application did not avoid P deficiency under the highest lime rate (4 g CaCO<jats:sub>3</jats:sub> kg<jats:sup>−1</jats:sup>) despite alleviating it. In conclusion, the application of NIs is not beneficial for increasing Mn<jats:sup>2+</jats:sup> shoot concentration and, when performed to increase P availability in high pH soils, should consider the likelihood of causing Mn deficiency.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"43 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil tillage is widely acknowledged to affect soil characteristics and agricultural productivity. This research investigates the short‐term effects of various tillage methods on soil physical properties and crop yields at a Central German field site with a dry climate (mean temperature 9.5°C; annual precipitation 470 mm). Three tillage approaches were evaluated: conventional plough tillage (25 cm depth), cultivator tillage (18 cm depth), and double‐layer plough tillage (15 and 30 cm depth). We assessed soil physical properties through standard laboratory analyses, compression tests, soil pore structure via X‐ray computed tomography (X‐ray CT) and crop yields over 3 years. The results indicate that cultivator tillage approach increased soil bulk density relative to conventional tillage, especially in the second year, though this effect diminished over time. Double‐layer plough tillage emerged as a viable short‐term alternative to conventional tillage, achieving comparable soil bulk density. Saturated hydraulic conductivity values were generally higher for soils under conventional tillage or double‐layer plough tillage than for cultivator tillage, highlighting their soil loosening effect. Classical soil analysis methods combined with X‐ray computed tomography provided valuable insights into tillage induced changes to soil structure. Cultivator tillage resulted in a distinct pore structure with reduced macroporosity and pore connectivity. Despite notable soil property variations, crop yields remained consistent across the tillage methods. Overall, double‐layer plough tillage presents a sustainable option, moderately improving soil physical properties while maintaining crop yields. This study highlights the need to assess the short‐term effects of tillage on soils and contributes to the broader dialogue on optimizing tillage strategies for effective soil management and crop production.
{"title":"Short‐term effects of double‐layer ploughing reduced tillage on soil structure and crop yield","authors":"Julia Pöhlitz, Steffen Schlüter, Jan Rücknagel","doi":"10.1111/sum.13043","DOIUrl":"https://doi.org/10.1111/sum.13043","url":null,"abstract":"Soil tillage is widely acknowledged to affect soil characteristics and agricultural productivity. This research investigates the short‐term effects of various tillage methods on soil physical properties and crop yields at a Central German field site with a dry climate (mean temperature 9.5°C; annual precipitation 470 mm). Three tillage approaches were evaluated: conventional plough tillage (25 cm depth), cultivator tillage (18 cm depth), and double‐layer plough tillage (15 and 30 cm depth). We assessed soil physical properties through standard laboratory analyses, compression tests, soil pore structure via X‐ray computed tomography (X‐ray CT) and crop yields over 3 years. The results indicate that cultivator tillage approach increased soil bulk density relative to conventional tillage, especially in the second year, though this effect diminished over time. Double‐layer plough tillage emerged as a viable short‐term alternative to conventional tillage, achieving comparable soil bulk density. Saturated hydraulic conductivity values were generally higher for soils under conventional tillage or double‐layer plough tillage than for cultivator tillage, highlighting their soil loosening effect. Classical soil analysis methods combined with X‐ray computed tomography provided valuable insights into tillage induced changes to soil structure. Cultivator tillage resulted in a distinct pore structure with reduced macroporosity and pore connectivity. Despite notable soil property variations, crop yields remained consistent across the tillage methods. Overall, double‐layer plough tillage presents a sustainable option, moderately improving soil physical properties while maintaining crop yields. This study highlights the need to assess the short‐term effects of tillage on soils and contributes to the broader dialogue on optimizing tillage strategies for effective soil management and crop production.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"206 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lena Wöhl, Thorsten Ruf, Christoph Emmerling, Stefan Schrader
Perennial energy cropping systems are hailed as a sustainable way of mitigating and potentially adapting to climate change. As a result of the absence of tillage, soils cropped with perennials like cup plant (Silphium perfoliatum) promote abundant and functionally diverse earthworm communities. Hence, ecosystem service provision because of earthworm activity and functional redundancy, for example, litter decomposition, water infiltration and nutrient turnover, is considerably enhanced in perennial cropping systems. We studied the abundance and functional role of earthworms in non‐tilled perennial systems and reduced‐tilled annual systems to assess their relationship with the respective above‐ground organic residues and their implications for the soil water dynamic. We sampled earthworms and simultaneously measured the saturated infiltration rate for two consecutive years in cup plant and maize (Zea mays) fields. Furthermore, we sampled above‐ground litter each trimester in both systems and analysed the total C and N content and CN ratios. Our field investigations revealed significantly higher earthworm abundance, species diversity and richness in cup plant systems likely because of the absence of tillage and the formation of a litter layer. High abundances of juveniles in both maize and cup plant systems pointed to harsh habitat conditions likely because of temperature variations, waterlogging and bulk density. The respective field litter was of minor importance as a food source in both systems because of poor quality, but may positively affect the soil water balance in cup plant systems. Earthworm populations in maize may have been supported by organic fertilizer while earthworm populations in cup plants may have additionally benefitted from the extensive root network and a higher on‐site plant diversity. Reduced tillage regimes in maize systems may have enhanced saturated infiltration rates. A direct link between earthworms and infiltration was not validated, but may not be excluded in the future, as earthworm populations may develop slowly because of adverse habitat conditions. Our results show that perennials support abundant and diverse earthworm populations and indicate the importance of functional redundancy and the diversity of food sources. The combination of both earthworm abundance and perennial cropping systems is capable of increasing on‐site ecosystem stability and supporting adaptation to climate change by increasing functional redundancy and, ultimately, providing ecosystem services. The noticeable occurrence of the latter, however, may be delayed because of the slow establishment of earthworm communities and delayed build‐up of ecosystems stability. Hence, a transitional phase is inevitable to reap the benefits of perennial energy cropping systems and must be accounted for.
{"title":"Earthworm communities and their relation to above‐ground organic residues and water infiltration in perennial cup plant (Silphium perfoliatum) and annual silage maize (Zea mays) energy plants","authors":"Lena Wöhl, Thorsten Ruf, Christoph Emmerling, Stefan Schrader","doi":"10.1111/sum.13041","DOIUrl":"https://doi.org/10.1111/sum.13041","url":null,"abstract":"Perennial energy cropping systems are hailed as a sustainable way of mitigating and potentially adapting to climate change. As a result of the absence of tillage, soils cropped with perennials like cup plant (<jats:italic>Silphium perfoliatum</jats:italic>) promote abundant and functionally diverse earthworm communities. Hence, ecosystem service provision because of earthworm activity and functional redundancy, for example, litter decomposition, water infiltration and nutrient turnover, is considerably enhanced in perennial cropping systems. We studied the abundance and functional role of earthworms in non‐tilled perennial systems and reduced‐tilled annual systems to assess their relationship with the respective above‐ground organic residues and their implications for the soil water dynamic. We sampled earthworms and simultaneously measured the saturated infiltration rate for two consecutive years in cup plant and maize (<jats:italic>Zea mays</jats:italic>) fields. Furthermore, we sampled above‐ground litter each trimester in both systems and analysed the total C and N content and CN ratios. Our field investigations revealed significantly higher earthworm abundance, species diversity and richness in cup plant systems likely because of the absence of tillage and the formation of a litter layer. High abundances of juveniles in both maize and cup plant systems pointed to harsh habitat conditions likely because of temperature variations, waterlogging and bulk density. The respective field litter was of minor importance as a food source in both systems because of poor quality, but may positively affect the soil water balance in cup plant systems. Earthworm populations in maize may have been supported by organic fertilizer while earthworm populations in cup plants may have additionally benefitted from the extensive root network and a higher on‐site plant diversity. Reduced tillage regimes in maize systems may have enhanced saturated infiltration rates. A direct link between earthworms and infiltration was not validated, but may not be excluded in the future, as earthworm populations may develop slowly because of adverse habitat conditions. Our results show that perennials support abundant and diverse earthworm populations and indicate the importance of functional redundancy and the diversity of food sources. The combination of both earthworm abundance and perennial cropping systems is capable of increasing on‐site ecosystem stability and supporting adaptation to climate change by increasing functional redundancy and, ultimately, providing ecosystem services. The noticeable occurrence of the latter, however, may be delayed because of the slow establishment of earthworm communities and delayed build‐up of ecosystems stability. Hence, a transitional phase is inevitable to reap the benefits of perennial energy cropping systems and must be accounted for.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"57 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}