首页 > 最新文献

Soil & Environment最新文献

英文 中文
Comparative study of the growth and carbon sequestration potential of Bermuda grass in industrial and urban areas 百慕大草在工业和城市地区生长和固碳潜力的比较研究
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/se/18/51380
U. Ali, Muhammad Azam Khan, I. Hafiz, K. Khan, Shahid Mahmood
Climate change is a global phenomenon occurring throughout the world. Greenhouse gases (GHGs) especially carbon dioxide (CO 2 ) considered to be the major culprit to bring these changes. So, carbon (C) sequestration by any mean could be useful to reduce the CO 2 level in atmosphere. Turf grasses have the ability to sequester C and minimize the effects of GHGs on the environment. In order to study that how turf grasses can help in C sequestration, Bermuda grass (Cynodon dactylon) was grown both at industrial and urban location and its effect on C storage were assessed by soil and plant analysis. Dry deposition of ammonium and nitrate was maximum at both locations through the year. However wet deposition was highest during the months of high rainfall. It was examined through soil analysis that soil organic matter, soil C and nitrogen in both locations increased after second mowing of grass. However, soil pH 6.68 in urban and 7.00 in industrial area and EC 1.86 dS/m in urban and 1.90 dS/m in industrial area decreased as the grass growth continue. Soil fresh weight (27.6 g) in urban and (27.28 g) industrial area also decreased after first and second mowing of grass. The C levels in plant dry biomass also increased which showed improved ability of plant to uptake C from the soil and store it. Similarly, chlorophyll contents were more in industrial area compared to urban area indicates the positive impact of high C concentration. Whereas stomatal conductance was reduced in high C environment to slow down respiration process. Hence, from present study it can be concluded that the Bermuda grass could be grown in areas with high C concentration in atmosphere for sequestrating C in soil.
气候变化是发生在世界各地的全球性现象。温室气体(ghg),特别是二氧化碳(CO 2)被认为是造成这些变化的罪魁祸首。因此,碳(C)固存可以通过任何方式减少大气中的二氧化碳水平。草坪草具有固碳的能力,可以将温室气体对环境的影响降到最低。为了研究草坪草对碳的固存作用,在工业用地和城市用地分别种植百慕大草(Cynodon dactylon),并通过土壤和植物分析评价其对碳储量的影响。在这两个地点,铵态氮和硝态氮的干沉降量全年最大。然而,湿沉积在高降雨量的月份是最高的。土壤分析表明,二次刈割后,两个地点的土壤有机质、土壤C和土壤氮含量均有所增加。随着草地的生长,城市土壤pH值为6.68,工业区为7.00,EC值为1.86 dS/m,工业区为1.90 dS/m。城市和工业区的土壤鲜重分别为27.6 g和27.28 g。植物干生物量中碳含量也有所增加,表明植物从土壤中吸收和储存碳的能力有所提高。同样,工业区的叶绿素含量也高于城市,这表明高碳浓度对叶绿素含量的影响是积极的。而在高碳环境下,气孔导度降低,呼吸过程减慢。因此,从目前的研究可以得出结论,百慕大草可以在大气中碳浓度高的地区种植,以吸收土壤中的碳。
{"title":"Comparative study of the growth and carbon sequestration potential of Bermuda grass in industrial and urban areas","authors":"U. Ali, Muhammad Azam Khan, I. Hafiz, K. Khan, Shahid Mahmood","doi":"10.25252/se/18/51380","DOIUrl":"https://doi.org/10.25252/se/18/51380","url":null,"abstract":"Climate change is a global phenomenon occurring throughout the world. Greenhouse gases (GHGs) especially carbon dioxide (CO 2 ) considered to be the major culprit to bring these changes. So, carbon (C) sequestration by any mean could be useful to reduce the CO 2 level in atmosphere. Turf grasses have the ability to sequester C and minimize the effects of GHGs on the environment. In order to study that how turf grasses can help in C sequestration, Bermuda grass (Cynodon dactylon) was grown both at industrial and urban location and its effect on C storage were assessed by soil and plant analysis. Dry deposition of ammonium and nitrate was maximum at both locations through the year. However wet deposition was highest during the months of high rainfall. It was examined through soil analysis that soil organic matter, soil C and nitrogen in both locations increased after second mowing of grass. However, soil pH 6.68 in urban and 7.00 in industrial area and EC 1.86 dS/m in urban and 1.90 dS/m in industrial area decreased as the grass growth continue. Soil fresh weight (27.6 g) in urban and (27.28 g) industrial area also decreased after first and second mowing of grass. The C levels in plant dry biomass also increased which showed improved ability of plant to uptake C from the soil and store it. Similarly, chlorophyll contents were more in industrial area compared to urban area indicates the positive impact of high C concentration. Whereas stomatal conductance was reduced in high C environment to slow down respiration process. Hence, from present study it can be concluded that the Bermuda grass could be grown in areas with high C concentration in atmosphere for sequestrating C in soil.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46792133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Potassium humate and NPK application rates influence yield and economic performance of potato crops grown in clayey loam soils 腐殖酸钾和NPK施用量对粘壤土马铃薯产量和经济性能的影响
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/51384
Muhammad Idrees, M. A. Anjum, J. Mirza
Potassium humate is one of the alternate sources of organic matter for improving physico-chemical properties of soils, crop growth and yield. The study investigated the effect of using different rates of potassium humate with and without recommended inorganic fertilizers in clayey loam soil on yield and economics of potato production. Four field experiments were conducted during 2010-11 and 2011-12 by using four levels of each, NPK (0, 50, 75 and 100% recommended dose) and potassium humate (0, 8, 12 and 16 kg ha) in a randomized complete block design (RCBD) with three replications. Tuber number, tuber fresh and dry weight and biological yield per hill, tuber yield per hectare and harvest index were significantly and positively affected by increasing level of NPK in both autumn and spring crops. Application of potassium humate significantly increased tuber fresh and dry weights (up to 10.95% and 14.43%; respectively), tuber yield (up to 10.96%), biological yield (up to 8.46%) and harvest index (up to 3.1) in both autumn and spring crops but improved tuber number per hill only in autumn crops. Application of full rate of NPK fertilizers with 16 kg ha potassium humate resulted in the highest tuber yield (19.749 tons ha). However, study results of benefit cost ratio indicated that application of NPK at 75% of recommended dose with 16 kg ha potassium humate remained the most economical for potato growers.
腐植酸钾是改善土壤理化性质、作物生长和产量的有机物替代来源之一。研究了在粘土质壤土中施用不同比例的腐植酸钾(添加和不添加推荐无机肥)对马铃薯产量和经济性的影响。2010-11年和2011-12年期间,在随机完全区组设计(RCBD)中进行了四项田间实验,分别使用四种水平的NPK(0、50、75和100%推荐剂量)和腐植酸钾(0、8、12和16 kg ha),并进行了三次重复。秋季和春季作物中,NPK水平的提高对块茎数量、块茎鲜干重、单株生物产量、每公顷块茎产量和收获指数都有显著的正向影响。施用腐植酸钾可显著提高秋春季作物的块茎鲜重和干重(分别高达10.95%和14.43%)、块茎产量(高达10.96%)、生物产量(高可达8.46%)和收获指数(高达3.1),但仅秋季作物可提高每丘块茎数。施用16公斤公顷腐植酸钾的NPK肥料,块茎产量最高(19.749吨公顷)。然而,效益成本比的研究结果表明,以推荐剂量的75%施用16公斤公顷腐植酸钾的NPK对马铃薯种植者来说仍然是最经济的。
{"title":"Potassium humate and NPK application rates influence yield and economic performance of potato crops grown in clayey loam soils","authors":"Muhammad Idrees, M. A. Anjum, J. Mirza","doi":"10.25252/SE/18/51384","DOIUrl":"https://doi.org/10.25252/SE/18/51384","url":null,"abstract":"Potassium humate is one of the alternate sources of organic matter for improving physico-chemical properties of soils, crop growth and yield. The study investigated the effect of using different rates of potassium humate with and without recommended inorganic fertilizers in clayey loam soil on yield and economics of potato production. Four field experiments were conducted during 2010-11 and 2011-12 by using four levels of each, NPK (0, 50, 75 and 100% recommended dose) and potassium humate (0, 8, 12 and 16 kg ha) in a randomized complete block design (RCBD) with three replications. Tuber number, tuber fresh and dry weight and biological yield per hill, tuber yield per hectare and harvest index were significantly and positively affected by increasing level of NPK in both autumn and spring crops. Application of potassium humate significantly increased tuber fresh and dry weights (up to 10.95% and 14.43%; respectively), tuber yield (up to 10.96%), biological yield (up to 8.46%) and harvest index (up to 3.1) in both autumn and spring crops but improved tuber number per hill only in autumn crops. Application of full rate of NPK fertilizers with 16 kg ha potassium humate resulted in the highest tuber yield (19.749 tons ha). However, study results of benefit cost ratio indicated that application of NPK at 75% of recommended dose with 16 kg ha potassium humate remained the most economical for potato growers.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49539482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Managing agricultural soils of Pakistan for food and climate 巴基斯坦农业土壤的粮食和气候管理
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/61527
R. Lal
Pakistan; a predominantly arid land region; has a large, growing, urbanizing and increasingly affluent population. Soil and water resources are finite, with per capita arable land area of 0.10 ha by 2050, and prone to degradation by inappropriate management, harsh environments and changing climate. Nonetheless, agriculture productivity increased strongly between 1960 and 2016. Whereas, the population of Pakistan increased by a factor of 4.5 between 1960 and 2018 (from 45 to 201 million), total cereal grain production increased by a factor of 6.5 (from 6.6 to 43.0 million ton). Despite the impressive gains in agricultural production since the Green Revolution era, there is no cause for complacency because even greater challenges lie ahead. Total food production may have to be doubled between 2015 and 2050 because of the growth in population along with rapidly urbanizing and increasingly affluent lifestyle. The national agronomic crop yield (2.8 Mg/ha for wheat, 3.8 Mg/ha for rice, and 4.6 Mg/ha for maize) may have to be increased drastically, and that too in a changing and uncertain climate. Important among the challenges are the growing incidence of drought stress and heatwave, and increasing risks of soil degradation and desertification. Further, soil resources must also be managed to advance the Sustainable Development Goals (SDGs) of the UN; achieve Land Degradation Neutrality proposed by the UNCCD; implement the “4 per Thousand” program of soil carbon sequestration initiated at COP21 in Paris in 2015; and fulfil the aspirations of better lifestyle for the people of Pakistan. The strategy is to restore degraded soils and desertified ecosystems through sustainable intensification. The goal is to produce more from less by reducing losses (i.e., water, nutrients, soil) and enhancing eco-efficiency of inputs (i.e., fertilizer, irrigation water, energy). Vertical increase in agronomic yield, by restoring soil health and adopting best management practices (BMPs), is the only viable option because there is no scope for any horizontal expansion. Site/regional specific BMPs may include conservation agriculture along with retention of crop residue mulch and without any in-field burning of biomass; incorporation of a cover crop (forages) in the rotation cycle; and use of integrated nutrient management (INM) involving a judicious combination of organic (compost, manure, biofertilizers) and inorganic sources of nutrients, and integration of crops with livestock and trees. Further, the flood irrigation must be replaced by drip sub-irrigation system. Chosen BMPs must create a positive soil ecosystem C budget, and restore the soil organic carbon stock.
巴基斯坦;干旱地区:主要是干旱的地区;拥有庞大、不断增长、城市化和日益富裕的人口。水土资源是有限的,到2050年人均耕地面积仅为0.10公顷,而且由于管理不当、环境恶劣和气候变化,极易退化。尽管如此,农业生产率在1960年至2016年期间强劲增长。1960年至2018年期间,巴基斯坦人口增加了4.5倍(从4500万增加到2.01亿),谷物总产量增加了6.5倍(从660万吨增加到4300万吨)。尽管自绿色革命时代以来农业生产取得了令人瞩目的成就,但我们没有理由自满,因为更大的挑战还在前面。由于人口增长、快速城市化和日益富裕的生活方式,粮食总产量可能必须在2015年至2050年间翻一番。全国农艺作物产量(小麦2.8毫克/公顷,水稻3.8毫克/公顷,玉米4.6毫克/公顷)可能不得不大幅提高,而且这也是在不断变化和不确定的气候下进行的。在这些挑战中,重要的是干旱压力和热浪的发生率日益增加,土壤退化和荒漠化的风险日益增加。此外,还必须管理土壤资源,以推进联合国的可持续发展目标(sdg);实现《联合国防治荒漠化公约》提出的土地退化中性目标;实施2015年巴黎气候大会提出的“千分之四”土壤固碳计划;实现巴基斯坦人民改善生活方式的愿望。该战略是通过可持续的集约化来恢复退化的土壤和沙漠化的生态系统。目标是通过减少损失(即水、养分、土壤)和提高投入(即肥料、灌溉水、能源)的生态效率,以少致多。通过恢复土壤健康和采用最佳管理做法(BMPs)来垂直增加农业产量是唯一可行的选择,因为没有任何水平扩展的余地。特定地点/区域的bmp可能包括保护性农业以及保留作物残茬覆盖物,并且不需要在田间燃烧生物质;在轮作周期中纳入覆盖作物(牧草);以及综合营养管理(INM)的使用,包括有机(堆肥、粪肥、生物肥料)和无机营养来源的合理组合,以及作物与牲畜和树木的结合。此外,洪水灌溉必须由滴灌系统取代。所选择的bmp必须创造一个积极的土壤生态系统C预算,并恢复土壤有机碳储量。
{"title":"Managing agricultural soils of Pakistan for food and climate","authors":"R. Lal","doi":"10.25252/SE/18/61527","DOIUrl":"https://doi.org/10.25252/SE/18/61527","url":null,"abstract":"Pakistan; a predominantly arid land region; has a large, growing, urbanizing and increasingly affluent population. Soil and water resources are finite, with per capita arable land area of 0.10 ha by 2050, and prone to degradation by inappropriate management, harsh environments and changing climate. Nonetheless, agriculture productivity increased strongly between 1960 and 2016. Whereas, the population of Pakistan increased by a factor of 4.5 between 1960 and 2018 (from 45 to 201 million), total cereal grain production increased by a factor of 6.5 (from 6.6 to 43.0 million ton). Despite the impressive gains in agricultural production since the Green Revolution era, there is no cause for complacency because even greater challenges lie ahead. Total food production may have to be doubled between 2015 and 2050 because of the growth in population along with rapidly urbanizing and increasingly affluent lifestyle. The national agronomic crop yield (2.8 Mg/ha for wheat, 3.8 Mg/ha for rice, and 4.6 Mg/ha for maize) may have to be increased drastically, and that too in a changing and uncertain climate. Important among the challenges are the growing incidence of drought stress and heatwave, and increasing risks of soil degradation and desertification. Further, soil resources must also be managed to advance the Sustainable Development Goals (SDGs) of the UN; achieve Land Degradation Neutrality proposed by the UNCCD; implement the “4 per Thousand” program of soil carbon sequestration initiated at COP21 in Paris in 2015; and fulfil the aspirations of better lifestyle for the people of Pakistan. The strategy is to restore degraded soils and desertified ecosystems through sustainable intensification. The goal is to produce more from less by reducing losses (i.e., water, nutrients, soil) and enhancing eco-efficiency of inputs (i.e., fertilizer, irrigation water, energy). Vertical increase in agronomic yield, by restoring soil health and adopting best management practices (BMPs), is the only viable option because there is no scope for any horizontal expansion. Site/regional specific BMPs may include conservation agriculture along with retention of crop residue mulch and without any in-field burning of biomass; incorporation of a cover crop (forages) in the rotation cycle; and use of integrated nutrient management (INM) involving a judicious combination of organic (compost, manure, biofertilizers) and inorganic sources of nutrients, and integration of crops with livestock and trees. Further, the flood irrigation must be replaced by drip sub-irrigation system. Chosen BMPs must create a positive soil ecosystem C budget, and restore the soil organic carbon stock.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48723358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Enhancing wheat productivity and soil physical properties of water eroded agricultural land through integrated nutrient management 通过综合养分管理提高水蚀农田小麦生产力和土壤物理性质
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/61450
Murad Ali, Farmanullah Khan, Subhanullah Subhanullah, W. Ahmad, M. Ishaq, M. Saeed
Agricultural land in Pakistan is decreasing due to development of infrastructure and in order to feed its masses, agricultural activities are shifting towards sloping land where soil loss through surface runoff process is the sternest ecological threat to sustainable agriculture. Improving soil fertility and crop productivity through integrated nutrients management (INM) is a globally accepted practice. The reported study was conducted during 2014-15 for field investigations in the improvement of eroded soil’s physical characteristics and crop productivity using integrated nutrients management techniques. The treatments contained combinations of NPK (% of recommended dose 120:90:60 kg NPK ḥa -1 ), FYM (t ha -1 ) and Poultry manure PM (t ha -1 ) respectively as; 0:0:0, 100%:0:0, 0:20:0, 25%:15:0, 50%:10:0, 75%:5:0, 0:0:10, 25:0:7.5, 50%:0:5, 75%:0:2.5, 0:5:2.5, 25%:5:2.5, 50%:5:2.5, 75%:5:2.5. Results revealed that 50%:5:2.5 combination of nutrient sources significantly (p ≤ 0.05) improved spike m -2 (by 34%), grains spike -1 (by 38%) and grain yield (by 90%) over the control treatment. Regarding soil physical properties, 0:20:0 combination reduced soil bulk density while improving available water, organic matter content and saturation water percentage at 0-15 cm soil depth. Positive correlation of soil organic matter was observed with available water holding capacity (ṙ = 0.92) and saturation percentage (ṙ = 0.93) while negatively co-related with ṣoil bulk density (ṙ = -0.96). It was concluded that chemical fertilizer’s improvement in physical properties of eroded soil and the resultant production was significantly lagging behind that achieved with integrated nutrient management. Under the current experimental conditions, 50%:5:2.5 combination of nutrient sources application restituted the physical properties of eroded soil and showed asset over rest of the INM and their unshared applications.
由于基础设施的发展,巴基斯坦的农业用地正在减少,为了养活其群众,农业活动正在向坡地转移,在坡地,地表径流过程造成的土壤流失是对可持续农业的最严重生态威胁。通过综合养分管理(INM)提高土壤肥力和作物生产力是全球公认的做法。本研究于2014- 2015年进行了利用综合养分管理技术改善侵蚀土壤物理特性和作物生产力的实地调查。NPK(推荐用量百分比120:90:60 kg NPK ḥa -1)、FYM (t ha -1)和禽粪肥PM (t ha -1)的组合分别为;0:20:0 100% 0:0:0: 0时,25%:15:0,50%:10:0,75%:5:0,0:0:10,25:0:7.5,50%:0:5,75%:0:2.5,0:5:2.5,25%:5:2.5,50%:75%:5:2.5 5:2.5。结果表明,与对照处理相比,50%:5:2.5的营养源组合显著(p≤0.05)提高了穗粒数m -2(34%)、穗粒数1(38%)和籽粒产量(90%)。在土壤物理性质方面,0:20:0组合降低了土壤容重,提高了0 ~ 15 cm土壤深度的有效水分、有机质含量和饱和含水量。土壤有机质与有效持水量( = 0.92)、饱和率( = 0.93)呈正相关,与容重(ṣoil)呈负相关( = -0.96)。综上所述,化肥对侵蚀土壤物理性质和产量的改善效果明显落后于综合养分管理。在目前的试验条件下,50%:5:2.5的营养源组合施用恢复了侵蚀土壤的物理性质,并表现出优于其余INM及其未共享施用的资产。
{"title":"Enhancing wheat productivity and soil physical properties of water eroded agricultural land through integrated nutrient management","authors":"Murad Ali, Farmanullah Khan, Subhanullah Subhanullah, W. Ahmad, M. Ishaq, M. Saeed","doi":"10.25252/SE/18/61450","DOIUrl":"https://doi.org/10.25252/SE/18/61450","url":null,"abstract":"Agricultural land in Pakistan is decreasing due to development of infrastructure and in order to feed its masses, agricultural activities are shifting towards sloping land where soil loss through surface runoff process is the sternest ecological threat to sustainable agriculture. Improving soil fertility and crop productivity through integrated nutrients management (INM) is a globally accepted practice. The reported study was conducted during 2014-15 for field investigations in the improvement of eroded soil’s physical characteristics and crop productivity using integrated nutrients management techniques. The treatments contained combinations of NPK (% of recommended dose 120:90:60 kg NPK ḥa -1 ), FYM (t ha -1 ) and Poultry manure PM (t ha -1 ) respectively as; 0:0:0, 100%:0:0, 0:20:0, 25%:15:0, 50%:10:0, 75%:5:0, 0:0:10, 25:0:7.5, 50%:0:5, 75%:0:2.5, 0:5:2.5, 25%:5:2.5, 50%:5:2.5, 75%:5:2.5. Results revealed that 50%:5:2.5 combination of nutrient sources significantly (p ≤ 0.05) improved spike m -2 (by 34%), grains spike -1 (by 38%) and grain yield (by 90%) over the control treatment. Regarding soil physical properties, 0:20:0 combination reduced soil bulk density while improving available water, organic matter content and saturation water percentage at 0-15 cm soil depth. Positive correlation of soil organic matter was observed with available water holding capacity (ṙ = 0.92) and saturation percentage (ṙ = 0.93) while negatively co-related with ṣoil bulk density (ṙ = -0.96). It was concluded that chemical fertilizer’s improvement in physical properties of eroded soil and the resultant production was significantly lagging behind that achieved with integrated nutrient management. Under the current experimental conditions, 50%:5:2.5 combination of nutrient sources application restituted the physical properties of eroded soil and showed asset over rest of the INM and their unshared applications.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47661188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Comparative efficacy of KCl blended composts and sole application of KCl or K2SO4 in improving K nutrition, photosynthetic capacity and growth of maiz KCl混合堆肥与单独施用KCl或K2SO4对小麦钾营养、光合能力和生长的影响比较
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/51273
N. Farooq, S. Kanwal, A. Ditta, A. Hussain, M. Naveed, M. Jamshaid, M. Iqbal
Under arid and semiarid climate conditions, application of muriate of potash (KCl) results in salinity problem due to its higher chloride (Cl - ) contents. In order to combat this problem, KCl was blended with different sources of compost (fruits and vegetables, poultry, press mud and cow dung) in order to get a dilution effect of composts. A pot experiment was conducted to evaluate the comparative efficacy of KCl blended composts and KCl or K 2 SO 4 alone on growth, physiology and K nutrition of maize. Different composts applied @ 500 kg ha -1 were blended with KCl in such a way that each combination received the same amount of K as in case of recommended KCl and K 2 SO 4 alone. Muriate of potash blended poultry compost significantly improved various growth parameters like plant height (19%), root length (60%), root (100%) and shoot fresh weight (64%), root (88%) and shoot dry weight (81%) and chlorophyll contents (29%) compared to KCl alone. However, the maximum physiological parameters were observed with KCl blended press mud compost. Similarly, KCl blended poultry compost significantly increased K concentration and uptake in shoot (26 and 122%) and root (39 and 133%) compared to KCl alone. Post-harvest soil analysis showed an increase of about 2 folds in K contents in KCl blended poultry compost compared to KCl alone. Based on the above results, KCl blended composts proved better in improving various growth, physiological and K nutrition of maize compared to the application of KCl and K 2 SO 4 alone.
在干旱和半干旱的气候条件下,施用氯化钾(KCl)会因其氯化物(Cl-)含量较高而导致盐度问题。为了解决这个问题,将KCl与不同来源的堆肥(水果和蔬菜、家禽、压泥和牛粪)混合,以获得堆肥的稀释效果。采用盆栽试验研究了KCl与KCl或K2SO4混合堆肥对玉米生长、生理及钾营养的影响。施用500kg ha-1的不同堆肥与KCl混合,使每个组合获得与推荐的KCl和单独的K2 SO4相同量的K。与单独使用KCl相比,混合钾肥的家禽堆肥显著改善了各种生长参数,如株高(19%)、根长(60%)、根(100%)和地上部鲜重(64%)、根干重(88%)和地下部干重(81%)以及叶绿素含量(29%)。然而,KCl混合压泥堆肥的生理参数最大。类似地,与单独的KCl相比,KCl混合的家禽堆肥显著增加了茎(26%和122%)和根(39%和133%)的钾浓度和吸收。收获后土壤分析显示,与单独使用KCl相比,KCl混合家禽堆肥中的K含量增加了约2倍。基于以上结果,与单独施用KCl和K2SO4相比,KCl混合堆肥在改善玉米的各种生长、生理和钾营养方面表现得更好。
{"title":"Comparative efficacy of KCl blended composts and sole application of KCl or K2SO4 in improving K nutrition, photosynthetic capacity and growth of maiz","authors":"N. Farooq, S. Kanwal, A. Ditta, A. Hussain, M. Naveed, M. Jamshaid, M. Iqbal","doi":"10.25252/SE/18/51273","DOIUrl":"https://doi.org/10.25252/SE/18/51273","url":null,"abstract":"Under arid and semiarid climate conditions, application of muriate of potash (KCl) results in salinity problem due to its higher chloride (Cl - ) contents. In order to combat this problem, KCl was blended with different sources of compost (fruits and vegetables, poultry, press mud and cow dung) in order to get a dilution effect of composts. A pot experiment was conducted to evaluate the comparative efficacy of KCl blended composts and KCl or K 2 SO 4 alone on growth, physiology and K nutrition of maize. Different composts applied @ 500 kg ha -1 were blended with KCl in such a way that each combination received the same amount of K as in case of recommended KCl and K 2 SO 4 alone. Muriate of potash blended poultry compost significantly improved various growth parameters like plant height (19%), root length (60%), root (100%) and shoot fresh weight (64%), root (88%) and shoot dry weight (81%) and chlorophyll contents (29%) compared to KCl alone. However, the maximum physiological parameters were observed with KCl blended press mud compost. Similarly, KCl blended poultry compost significantly increased K concentration and uptake in shoot (26 and 122%) and root (39 and 133%) compared to KCl alone. Post-harvest soil analysis showed an increase of about 2 folds in K contents in KCl blended poultry compost compared to KCl alone. Based on the above results, KCl blended composts proved better in improving various growth, physiological and K nutrition of maize compared to the application of KCl and K 2 SO 4 alone.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41797242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Spatial Distribution of pH in the Soil Profiles of Representative Soil Series from Rice Producing Area, District Sheikhupura 谢库普拉区水稻产区典型土壤系列土壤剖面pH的空间分布
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/51329
G. Nabi, Humair Ahmed, Ijaz Ali
Soil pH is one of the chemical properties influencing the nutrient bioavailability. Most of the Pakistani soils are calcareous in nature. Keeping in view the limitations of classical statistics for explaining spatial heterogeneity a survey in the farmer grown rice fields was conducted for mapping of soil pH down the soil profile up to the depth of 100 cm using geo-statistics and GIS as a diagnostic tool. One hundred and seventy five soil samples were collected from the representative soil series of rice producing district Sheikhupura. Sampling was done from five depths of 0-12, 12-24, 24-36, 36-60 and 60-100 cm. Soil profiles were excavated and samples were collected from the five depths to examine the variation of pH down the soil profile. Results indicated that soil pH at different depths was 7.80 ±0.45, 8.09 ± 0.42, 8.29±0.50, 8.39±0.54 and 8.47 ± 0.57 at 0-12, 12-24, 24-36, 36-60 and 60-100 cm depth, respectively. When geo-statistical analyses of the data were performed soil pH at all depths was found moderately to strongly spatial dependent (Nugget sill ratio <35). Maps were prepared to classify the whole district in to different pH management zones for producing regional scale information.
土壤pH值是影响养分生物有效性的化学性质之一。巴基斯坦的大部分土壤本质上是钙质的。考虑到传统统计学在解释空间异质性方面的局限性,在农民种植的稻田中进行了一项调查,利用地质统计学和GIS作为诊断工具,绘制了土壤pH值,沿着土壤剖面一直到100厘米的深度。从谢库普拉水稻产区具有代表性的土壤系列中采集了175个土壤样品。采样深度为0-12、12-24、24-36、36-60和60-100 cm。挖掘土壤剖面,从5个深度采集样品,研究pH值在土壤剖面上的变化。结果表明:0-12、12-24、24-36、36-60和60-100 cm深度土壤pH分别为7.80±0.45、8.09±0.42、8.29±0.50、8.39±0.54和8.47±0.57;对数据进行地质统计分析后发现,所有深度的土壤pH值都具有中等到强烈的空间依赖性(纽格基比<35)。绘制地图,将全区划分为不同的pH管理区域,生成区域尺度信息。
{"title":"Spatial Distribution of pH in the Soil Profiles of Representative Soil Series from Rice Producing Area, District Sheikhupura","authors":"G. Nabi, Humair Ahmed, Ijaz Ali","doi":"10.25252/SE/18/51329","DOIUrl":"https://doi.org/10.25252/SE/18/51329","url":null,"abstract":"Soil pH is one of the chemical properties influencing the nutrient bioavailability. Most of the Pakistani soils are calcareous in nature. Keeping in view the limitations of classical statistics for explaining spatial heterogeneity a survey in the farmer grown rice fields was conducted for mapping of soil pH down the soil profile up to the depth of 100 cm using geo-statistics and GIS as a diagnostic tool. One hundred and seventy five soil samples were collected from the representative soil series of rice producing district Sheikhupura. Sampling was done from five depths of 0-12, 12-24, 24-36, 36-60 and 60-100 cm. Soil profiles were excavated and samples were collected from the five depths to examine the variation of pH down the soil profile. Results indicated that soil pH at different depths was 7.80 ±0.45, 8.09 ± 0.42, 8.29±0.50, 8.39±0.54 and 8.47 ± 0.57 at 0-12, 12-24, 24-36, 36-60 and 60-100 cm depth, respectively. When geo-statistical analyses of the data were performed soil pH at all depths was found moderately to strongly spatial dependent (Nugget sill ratio <35). Maps were prepared to classify the whole district in to different pH management zones for producing regional scale information.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47066259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Minimal NOx emission by Lysinibacillus sphaericus in nutrient poor soil 球形赖氨芽孢杆菌在营养不良土壤中的最小NOx排放
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/51203
Melissa Sánchez, J. Dussán
The aim of this study was to determine whether nitrogen dioxide emissions by Lysinibacillus sphaericus exist in nutrient poor soil. First, we evaluated the presence of two genes involved in denitrification (nosF and nosD) by PCR screening of five strains of L. sphaericus (III (3)7, OT4b.49, OT4b.25, OT4b.31 and CBAM5). We then applied a bacterial consortium made up by L. sphaericus III (3)7 and OT4b.49 into closed microcosms of soil and with minimum salts medium (MSM) supplemented with ammonia to measure the concentration of produced nitrogen dioxide over time. The assays with closed microcosms showed a minimum level of nitrogen dioxide over time. The nosF and nosD primers amplified the expected fragment for the five strains and the sequenced nosF and nosD PCR product showed an ATPase domain and a copper-binding domain respectively, which was consistent with the function of these genes. The basal emission of nitrogen dioxide by L. sphaericus in soil is coupled to its ability to enhance the nitrogen bioavailability for soils deficient in nutrients. Therefore, our results indicate that this microorganism can be considered as a good c and idate to validate the low emission of NOx in field and in the future as an alternative for biofertilization..
本研究的目的是确定在营养不良的土壤中是否存在球形赖氨芽孢杆菌的二氧化氮排放。首先,我们通过对五株球形乳杆菌(III(3)7、OT4b.49、OT4b.25、OT4b.31和CBAM5)的PCR筛选,评估了两个参与反硝化作用的基因(nosF和nosD)的存在。然后,我们将由L.sphaericus III(3)7和OT4b.49组成的细菌群落应用于土壤的封闭微宇宙中,并使用补充了氨的最小盐培养基(MSM)来测量随时间产生的二氧化氮浓度。用封闭微宇宙进行的测定显示,随着时间的推移,二氧化氮含量最低。nosF和nosD引物扩增了5株菌株的预期片段,测序的nosF和nos D PCR产物分别显示出ATP酶结构域和铜结合结构域,这与这些基因的功能一致。球形乳杆菌在土壤中的基本二氧化氮排放与其在缺乏养分的土壤中提高氮生物利用度的能力有关。因此,我们的研究结果表明,这种微生物可以被认为是一种很好的证据,可以在现场和未来作为生物肥料的替代品来验证NOx的低排放。。
{"title":"Minimal NOx emission by Lysinibacillus sphaericus in nutrient poor soil","authors":"Melissa Sánchez, J. Dussán","doi":"10.25252/SE/18/51203","DOIUrl":"https://doi.org/10.25252/SE/18/51203","url":null,"abstract":"The aim of this study was to determine whether nitrogen dioxide emissions by Lysinibacillus sphaericus exist in nutrient poor soil. First, we evaluated the presence of two genes involved in denitrification (nosF and nosD) by PCR screening of five strains of L. sphaericus (III (3)7, OT4b.49, OT4b.25, OT4b.31 and CBAM5). We then applied a bacterial consortium made up by L. sphaericus III (3)7 and OT4b.49 into closed microcosms of soil and with minimum salts medium (MSM) supplemented with ammonia to measure the concentration of produced nitrogen dioxide over time. The assays with closed microcosms showed a minimum level of nitrogen dioxide over time. The nosF and nosD primers amplified the expected fragment for the five strains and the sequenced nosF and nosD PCR product showed an ATPase domain and a copper-binding domain respectively, which was consistent with the function of these genes. The basal emission of nitrogen dioxide by L. sphaericus in soil is coupled to its ability to enhance the nitrogen bioavailability for soils deficient in nutrients. Therefore, our results indicate that this microorganism can be considered as a good c and idate to validate the low emission of NOx in field and in the future as an alternative for biofertilization..","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48029471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of bacterial consortia on growth and yield of maize grown in Fusarium infested soil 细菌群落对镰刀菌病土壤中玉米生长和产量的影响
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/872
N. Akhtar, M. Naveed, M. Khalid, N. Ahmad, M. Rizwan, S. Siddique
Soil borne pathogens are responsible for considerable yield losses in field crops. Healthy growth and ultimate yield of the crop depends upon the efficient supply of water, nutrients and absence of biotic and abiotic stress. Under biotic stress plant growth promoting rhizobacteria (PGPR) and compost inhabiting bacteria (CIB) can help the plant to function normally by suppressing the pathogen. A pot experiment was conducted to determine the effect of PGPR and CIB on growth and yield of maize, grown in fungus infested soil. Two strains, each of PGPR (Mb4 and Mb7) and CIB (Cb4 and Cb9) were evaluated to improve the growth and yield of maize crop. Maize seeds were sterilized and inoculated with bacterial strains before sowing along with un-inoculated control for comparison. Recommended dose of fertilizers (180, 140, 90 NPK kg ha) was applied at sowing and pots were arranged in completely randomized design. Results showed that inoculation with selected strains of bacteria, exhibited percent increase in yield of fresh cob (up to 52.69%) and dry cob (40.87%), cob length (51.42%), grain yield (up to 55.34%), 1000-grain weight (up to 37.27%), K contents in grains and straw (1.756 and 0.793, respectively), %N in grains and straw (up to 2.675 and 0.997%, respectively) and %P in grains and straw (up to 1.756 and 0.793%, respectively) compared to un-inoculated control. Keeping in view the higher yield parameters of inoculated treatments compared to un-inoculated control, it was concluded that inoculation of maize seeds with bacterial consortia suppressed the adverse effect of fungal pathogen and enhanced the growth and yield of maize crop.
土壤传播的病原体是造成大田作物大量减产的原因。作物的健康生长和最终产量取决于水、养分的有效供应以及没有生物和非生物胁迫。在生物胁迫下,促进植物生长的根瘤菌(PGPR)和堆肥寄生菌(CIB)可以通过抑制病原菌来帮助植物正常生长。采用盆栽试验研究了PGPR和CIB对真菌侵染土壤中玉米生长和产量的影响。研究了PGPR (Mb4和Mb7)和CIB (Cb4和Cb9)对玉米生长和产量的促进作用。在播种前对玉米种子进行灭菌和接种,并与未接种的对照进行比较。播种时施氮磷钾推荐用量为180、140、90 kg ha,盆栽采用完全随机设计。结果表明,与未接种的对照相比,接种菌株可使鲜穗轴产量(52.69%)和干穗轴产量(40.87%)、穗轴长度(51.42%)、籽粒产量(55.34%)、千粒重(37.27%)、籽粒和秸秆钾含量(分别为1.756和0.793)、籽粒和秸秆氮含量(分别为2.675和0.997%)和籽粒和秸秆磷含量(分别为1.756和0.793%)显著提高。考虑到接种处理的产量参数高于未接种对照,因此,接种菌落抑制了真菌病原菌的不利影响,促进了玉米作物的生长和产量。
{"title":"Effect of bacterial consortia on growth and yield of maize grown in Fusarium infested soil","authors":"N. Akhtar, M. Naveed, M. Khalid, N. Ahmad, M. Rizwan, S. Siddique","doi":"10.25252/SE/18/872","DOIUrl":"https://doi.org/10.25252/SE/18/872","url":null,"abstract":"Soil borne pathogens are responsible for considerable yield losses in field crops. Healthy growth and ultimate yield of the crop depends upon the efficient supply of water, nutrients and absence of biotic and abiotic stress. Under biotic stress plant growth promoting rhizobacteria (PGPR) and compost inhabiting bacteria (CIB) can help the plant to function normally by suppressing the pathogen. A pot experiment was conducted to determine the effect of PGPR and CIB on growth and yield of maize, grown in fungus infested soil. Two strains, each of PGPR (Mb4 and Mb7) and CIB (Cb4 and Cb9) were evaluated to improve the growth and yield of maize crop. Maize seeds were sterilized and inoculated with bacterial strains before sowing along with un-inoculated control for comparison. Recommended dose of fertilizers (180, 140, 90 NPK kg ha) was applied at sowing and pots were arranged in completely randomized design. Results showed that inoculation with selected strains of bacteria, exhibited percent increase in yield of fresh cob (up to 52.69%) and dry cob (40.87%), cob length (51.42%), grain yield (up to 55.34%), 1000-grain weight (up to 37.27%), K contents in grains and straw (1.756 and 0.793, respectively), %N in grains and straw (up to 2.675 and 0.997%, respectively) and %P in grains and straw (up to 1.756 and 0.793%, respectively) compared to un-inoculated control. Keeping in view the higher yield parameters of inoculated treatments compared to un-inoculated control, it was concluded that inoculation of maize seeds with bacterial consortia suppressed the adverse effect of fungal pathogen and enhanced the growth and yield of maize crop.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42313206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Runoff and erosion as affected by tillage system and polyacrylamide in two sandy loam soils differing in silt and clay contents in semi-arid regions 半干旱区不同粉砂和粘粒含量的两种沙壤土,耕作制度和聚丙烯酰胺对径流侵蚀的影响
IF 0.6 Q4 SOIL SCIENCE Pub Date : 2018-05-28 DOI: 10.25252/SE/18/51390
N. Abu‐Hamdeh, S. M. Ismail, Samir G. Al-Solaimani, R. Hatamleh, Jeddah Saudi Arabia Arid Land Agriculture
This study aims to investigate the effect of three tillage practices and the effect of polyacrylamide application rate on surface runoff and erosion of sandy loam soils differing in silt and clay contents. Field experiments in split-split plot with four replications were carried out in two different locations; location A that consists of 25.2% silt plus clay and location B which consists of 38.5% silt plus clay. Three tillage practices were investigated; no-tillage (NT), mouldboard ploughing with rotor tiller (CT1), and chisel ploughing with disk harrow (CT2). Three polyacrylamide (PAM) rates were implemented in each tillage system; 0, 10 and 20 kg ha -1 . The experiment was conducted during December 2015 to April 2017 and wheat was sown for the two seasons. Results showed that the CT1 and CT2 treatments reduced runoff by 15.3% and 50.0%, respectively in location A and by 6.4% and 13.8%, respectively, in location B compared to the NT treatment. Applying 10 and 20 kg ha -1 of PAM decreased runoff by 9.5% and 22%, respectively in location A and by 4.5% and 12%, respectively in location B compared to the 0 kg ha - 1 PAM treatment. Applying 10 and 20 kg ha -1 PAM reduced soil erosion by 19% and 28%, respectively, in location A and by 26% and 33%, respectively in location B compared to the 0 kg ha -1 PAM application rate. Comparing the effect of tillage practices in location (A), the CT1 increased soil erosion by 16.5 % and 46.5% compared with the NT and CT2 treatments, respectively. Comparing the effect of tillage practices in location (B), the CT1 increased soil erosion by 38.6% and 75.6% compared to the NT and CT2, respectively.
本研究旨在探讨3种耕作方式及聚丙烯酰胺施用量对不同粉砂和粘粒含量砂壤土地表径流和侵蚀的影响。在两个不同地点进行了4个重复的田间试验;地点A由25.2%的粉砂加粘土组成,地点B由38.5%的粉砂加粘土组成。调查了三种耕作方式;免耕(NT)、旋耕机板耕(CT1)、盘耙凿耕(CT2)。每个耕作制度中施用三种聚丙烯酰胺(PAM);0、10和20公斤/公顷。试验于2015年12月至2017年4月进行,分两季播种小麦。结果表明,与NT相比,CT1和CT2处理在A地分别减少了15.3%和50.0%的径流,在B地分别减少了6.4%和13.8%的径流。与0 kg ha -1 PAM处理相比,施用10和20 kg ha -1 PAM在A区分别减少了9.5%和22%的径流量,在B区分别减少了4.5%和12%。与施用0公斤公顷-1 PAM相比,施用10和20公斤公顷-1 PAM在A区分别减少19%和28%的土壤侵蚀,在B区分别减少26%和33%的土壤侵蚀。对比A地不同耕作方式对土壤侵蚀的影响,CT1处理比NT和CT2处理分别增加了16.5%和46.5%。对比B区不同耕作方式对土壤侵蚀的影响,CT1比NT和CT2分别增加了38.6%和75.6%。
{"title":"Runoff and erosion as affected by tillage system and polyacrylamide in two sandy loam soils differing in silt and clay contents in semi-arid regions","authors":"N. Abu‐Hamdeh, S. M. Ismail, Samir G. Al-Solaimani, R. Hatamleh, Jeddah Saudi Arabia Arid Land Agriculture","doi":"10.25252/SE/18/51390","DOIUrl":"https://doi.org/10.25252/SE/18/51390","url":null,"abstract":"This study aims to investigate the effect of three tillage practices and the effect of polyacrylamide application rate on surface runoff and erosion of sandy loam soils differing in silt and clay contents. Field experiments in split-split plot with four replications were carried out in two different locations; location A that consists of 25.2% silt plus clay and location B which consists of 38.5% silt plus clay. Three tillage practices were investigated; no-tillage (NT), mouldboard ploughing with rotor tiller (CT1), and chisel ploughing with disk harrow (CT2). Three polyacrylamide (PAM) rates were implemented in each tillage system; 0, 10 and 20 kg ha -1 . The experiment was conducted during December 2015 to April 2017 and wheat was sown for the two seasons. Results showed that the CT1 and CT2 treatments reduced runoff by 15.3% and 50.0%, respectively in location A and by 6.4% and 13.8%, respectively, in location B compared to the NT treatment. Applying 10 and 20 kg ha -1 of PAM decreased runoff by 9.5% and 22%, respectively in location A and by 4.5% and 12%, respectively in location B compared to the 0 kg ha - 1 PAM treatment. Applying 10 and 20 kg ha -1 PAM reduced soil erosion by 19% and 28%, respectively, in location A and by 26% and 33%, respectively in location B compared to the 0 kg ha -1 PAM application rate. Comparing the effect of tillage practices in location (A), the CT1 increased soil erosion by 16.5 % and 46.5% compared with the NT and CT2 treatments, respectively. Comparing the effect of tillage practices in location (B), the CT1 increased soil erosion by 38.6% and 75.6% compared to the NT and CT2, respectively.","PeriodicalId":21762,"journal":{"name":"Soil & Environment","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49007966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Soil & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1