首页 > 最新文献

Signal Transduction and Targeted Therapy最新文献

英文 中文
Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-03 DOI: 10.1038/s41392-024-02071-0
Leilei Chen, Qingqing Shen, Yingjuan Liu, Yunqi Zhang, Liping Sun, Xizhen Ma, Ning Song, Junxia Xie

As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.

{"title":"Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases","authors":"Leilei Chen, Qingqing Shen, Yingjuan Liu, Yunqi Zhang, Liping Sun, Xizhen Ma, Ning Song, Junxia Xie","doi":"10.1038/s41392-024-02071-0","DOIUrl":"https://doi.org/10.1038/s41392-024-02071-0","url":null,"abstract":"<p>As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"27 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artesunate: attenuating TLR4/MD2 signaling to alleviate cardiac fibrosis.
IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-31 DOI: 10.1038/s41392-025-02131-z
Lars Koch, Konrad Hoeft, Rafael Kramann
{"title":"Artesunate: attenuating TLR4/MD2 signaling to alleviate cardiac fibrosis.","authors":"Lars Koch, Konrad Hoeft, Rafael Kramann","doi":"10.1038/s41392-025-02131-z","DOIUrl":"10.1038/s41392-025-02131-z","url":null,"abstract":"","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"10 1","pages":"46"},"PeriodicalIF":40.8,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neoadjuvant pyrotinib and trastuzumab in HER2-positive breast cancer with no early response (NeoPaTHer): efficacy, safety and biomarker analysis of a prospective, multicentre, response-adapted study
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-29 DOI: 10.1038/s41392-025-02138-6
Fei Wang, Yongjiu Wang, Bin Xiong, Zhenlin Yang, Jingfen Wang, Yumin Yao, Lixiang Yu, Qinye Fu, Liang Li, Qiang Zhang, Chao Zheng, Shuya Huang, Liyuan Liu, Chun Liu, Huaibo Sun, Beibei Mao, Dong-Xu Liu, Zhigang Yu

The potential benefits of pyrotinib for patients with trastuzumab-insensitive, HER2-positive early-stage breast cancer remain unclear. This prospective, multicentre, response-adapted study evaluated the efficacy and safety of adding pyrotinib to the neoadjuvant treatment of HER2-positive breast cancer patients with a poor response to initial docetaxel plus carboplatin and trastuzumab (TCbH). Early response was assessed using magnetic resonance imaging (MRI) after two cycles of treatment. Patients showing poor response, as defined by RECIST 1.1, could opt to receive additional pyrotinib or continue standard therapy. The primary endpoint was the total pathological complete response (tpCR; ypT0/isN0) rate. Of the 129 patients enroled, 62 (48.1%) were identified as MRI-responders (cohort A), 26 non-responders continued with four more cycles of TCbH (cohort B), and 41 non-responders received additional pyrotinib (cohort C). The tpCR rate was 30.6% (95% CI: 20.6–43.0%) in cohort A, 15.4% (95% CI: 6.2–33.5%) in cohort B, and 29.3% (95% CI: 17.6–44.5%) in cohort C. Multivariable logistic regression analyses demonstrated comparable odds of achieving tpCR between cohorts A and C (odds ratio = 1.04, 95% CI: 0.40–2.70). No new adverse events were observed with the addition of pyrotinib. Patients with co-mutations of TP53 and PIK3CA exhibited lower rates of early partial response compared to those without or with a single gene mutation (36.0% vs. 60.0%, P = 0.08). These findings suggest that adding pyrotinib may benefit patients who do not respond to neoadjuvant trastuzumab plus chemotherapy. Further investigation is warranted to identify biomarkers predicting patients’ benefit from the addition of pyrotinib.

{"title":"Neoadjuvant pyrotinib and trastuzumab in HER2-positive breast cancer with no early response (NeoPaTHer): efficacy, safety and biomarker analysis of a prospective, multicentre, response-adapted study","authors":"Fei Wang, Yongjiu Wang, Bin Xiong, Zhenlin Yang, Jingfen Wang, Yumin Yao, Lixiang Yu, Qinye Fu, Liang Li, Qiang Zhang, Chao Zheng, Shuya Huang, Liyuan Liu, Chun Liu, Huaibo Sun, Beibei Mao, Dong-Xu Liu, Zhigang Yu","doi":"10.1038/s41392-025-02138-6","DOIUrl":"https://doi.org/10.1038/s41392-025-02138-6","url":null,"abstract":"<p>The potential benefits of pyrotinib for patients with trastuzumab-insensitive, HER2-positive early-stage breast cancer remain unclear. This prospective, multicentre, response-adapted study evaluated the efficacy and safety of adding pyrotinib to the neoadjuvant treatment of HER2-positive breast cancer patients with a poor response to initial docetaxel plus carboplatin and trastuzumab (TCbH). Early response was assessed using magnetic resonance imaging (MRI) after two cycles of treatment. Patients showing poor response, as defined by RECIST 1.1, could opt to receive additional pyrotinib or continue standard therapy. The primary endpoint was the total pathological complete response (t<i>p</i>CR; ypT0/isN0) rate. Of the 129 patients enroled, 62 (48.1%) were identified as MRI-responders (cohort A), 26 non-responders continued with four more cycles of TCbH (cohort B), and 41 non-responders received additional pyrotinib (cohort C). The t<i>p</i>CR rate was 30.6% (95% CI: 20.6–43.0%) in cohort A, 15.4% (95% CI: 6.2–33.5%) in cohort B, and 29.3% (95% CI: 17.6–44.5%) in cohort C. Multivariable logistic regression analyses demonstrated comparable odds of achieving t<i>p</i>CR between cohorts A and C (odds ratio = 1.04, 95% CI: 0.40–2.70). No new adverse events were observed with the addition of pyrotinib. Patients with co-mutations of <i>TP53</i> and <i>PIK3CA</i> exhibited lower rates of early partial response compared to those without or with a single gene mutation (36.0% vs. 60.0%, <i>P</i> = 0.08). These findings suggest that adding pyrotinib may benefit patients who do not respond to neoadjuvant trastuzumab plus chemotherapy. Further investigation is warranted to identify biomarkers predicting patients’ benefit from the addition of pyrotinib.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"24 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cryptic lncRNA-encoded microprotein TPM3P9 drives oncogenic RNA splicing and tumorigenesis
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-27 DOI: 10.1038/s41392-025-02128-8
Kun Meng, Yuying Li, Xiaoyi Yuan, Hui-Min Shen, Li-Ling Hu, Danya Liu, Fujin Shi, Dandan Zheng, Xinyu Shi, Nengqiao Wen, Yun Cao, Yun-Long Pan, Qing-Yu He, Chris Zhiyi Zhang

Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing. Overexpression of TPM3P9 promotes cell proliferation and tumor growth. Mechanistically, TPM3P9 binds to the RRM1 domain of the splicing factor RBM4 to inhibit RBM4-mediated exon skipping in the transcription factor TCF7L2. This results in increased expression of the oncogenic splice variant TCF7L2-L, which activates NF-κB signaling via its interaction with SAM68 to transcriptionally induce RELB expression. From a clinical perspective, TPM3P9 expression is upregulated in cancer tissues and is significantly correlated with the expression of TCF7L2-L and RELB. High TPM3P9 expression or low RBM4 expression is associated with poor survival in patients with ccRCC. Collectively, our findings functionally and clinically characterize the “noncoding RNA”-derived microprotein TPM3P9 and thus identify potential prognostic and therapeutic factors in renal cancer.

{"title":"The cryptic lncRNA-encoded microprotein TPM3P9 drives oncogenic RNA splicing and tumorigenesis","authors":"Kun Meng, Yuying Li, Xiaoyi Yuan, Hui-Min Shen, Li-Ling Hu, Danya Liu, Fujin Shi, Dandan Zheng, Xinyu Shi, Nengqiao Wen, Yun Cao, Yun-Long Pan, Qing-Yu He, Chris Zhiyi Zhang","doi":"10.1038/s41392-025-02128-8","DOIUrl":"https://doi.org/10.1038/s41392-025-02128-8","url":null,"abstract":"<p>Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing. Overexpression of TPM3P9 promotes cell proliferation and tumor growth. Mechanistically, TPM3P9 binds to the RRM1 domain of the splicing factor RBM4 to inhibit RBM4-mediated exon skipping in the transcription factor TCF7L2. This results in increased expression of the oncogenic splice variant TCF7L2-L, which activates NF-κB signaling <i>via</i> its interaction with SAM68 to transcriptionally induce RELB expression. From a clinical perspective, TPM3P9 expression is upregulated in cancer tissues and is significantly correlated with the expression of TCF7L2-L and RELB. High TPM3P9 expression or low RBM4 expression is associated with poor survival in patients with ccRCC. Collectively, our findings functionally and clinically characterize the “noncoding RNA”-derived microprotein TPM3P9 and thus identify potential prognostic and therapeutic factors in renal cancer.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"4 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant XBB.1.5 boosters induce robust neutralization against KP.2- and KP.3-included JN.1 sublineages
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-27 DOI: 10.1038/s41392-025-02139-5
Jingyun Yang, Xuemei He, Huashan Shi, Cai He, Hong Lei, Heng He, Li Yang, Wei Wang, Guobo Shen, Jinliang Yang, Zhiwei Zhao, Xiangrong Song, Zhenling Wang, Guangwen Lu, Jiong Li, Yuquan Wei

The newly emerged variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) demonstrate resistance to present therapeutic antibodies as well as the capability to evade vaccination-elicited antibodies. JN.1 sublineages were demonstrated as one of the most immune-evasive variants, showing higher neutralization resistance compared to XBB.1.5. In this study, serum samples were collected from adult participants including those who had gone through the BA.5/BF.7, EG.5/HK.3 and XBB/JN.1 infection waves, characterized by different infection and vaccination histories. We evaluated the neutralization in these serum samples against pseudoviruses of Omicron lineages. We further investigated humoral immune response of recombinant XBB vaccines against Omicron variants and estimated the neutralization resistance of JN.1 sublineages, including KP.2 and KP.3. Our results showed that sera from previous circulating Omicron subvariant breakthrough infections exhibited low neutralization against pseudoviruses of Omicron lineages. The GMTs of 50% neutralization against all tested pseudoviruses were significantly elevated in sera from individuals who received WSK-V102C or WSK-V102D boosters. Importantly, the GMTs of 50% neutralization in serum samples from individuals 4 months after a WSK-V102D booster against XBB.1.5, JN.1, JN.1.13, KP.2 and KP.3 pseudoviruses were 3479, 1684, 1397, 1247 and 1298, with 9.86-, 9.79-, 8.73-, 8.66- and 8.16-fold increase compared to those without booster, respectively, indicating that boosting with XBB.1.5 subunit vaccines still induced strong antibody responses against JN.1 sublineages. However, JN.1 sublineages, including KP.2 and KP.3, revealed more than 2-fold decreases in neutralizing antibody titers compared to XBB.1.5, suggesting significantly enhanced neutralization evasion and the necessity of boosters based on JN.1, KP.2 or KP.3.

{"title":"Recombinant XBB.1.5 boosters induce robust neutralization against KP.2- and KP.3-included JN.1 sublineages","authors":"Jingyun Yang, Xuemei He, Huashan Shi, Cai He, Hong Lei, Heng He, Li Yang, Wei Wang, Guobo Shen, Jinliang Yang, Zhiwei Zhao, Xiangrong Song, Zhenling Wang, Guangwen Lu, Jiong Li, Yuquan Wei","doi":"10.1038/s41392-025-02139-5","DOIUrl":"https://doi.org/10.1038/s41392-025-02139-5","url":null,"abstract":"<p>The newly emerged variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) demonstrate resistance to present therapeutic antibodies as well as the capability to evade vaccination-elicited antibodies. JN.1 sublineages were demonstrated as one of the most immune-evasive variants, showing higher neutralization resistance compared to XBB.1.5. In this study, serum samples were collected from adult participants including those who had gone through the BA.5/BF.7, EG.5/HK.3 and XBB/JN.1 infection waves, characterized by different infection and vaccination histories. We evaluated the neutralization in these serum samples against pseudoviruses of Omicron lineages. We further investigated humoral immune response of recombinant XBB vaccines against Omicron variants and estimated the neutralization resistance of JN.1 sublineages, including KP.2 and KP.3. Our results showed that sera from previous circulating Omicron subvariant breakthrough infections exhibited low neutralization against pseudoviruses of Omicron lineages. The GMTs of 50% neutralization against all tested pseudoviruses were significantly elevated in sera from individuals who received WSK-V102C or WSK-V102D boosters. Importantly, the GMTs of 50% neutralization in serum samples from individuals 4 months after a WSK-V102D booster against XBB.1.5, JN.1, JN.1.13, KP.2 and KP.3 pseudoviruses were 3479, 1684, 1397, 1247 and 1298, with 9.86-, 9.79-, 8.73-, 8.66- and 8.16-fold increase compared to those without booster, respectively, indicating that boosting with XBB.1.5 subunit vaccines still induced strong antibody responses against JN.1 sublineages. However, JN.1 sublineages, including KP.2 and KP.3, revealed more than 2-fold decreases in neutralizing antibody titers compared to XBB.1.5, suggesting significantly enhanced neutralization evasion and the necessity of boosters based on JN.1, KP.2 or KP.3.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"35 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8+T cells function in the HCC microenvironment
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-24 DOI: 10.1038/s41392-024-02120-8
Cheng Cheng, Qingrui Zha, Linmao Sun, Tianming Cui, Xinyu Guo, Changjian Xing, Zhengxiang Chen, Changyong Ji, Shuhang Liang, Shengwei Tao, Junhui Chu, Chenghui Wu, Qi Chu, Xuetian Gu, Ning Zhang, Yumin Fu, Shumin Deng, Yitong Zhu, Jiabei Wang, Yao Liu, Lianxin Liu

CD8+T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8+T cells suppression in hepatocellular carcinoma (HCC). Our findings reveal that VCP suppresses the activation, expansion, and cytotoxic capacity of CD8+T cells both in vitro and in vivo, significantly contributing to the immunosuppressive nature of the TME. Mechanistically, VCP stabilizes the expression of glycerol-3-phosphate dehydrogenase 1-like protein (GPD1L), leading to the accumulation of glycerol-3-phosphate (G3P), a downstream metabolite of GPD1L. The accumulated G3P diffuses into the TME and directly interacts with SRC-family tyrosine kinase LCK, a critical component of the T-cell receptor (TCR) signaling pathway in CD8+T cells. This interaction heightens the phosphorylation of Tyr505, a key inhibitory residue, ultimately reducing LCK activity and impairing downstream TCR signaling. Consequently, CD8+T cells lose their functional capacity, diminishing their ability to fight against HCC. Importantly, we demonstrated that targeting VCP in combination with anti-PD1 therapy significantly suppresses HCC tumor growth and restores the anti-tumor function of CD8+T cells, suggesting synergistic therapeutic potential. These findings highlight a previously unrecognized mechanism involving VCP and G3P in suppressing T-cell-mediated immunity in the TME, positioning VCP as a promising upstream target for enhancing immunotherapy in HCC.

{"title":"VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8+T cells function in the HCC microenvironment","authors":"Cheng Cheng, Qingrui Zha, Linmao Sun, Tianming Cui, Xinyu Guo, Changjian Xing, Zhengxiang Chen, Changyong Ji, Shuhang Liang, Shengwei Tao, Junhui Chu, Chenghui Wu, Qi Chu, Xuetian Gu, Ning Zhang, Yumin Fu, Shumin Deng, Yitong Zhu, Jiabei Wang, Yao Liu, Lianxin Liu","doi":"10.1038/s41392-024-02120-8","DOIUrl":"https://doi.org/10.1038/s41392-024-02120-8","url":null,"abstract":"<p>CD8<sup>+</sup>T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8<sup>+</sup>T cells suppression in hepatocellular carcinoma (HCC). Our findings reveal that VCP suppresses the activation, expansion, and cytotoxic capacity of CD8<sup>+</sup>T cells both in vitro and in vivo, significantly contributing to the immunosuppressive nature of the TME. Mechanistically, VCP stabilizes the expression of glycerol-3-phosphate dehydrogenase 1-like protein (GPD1L), leading to the accumulation of glycerol-3-phosphate (G3P), a downstream metabolite of GPD1L. The accumulated G3P diffuses into the TME and directly interacts with SRC-family tyrosine kinase LCK, a critical component of the T-cell receptor (TCR) signaling pathway in CD8<sup>+</sup>T cells. This interaction heightens the phosphorylation of Tyr505, a key inhibitory residue, ultimately reducing LCK activity and impairing downstream TCR signaling. Consequently, CD8<sup>+</sup>T cells lose their functional capacity, diminishing their ability to fight against HCC. Importantly, we demonstrated that targeting VCP in combination with anti-PD1 therapy significantly suppresses HCC tumor growth and restores the anti-tumor function of CD8<sup>+</sup>T cells, suggesting synergistic therapeutic potential. These findings highlight a previously unrecognized mechanism involving VCP and G3P in suppressing T-cell-mediated immunity in the TME, positioning VCP as a promising upstream target for enhancing immunotherapy in HCC.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"74 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence propels lung cancer screening: innovations and the challenges of explainability and reproducibility
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-24 DOI: 10.1038/s41392-024-02111-9
Mario Mascalchi, Chiara Marzi, Stefano Diciotti

In a recent study published in Nature Medicine, Wang, Shao, and colleagues successfully addressed two critical issues of lung cancer (LC) screening with low-dose computed tomography (LDCT) whose widespread implementation, despite its capacity to decrease LC mortality, remains challenging: (1) the difficulty in accurately distinguishing malignant nodules from the far more common benign nodules detected on LDCT, and (2) the insufficient coverage of LC screening in resource-limited areas.1

{"title":"Artificial intelligence propels lung cancer screening: innovations and the challenges of explainability and reproducibility","authors":"Mario Mascalchi, Chiara Marzi, Stefano Diciotti","doi":"10.1038/s41392-024-02111-9","DOIUrl":"https://doi.org/10.1038/s41392-024-02111-9","url":null,"abstract":"<p>In a recent study published in <i>Nature Medicine</i>, Wang, Shao, and colleagues successfully addressed two critical issues of lung cancer (LC) screening with low-dose computed tomography (LDCT) whose widespread implementation, despite its capacity to decrease LC mortality, remains challenging: (1) the difficulty in accurately distinguishing malignant nodules from the far more common benign nodules detected on LDCT, and (2) the insufficient coverage of LC screening in resource-limited areas.<sup>1</sup></p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"108 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-24 DOI: 10.1038/s41392-024-02083-w
Yu Zhang, Ke Qiu, Jianjun Ren, Yu Zhao, Ping Cheng

Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.

{"title":"Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use","authors":"Yu Zhang, Ke Qiu, Jianjun Ren, Yu Zhao, Ping Cheng","doi":"10.1038/s41392-024-02083-w","DOIUrl":"https://doi.org/10.1038/s41392-024-02083-w","url":null,"abstract":"<p>Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"13 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy in ovarian cancer: spatial functional genomics to unravel resistance mechanisms 卵巢癌免疫治疗:空间功能基因组学揭示耐药机制
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-22 DOI: 10.1038/s41392-024-02110-w
Martina Rausch, Karlotta Bartels, Josef Leibold

The recent publication by Mollaoglu et al.1 in Cell reveals an unexpected role for tumor derived IL4 in driving immunotherapy resistance in ovarian cancer (OvCa). This finding nominates the combination of immunotherapy and IL4-signaling targeting strategies as a promising new approach for the treatment of advanced OvCa.

Mollaoglu等人最近在Cell杂志上发表的一篇文章揭示了肿瘤来源的il - 4在卵巢癌(OvCa)中驱动免疫治疗耐药的意想不到的作用。这一发现表明免疫治疗和il - 4信号靶向策略的结合是治疗晚期OvCa的一种有希望的新方法。
{"title":"Immunotherapy in ovarian cancer: spatial functional genomics to unravel resistance mechanisms","authors":"Martina Rausch, Karlotta Bartels, Josef Leibold","doi":"10.1038/s41392-024-02110-w","DOIUrl":"https://doi.org/10.1038/s41392-024-02110-w","url":null,"abstract":"<p>The recent publication by Mollaoglu et al.<sup>1</sup> in <i>Cell</i> reveals an unexpected role for tumor derived IL4 in driving immunotherapy resistance in ovarian cancer (OvCa). This finding nominates the combination of immunotherapy and IL4-signaling targeting strategies as a promising new approach for the treatment of advanced OvCa.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"45 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting SRSF1 improves cancer immunotherapy by dually acting on CD8+T and tumor cells 靶向SRSF1通过双重作用于CD8+T和肿瘤细胞来改善癌症免疫治疗
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-22 DOI: 10.1038/s41392-024-02118-2
Gui-Qi Zhu, Zheng Tang, Tian-Hao Chu, Biao Wang, Shi-Ping Chen, Chen-Yang Tao, Jia-Liang Cai, Rui Yang, Wei-Feng Qu, Yi Wang, Qian-Fu Zhao, Run Huang, Meng-Xin Tian, Yuan Fang, Jun Gao, Xiao-Ling Wu, Jian Zhou, Wei-Ren Liu, Zhi Dai, Ying-Hong Shi, Jia Fan

Serine arginine-rich splicing factor 1 (SRSF1) is a key oncogenic splicing factor in various cancers, promoting abnormal gene expression through post-translational regulation. Although the protumoral function of SRSF1 is well-established, the effects of inhibiting tumor-intrinsic SRSF1 on the tumor microenvironment and its impact on CD8+ T cell-mediated antitumor immunity remain unclear. Our findings indicate that depleting SRSF1 in CD8+ T cells improve antitumor immune function, glycolytic metabolism, and the efficacy of adoptive T cell therapy. The inactivation of SRSF1 in tumor cells reduces transcription factors, including c-Jun, c-myc, and JunB, facilitating glycolytic metabolism reprogramming, which restores CD8+ T cell function and inhibits tumor growth. The small-molecule inhibitor TN2008 targets SRSF1, boosting antitumor immune responses and improving immunotherapy effectiveness in mouse models. We therefore introduce a paradigm targeting SRSF1 that simultaneously disrupts tumor cell metabolism and enhances the antitumor immunity of CD8+ T cells.

富丝氨酸精氨酸剪接因子1 (SRSF1)是多种癌症中重要的致癌剪接因子,通过翻译后调控促进基因异常表达。虽然SRSF1的肿瘤功能已被证实,但抑制肿瘤固有的SRSF1对肿瘤微环境的影响及其对CD8+ T细胞介导的抗肿瘤免疫的影响尚不清楚。我们的研究结果表明,在CD8+ T细胞中消耗SRSF1可以提高抗肿瘤免疫功能、糖酵解代谢和过继T细胞治疗的疗效。SRSF1在肿瘤细胞中的失活减少了c-Jun、c-myc、JunB等转录因子,促进糖酵解代谢重编程,恢复CD8+ T细胞功能,抑制肿瘤生长。小分子抑制剂TN2008靶向SRSF1,在小鼠模型中增强抗肿瘤免疫应答,提高免疫治疗效果。因此,我们引入了一种靶向SRSF1的范式,该范式同时破坏肿瘤细胞代谢并增强CD8+ T细胞的抗肿瘤免疫。
{"title":"Targeting SRSF1 improves cancer immunotherapy by dually acting on CD8+T and tumor cells","authors":"Gui-Qi Zhu, Zheng Tang, Tian-Hao Chu, Biao Wang, Shi-Ping Chen, Chen-Yang Tao, Jia-Liang Cai, Rui Yang, Wei-Feng Qu, Yi Wang, Qian-Fu Zhao, Run Huang, Meng-Xin Tian, Yuan Fang, Jun Gao, Xiao-Ling Wu, Jian Zhou, Wei-Ren Liu, Zhi Dai, Ying-Hong Shi, Jia Fan","doi":"10.1038/s41392-024-02118-2","DOIUrl":"https://doi.org/10.1038/s41392-024-02118-2","url":null,"abstract":"<p>Serine arginine-rich splicing factor 1 (SRSF1) is a key oncogenic splicing factor in various cancers, promoting abnormal gene expression through post-translational regulation. Although the protumoral function of SRSF1 is well-established, the effects of inhibiting tumor-intrinsic SRSF1 on the tumor microenvironment and its impact on CD8<sup>+</sup> T cell-mediated antitumor immunity remain unclear. Our findings indicate that depleting SRSF1 in CD8<sup>+</sup> T cells improve antitumor immune function, glycolytic metabolism, and the efficacy of adoptive T cell therapy. The inactivation of SRSF1 in tumor cells reduces transcription factors, including c-Jun, c-myc, and JunB, facilitating glycolytic metabolism reprogramming, which restores CD8<sup>+</sup> T cell function and inhibits tumor growth. The small-molecule inhibitor TN2008 targets SRSF1, boosting antitumor immune responses and improving immunotherapy effectiveness in mouse models. We therefore introduce a paradigm targeting SRSF1 that simultaneously disrupts tumor cell metabolism and enhances the antitumor immunity of CD8<sup>+</sup> T cells.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"81 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Signal Transduction and Targeted Therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1