首页 > 最新文献

Signal Transduction and Targeted Therapy最新文献

英文 中文
Comparing acute versus AIDS ART initiation on HIV-1 integration sites and clonal expansion.
IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1038/s41392-024-02113-7
Jun Wang, Nan Xiao, Zhengnong Zhu, Haiyan Qiao, Fang Zhao, Lukun Zhang, Jizhou Gou, Mengji Lu, Yun He, Hongzhou Lu, Qian Li

Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group). Our analysis revealed distinct clonal distribution patterns, with greater UIS heterogeneity in Acute-ART group and more homogeneity in AIDS-ART group. Monoclonal UIS accumulation, predominantly in-gene regions, was influenced by ART timing and duration, with early treatment delaying this process. Host cell genes integrated by HIV provirus as monoclonal types were enriched in cell cycle and lymphocyte activation pathways. Tumor suppressor genes (TSGs) were more frequently integrated as monoclonal types in AIDS-ART group, suggesting potential risk factors. Overall, we introduced a sequencing method to assess provirus size in human peripheral blood and identified the widespread presence of monoclonal distribution of UIS in AIDS-ART group after long-term treatment. The early intervention helps slow the progress of clonal expansion of infected cells, reducing the formation of stable and persistent reservoirs, and ultimately posing fewer barriers to achieving a functional cure.

{"title":"Comparing acute versus AIDS ART initiation on HIV-1 integration sites and clonal expansion.","authors":"Jun Wang, Nan Xiao, Zhengnong Zhu, Haiyan Qiao, Fang Zhao, Lukun Zhang, Jizhou Gou, Mengji Lu, Yun He, Hongzhou Lu, Qian Li","doi":"10.1038/s41392-024-02113-7","DOIUrl":"10.1038/s41392-024-02113-7","url":null,"abstract":"<p><p>Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group). Our analysis revealed distinct clonal distribution patterns, with greater UIS heterogeneity in Acute-ART group and more homogeneity in AIDS-ART group. Monoclonal UIS accumulation, predominantly in-gene regions, was influenced by ART timing and duration, with early treatment delaying this process. Host cell genes integrated by HIV provirus as monoclonal types were enriched in cell cycle and lymphocyte activation pathways. Tumor suppressor genes (TSGs) were more frequently integrated as monoclonal types in AIDS-ART group, suggesting potential risk factors. Overall, we introduced a sequencing method to assess provirus size in human peripheral blood and identified the widespread presence of monoclonal distribution of UIS in AIDS-ART group after long-term treatment. The early intervention helps slow the progress of clonal expansion of infected cells, reducing the formation of stable and persistent reservoirs, and ultimately posing fewer barriers to achieving a functional cure.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"10 1","pages":"23"},"PeriodicalIF":40.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial diseases: from molecular mechanisms to therapeutic advances.
IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1038/s41392-024-02044-3
Haipeng Wen, Hui Deng, Bingyan Li, Junyu Chen, Junye Zhu, Xian Zhang, Shigeo Yoshida, Yedi Zhou

Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.

{"title":"Mitochondrial diseases: from molecular mechanisms to therapeutic advances.","authors":"Haipeng Wen, Hui Deng, Bingyan Li, Junyu Chen, Junye Zhu, Xian Zhang, Shigeo Yoshida, Yedi Zhou","doi":"10.1038/s41392-024-02044-3","DOIUrl":"10.1038/s41392-024-02044-3","url":null,"abstract":"<p><p>Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"10 1","pages":"9"},"PeriodicalIF":40.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting pathological brain activity-related to neuroinflammation through scRNA-seq for new personalized therapies in Parkinson's disease.
IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1038/s41392-024-02086-7
Daniela Mirzac, Manuel Bange, Sebastian Kunz, Phil L de Jager, Sergiu Groppa, Gabriel Gonzalez-Escamilla
{"title":"Targeting pathological brain activity-related to neuroinflammation through scRNA-seq for new personalized therapies in Parkinson's disease.","authors":"Daniela Mirzac, Manuel Bange, Sebastian Kunz, Phil L de Jager, Sergiu Groppa, Gabriel Gonzalez-Escamilla","doi":"10.1038/s41392-024-02086-7","DOIUrl":"10.1038/s41392-024-02086-7","url":null,"abstract":"","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"10 1","pages":"10"},"PeriodicalIF":40.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-08 DOI: 10.1038/s41392-024-02094-7
Xina Xiao, Meng Hu, Li Gao, Huan Yuan, Baochen Chong, Yu Liu, Rou Zhang, Yanqiu Gong, Dan Du, Yong Zhang, Hao Yang, Xiaohui Liu, Yan Zhang, Huiyuan Zhang, Heng Xu, Yi Zhao, Wenbo Meng, Dan Xie, Peng Lei, Shiqian Qi, Yong Peng, Tao Tan, Yang Yu, Hongbo Hu, Biao Dong, Lunzhi Dai

Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.

{"title":"Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut","authors":"Xina Xiao, Meng Hu, Li Gao, Huan Yuan, Baochen Chong, Yu Liu, Rou Zhang, Yanqiu Gong, Dan Du, Yong Zhang, Hao Yang, Xiaohui Liu, Yan Zhang, Huiyuan Zhang, Heng Xu, Yi Zhao, Wenbo Meng, Dan Xie, Peng Lei, Shiqian Qi, Yong Peng, Tao Tan, Yang Yu, Hongbo Hu, Biao Dong, Lunzhi Dai","doi":"10.1038/s41392-024-02094-7","DOIUrl":"https://doi.org/10.1038/s41392-024-02094-7","url":null,"abstract":"<p>Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), <i>S</i>-nitrosylation (SNO), and <i>S</i>-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"22 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mucosal immune response in biology, disease prevention and treatment
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-08 DOI: 10.1038/s41392-024-02043-4
Xiaoxue Zhou, Yuchen Wu, Zhipeng Zhu, Chu Lu, Chunwu Zhang, Linghui Zeng, Feng Xie, Long Zhang, Fangfang Zhou

The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.

{"title":"Mucosal immune response in biology, disease prevention and treatment","authors":"Xiaoxue Zhou, Yuchen Wu, Zhipeng Zhu, Chu Lu, Chunwu Zhang, Linghui Zeng, Feng Xie, Long Zhang, Fangfang Zhou","doi":"10.1038/s41392-024-02043-4","DOIUrl":"https://doi.org/10.1038/s41392-024-02043-4","url":null,"abstract":"<p>The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"29 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: CD4 T cell contact drives macrophage cell cycle G0-G1 transition
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1038/s41392-024-02117-3
Petra Mlcochova, Na Zhao, Omar Shabana, Roman Fischer, Ravindra K. Gupta

Correction to: Signal Transduction and Targeted Therapy https://doi.org/10.1038/s41392-024-02053-2, published online 13 December 2024

{"title":"Correction: CD4 T cell contact drives macrophage cell cycle G0-G1 transition","authors":"Petra Mlcochova, Na Zhao, Omar Shabana, Roman Fischer, Ravindra K. Gupta","doi":"10.1038/s41392-024-02117-3","DOIUrl":"https://doi.org/10.1038/s41392-024-02117-3","url":null,"abstract":"<p>Correction to: <i>Signal Transduction and Targeted Therapy</i> https://doi.org/10.1038/s41392-024-02053-2, published online 13 December 2024</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"20 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TET2 cascade: a novel regulator of chromatin structure and leukaemogenesis
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1038/s41392-024-02101-x
Wolfram C. M. Dempke, Klaus Fenchel

In the most recently published research article in Nature,1 it has been demonstrated for the first time that the TET2 regulates the chromatin structure and leukaemogenesis in stem cells and leukaemia cells via MBD6 (binds 5-methycytosine residues in RNA) and NSUN2 (a RNA methylase). This important finding might pave the way for the development of highly specific novel therapeutic approaches for TET2-mutated cancers.

{"title":"TET2 cascade: a novel regulator of chromatin structure and leukaemogenesis","authors":"Wolfram C. M. Dempke, Klaus Fenchel","doi":"10.1038/s41392-024-02101-x","DOIUrl":"https://doi.org/10.1038/s41392-024-02101-x","url":null,"abstract":"<p>In the most recently published research article in <i>Nature</i>,<sup>1</sup> it has been demonstrated for the first time that the TET2 regulates the chromatin structure and leukaemogenesis in stem cells and leukaemia cells via MBD6 (binds 5-methycytosine residues in RNA) and NSUN2 (a RNA methylase). This important finding might pave the way for the development of highly specific novel therapeutic approaches for TET2-mutated cancers.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"77 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1038/s41392-024-02070-1
Soyoung Jeon, Yeram Jeon, Ji-Youn Lim, Yujeong Kim, Boksik Cha, Wantae Kim

Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates—membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules—in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.

{"title":"Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets","authors":"Soyoung Jeon, Yeram Jeon, Ji-Youn Lim, Yujeong Kim, Boksik Cha, Wantae Kim","doi":"10.1038/s41392-024-02070-1","DOIUrl":"https://doi.org/10.1038/s41392-024-02070-1","url":null,"abstract":"<p>Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates—membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules—in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"27 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pan-immune panorama of bacterial pneumonia revealed by a large-scale single-cell transcriptome atlas
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1038/s41392-024-02093-8
Kun Xiao, Yan Cao, Zhihai Han, Yuxiang Zhang, Laurence Don Wai Luu, Liang Chen, Peng Yan, Wei Chen, Jiaxing Wang, Ying Liang, Xin Shi, Xiuli Wang, Fan Wang, Ye Hu, Zhengjun Wen, Yong Chen, Yuwei Yang, Haotian Yu, Lixin Xie, Yi Wang

Bacterial pneumonia is a significant public health burden, contributing to substantial morbidity, mortality, and healthcare costs. Current therapeutic strategies beyond antibiotics and adjuvant therapies are limited, highlighting the need for a deeper understanding of the disease pathogenesis. Here, we employed single-cell RNA sequencing of 444,146 bronchoalveolar lavage fluid cells (BALFs) from a large cohort of 74 individuals, including 58 patients with mild (n = 22) and severe (n = 36) diseases as well as 16 healthy donors. Enzyme‐linked immunosorbent and histological assays were applied for validation within this cohort. The heterogeneity of immune responses in bacterial pneumonia was observed, with distinct immune cell profiles related to disease severity. Severe bacterial pneumonia was marked by an inflammatory cytokine storm resulting from systemic upregulation of S100A8/A9 and CXCL8, primarily due to specific macrophage and neutrophil subsets. In contrast, mild bacterial pneumonia exhibits an effective humoral immune response characterized by the expansion of T follicular helper and T helper 2 cells, facilitating B cell activation and antibody production. Although both disease groups display T cell exhaustion, mild cases maintained robust cytotoxic CD8+T cell function, potentially reflecting a compensatory mechanism. Dysregulated neutrophil and macrophage responses contributed significantly to the pathogenesis of severe disease. Immature neutrophils promote excessive inflammation and suppress T cell activation, while a specific macrophage subset (Macro_03_M1) displaying features akin to myeloid-derived suppressor cells (M-MDSCs) suppress T cells and promote inflammation. Together, these findings highlight potential therapeutic targets for modulating immune responses and improving clinical outcomes in bacterial pneumonia.

{"title":"A pan-immune panorama of bacterial pneumonia revealed by a large-scale single-cell transcriptome atlas","authors":"Kun Xiao, Yan Cao, Zhihai Han, Yuxiang Zhang, Laurence Don Wai Luu, Liang Chen, Peng Yan, Wei Chen, Jiaxing Wang, Ying Liang, Xin Shi, Xiuli Wang, Fan Wang, Ye Hu, Zhengjun Wen, Yong Chen, Yuwei Yang, Haotian Yu, Lixin Xie, Yi Wang","doi":"10.1038/s41392-024-02093-8","DOIUrl":"https://doi.org/10.1038/s41392-024-02093-8","url":null,"abstract":"<p>Bacterial pneumonia is a significant public health burden, contributing to substantial morbidity, mortality, and healthcare costs. Current therapeutic strategies beyond antibiotics and adjuvant therapies are limited, highlighting the need for a deeper understanding of the disease pathogenesis. Here, we employed single-cell RNA sequencing of 444,146 bronchoalveolar lavage fluid cells (BALFs) from a large cohort of 74 individuals, including 58 patients with mild (<i>n</i> = 22) and severe (<i>n</i> = 36) diseases as well as 16 healthy donors. Enzyme‐linked immunosorbent and histological assays were applied for validation within this cohort. The heterogeneity of immune responses in bacterial pneumonia was observed, with distinct immune cell profiles related to disease severity. Severe bacterial pneumonia was marked by an inflammatory cytokine storm resulting from systemic upregulation of <i>S100A8</i>/<i>A9</i> and <i>CXCL8</i>, primarily due to specific macrophage and neutrophil subsets. In contrast, mild bacterial pneumonia exhibits an effective humoral immune response characterized by the expansion of T follicular helper and T helper 2 cells, facilitating B cell activation and antibody production. Although both disease groups display T cell exhaustion, mild cases maintained robust cytotoxic CD8<sup>+</sup>T cell function, potentially reflecting a compensatory mechanism. Dysregulated neutrophil and macrophage responses contributed significantly to the pathogenesis of severe disease. Immature neutrophils promote excessive inflammation and suppress T cell activation, while a specific macrophage subset (Macro_03_M1) displaying features akin to myeloid-derived suppressor cells (M-MDSCs) suppress T cells and promote inflammation. Together, these findings highlight potential therapeutic targets for modulating immune responses and improving clinical outcomes in bacterial pneumonia.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"21 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiopharmaceuticals and their applications in medicine
IF 39.3 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-03 DOI: 10.1038/s41392-024-02041-6
Siqi Zhang, Xingkai Wang, Xin Gao, Xueyao Chen, Linger Li, Guoqing Li, Can Liu, Yuan Miao, Rui Wang, Kuan Hu

Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.

{"title":"Radiopharmaceuticals and their applications in medicine","authors":"Siqi Zhang, Xingkai Wang, Xin Gao, Xueyao Chen, Linger Li, Guoqing Li, Can Liu, Yuan Miao, Rui Wang, Kuan Hu","doi":"10.1038/s41392-024-02041-6","DOIUrl":"https://doi.org/10.1038/s41392-024-02041-6","url":null,"abstract":"<p>Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [<sup>177</sup>Lu]Lu-DOTA-TATE, [<sup>177</sup>Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [<sup>68</sup>Ga]Ga-DOTA-TATE and [<sup>68</sup>Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"34 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Signal Transduction and Targeted Therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1