Ziying Ji, Yiran Wu, Lu Liu, Wei Zheng, Meng Wu, Yuexia Li, Zhengming Sun, Guobing Ying
The 2D Ti3C2Tx MXene has a large specific surface area, abundant functional groups, and low work function, which has potential in the field of photocatalytic materials. However, the manufacturing of controllable films with high photocatalytic properties and desirable transmittance is a challenging task. Herein, low-cost, large-scale, and rapid preparation of Ti3C2Tx/TiO2 flexible composite films have been successfully prepared by inkjet printing technology, which can be applied in complex and special environments, as well as in photoelectrically controllable places for photocatalytic performance. With the increase of the anatase TiO2, the transmittance of Ti3C2Tx/TiO2 films increases from 55.37% to 73.27% at 780 nm, corresponding to the square resistance of 1.112–206.496 kΩ sq−1 and the figure of merit of 0.48–0.005. When the amount of anatase TiO2 is 15%, the film has the best photocatalytic effect on methylene blue (MB) dye, reaching 68.94%. After five cycles of testing, the degradation efficiency of MB dye decreases by only 5.68%, showing that the film has good cycling stability. This work provides a new research direction for photoelectrically controllable photocatalytic degradation in complex and special environments.
{"title":"Inkjet-Printed Flexible and Transparent Ti3C2Tx/TiO2 Composite Films: A Strategy for Photoelectrically Controllable Photocatalytic Degradation","authors":"Ziying Ji, Yiran Wu, Lu Liu, Wei Zheng, Meng Wu, Yuexia Li, Zhengming Sun, Guobing Ying","doi":"10.1002/sstr.202400214","DOIUrl":"https://doi.org/10.1002/sstr.202400214","url":null,"abstract":"The 2D Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene has a large specific surface area, abundant functional groups, and low work function, which has potential in the field of photocatalytic materials. However, the manufacturing of controllable films with high photocatalytic properties and desirable transmittance is a challenging task. Herein, low-cost, large-scale, and rapid preparation of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/TiO<sub>2</sub> flexible composite films have been successfully prepared by inkjet printing technology, which can be applied in complex and special environments, as well as in photoelectrically controllable places for photocatalytic performance. With the increase of the anatase TiO<sub>2</sub>, the transmittance of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>/TiO<sub>2</sub> films increases from 55.37% to 73.27% at 780 nm, corresponding to the square resistance of 1.112–206.496 kΩ sq<sup>−1</sup> and the figure of merit of 0.48–0.005. When the amount of anatase TiO<sub>2</sub> is 15%, the film has the best photocatalytic effect on methylene blue (MB) dye, reaching 68.94%. After five cycles of testing, the degradation efficiency of MB dye decreases by only 5.68%, showing that the film has good cycling stability. This work provides a new research direction for photoelectrically controllable photocatalytic degradation in complex and special environments.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frank Sailer, Hipassia M. Moura, Taniya Purkait, Lars Vogelsang, Markus Sauer, Annette Foelske, Rainer F. Winter, Alexandre Ponrouch, Miriam M. Unterlass
Hybrid Materials
混合材料
{"title":"Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis","authors":"Frank Sailer, Hipassia M. Moura, Taniya Purkait, Lars Vogelsang, Markus Sauer, Annette Foelske, Rainer F. Winter, Alexandre Ponrouch, Miriam M. Unterlass","doi":"10.1002/sstr.202470043","DOIUrl":"https://doi.org/10.1002/sstr.202470043","url":null,"abstract":"<b>Hybrid Materials</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avi Arya, Sih-Ling Hsu, Chi-You Liu, Meng-Yuan Chang, Jeng-Kuei Chang, Elise Yu-Tzu Li, Yu-Sheng Su
The growing demand for cost-effective and sustainable energy-storage solutions has spurred interest in novel anode materials for lithium-ion batteries (LIBs). In this study, the potential of small-molecule polycyclic aromatic hydrocarbons (SMPAHs) as promising candidates for LIB anodes is explored. Through a comprehensive experimental approach involving electrode fabrication, material characterization, and electrochemical testing, the electrochemical performance of SMPAHs, including naphthalene, biphenyl, 9,9-dimethylfluorene, phenanthrene, p-terphenyl, and pyrene (Py), is thoroughly investigated. In the results, the impressive cycle stability, high specific capacity, and excellent rate capability of the SMPAH electrode are revealed. Additionally, a direct contact prelithiation strategy is implemented to enhance the initial Coulombic efficiency (ICE) of SMPAH anodes, yielding significant improvements in the ICE and cycle stability. Computational simulations provide valuable insights into the electrochemical behavior and lithium-storage mechanisms of SMPAHs, confirming their potential as effective anode materials. The simulations reveal favorable lithium adsorption sites, the predominant storage mechanisms, and the dissolution mechanism of Py through computational calculations. Overall, in this study, the promise of SMPAHs is highlighted as sustainable anode materials for LIBs, advancing energy-storage technologies toward a greener future.
{"title":"Small-Molecule Polycyclic Aromatic Hydrocarbons as Exceptional Long-Cycle-Life Li-Ion Battery Anode Materials","authors":"Avi Arya, Sih-Ling Hsu, Chi-You Liu, Meng-Yuan Chang, Jeng-Kuei Chang, Elise Yu-Tzu Li, Yu-Sheng Su","doi":"10.1002/sstr.202400273","DOIUrl":"https://doi.org/10.1002/sstr.202400273","url":null,"abstract":"The growing demand for cost-effective and sustainable energy-storage solutions has spurred interest in novel anode materials for lithium-ion batteries (LIBs). In this study, the potential of small-molecule polycyclic aromatic hydrocarbons (SMPAHs) as promising candidates for LIB anodes is explored. Through a comprehensive experimental approach involving electrode fabrication, material characterization, and electrochemical testing, the electrochemical performance of SMPAHs, including naphthalene, biphenyl, 9,9-dimethylfluorene, phenanthrene, <i>p</i>-terphenyl, and pyrene (Py), is thoroughly investigated. In the results, the impressive cycle stability, high specific capacity, and excellent rate capability of the SMPAH electrode are revealed. Additionally, a direct contact prelithiation strategy is implemented to enhance the initial Coulombic efficiency (ICE) of SMPAH anodes, yielding significant improvements in the ICE and cycle stability. Computational simulations provide valuable insights into the electrochemical behavior and lithium-storage mechanisms of SMPAHs, confirming their potential as effective anode materials. The simulations reveal favorable lithium adsorption sites, the predominant storage mechanisms, and the dissolution mechanism of Py through computational calculations. Overall, in this study, the promise of SMPAHs is highlighted as sustainable anode materials for LIBs, advancing energy-storage technologies toward a greener future.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeongmin Je, Sukyoung Won, Jeong Jae Wie, Sanha Kim
Untethered magnetic actuation is an attractive technique for controlling a batch of micrometer-sized soft robots. Recent advancements have enabled each robot to follow its path independently using a single magnetic device. However, applications of magnetic soft microrobots are mostly biased toward the biomedical field. In this study, thermoplastic polyurethane–Fe3O4 nanocomposite soft spinning microrobots, that is, spinbots that actuate on a tabletop magnetic stirrer, were utilized as innovative precision manufacturing tools for spatially selective precision polishing and cleaning. The pivot motion of the revolving spinbots, which involves repetitive sweeping during rotation cycles, is explored. This sweeping action physically removes nanometer-sized surface contaminants from the workpiece, achieving a cleaning efficiency of 99.6%. Multiple spinbots, up to 42 in total, simultaneously operated along their own orbital pathways on three vertically stacked wafers, thereby demonstrating an unprecedented cleaning method. In addition, the spinbots precisely removed materials from the workpiece using a three-body abrasion mechanism. Furthermore, the spinbots contributed to precise material removal, resulting in remarkable surface polishing (R