首页 > 最新文献

Small Structures最新文献

英文 中文
Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles 层状富镍阴极粒子上高熵氧化物的光子合成与涂层
Pub Date : 2024-07-15 DOI: 10.1002/sstr.202400197
Yanyan Cui, Yushu Tang, Jing Lin, Junbo Wang, Horst Hahn, B. Breitung, Simon Schweidler, T. Brezesinski, M. Botros
High‐entropy materials have drawn much attention as battery materials due to their distinctive properties. Lithiated high‐entropy oxide (Li0.33(MgCoNiCuZn)0.67O, LiHEO) exhibits both high lithium‐ion and electronic conductivity, making it a potential coating material for layered Ni‐rich oxide cathodes (Li1+x(Ni1−y−zCoyMnz)1−xO2, NCM or NMC) in conventional Li‐ion battery cells; however, high‐temperature synthesis limits its application. Therefore, a photonic curing strategy is used for synthesizing LiHEO and the non‐lithiated form (denoted as high‐entropy oxide [HEO]), and nanoscale coatings are successfully produced on LiNi0.85Co0.1Mn0.05O2 (NCM851005) particles. To one's knowledge, this is the first report on particle coating with high‐entropy materials using photonic curing. NCM851005 with LiHEO‐modified surface shows good cycling stability, with a capacity retention of 97% at 1 C rate after 200 cycles. The improvement in electrochemical performance is attributed to the conformal coating that prevents structural changes caused by the reaction between cathode material and liquid electrolyte. Compared to bare NCM851005, the coated material shows a significantly reduced tendency for intergranular cracking, successfully preventing electrolyte penetration and suppressing side reactions. Overall, photonic curing presents a novel cost‐ and energy‐efficient synthesis and coating procedure that paves the way for surface modification of any heat‐sensitive material for a wide range of applications.
高熵材料作为电池材料因其独特的性能而备受关注。锂化高熵氧化物(Li0.33(MgCoNiCuZn)0.67O,LiHEO)具有很高的锂离子电导率和电子电导率,使其成为传统锂离子电池中富镍层状氧化物正极(Li1+x(Ni1-y-zCoyMnz)1-xO2,NCM 或 NMC)的潜在涂层材料;然而,高温合成限制了其应用。因此,我们采用光子固化策略合成 LiHEO 和非石硫酸化形式(称为高熵氧化物 [HEO]),并在 LiNi0.85Co0.1Mn0.05O2 (NCM851005) 颗粒上成功制备出纳米级涂层。据我们所知,这是首次报道利用光子固化技术为粒子涂覆高熵材料。表面经锂氢氧化物修饰的 NCM851005 具有良好的循环稳定性,在 1 C 速率下循环 200 次后容量保持率为 97%。电化学性能的改善归功于保形涂层,它能防止阴极材料和液态电解质之间的反应引起的结构变化。与裸露的 NCM851005 相比,涂层材料明显减少了晶间开裂的趋势,成功地防止了电解质渗透并抑制了副反应。总之,光子固化技术提供了一种新颖的低成本、高能效合成和涂层程序,为广泛应用于任何热敏材料的表面改性铺平了道路。
{"title":"Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles","authors":"Yanyan Cui, Yushu Tang, Jing Lin, Junbo Wang, Horst Hahn, B. Breitung, Simon Schweidler, T. Brezesinski, M. Botros","doi":"10.1002/sstr.202400197","DOIUrl":"https://doi.org/10.1002/sstr.202400197","url":null,"abstract":"High‐entropy materials have drawn much attention as battery materials due to their distinctive properties. Lithiated high‐entropy oxide (Li0.33(MgCoNiCuZn)0.67O, LiHEO) exhibits both high lithium‐ion and electronic conductivity, making it a potential coating material for layered Ni‐rich oxide cathodes (Li1+x(Ni1−y−zCoyMnz)1−xO2, NCM or NMC) in conventional Li‐ion battery cells; however, high‐temperature synthesis limits its application. Therefore, a photonic curing strategy is used for synthesizing LiHEO and the non‐lithiated form (denoted as high‐entropy oxide [HEO]), and nanoscale coatings are successfully produced on LiNi0.85Co0.1Mn0.05O2 (NCM851005) particles. To one's knowledge, this is the first report on particle coating with high‐entropy materials using photonic curing. NCM851005 with LiHEO‐modified surface shows good cycling stability, with a capacity retention of 97% at 1 C rate after 200 cycles. The improvement in electrochemical performance is attributed to the conformal coating that prevents structural changes caused by the reaction between cathode material and liquid electrolyte. Compared to bare NCM851005, the coated material shows a significantly reduced tendency for intergranular cracking, successfully preventing electrolyte penetration and suppressing side reactions. Overall, photonic curing presents a novel cost‐ and energy‐efficient synthesis and coating procedure that paves the way for surface modification of any heat‐sensitive material for a wide range of applications.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-Solid Composite Polymer Electrolyte-Based Structural Batteries with High Ionic Conductivity and Excellent Mechanical Properties 具有高离子电导率和优异机械性能的准固体复合聚合物电解质结构电池
Pub Date : 2024-07-10 DOI: 10.1002/sstr.202400050
Zeru Wang, Yue Hou, Sen Li, Zhuang Xu, Xiaotao Zhu, Bing Guo, Dong Lu, Ke Wang
Structural lithium batteries integrated with energy storage and mechanical load-bearing capabilities hold great promise to revolutionize lightweight transport vehicles. However, the current development of structural batteries faces critical challenges in balancing the electrochemical and mechanical properties of the electrolytes. Herein, a super strong quasi-solid composite polymer electrolyte (QCPE) is successfully fabricated by reinforcing polyelectrolyte with 3D in situ self-assembled metal–organic framework-modified glass fiber (MOF@GF) soaking a small amount of liquid electrolyte, which provides continuous ion conductive pathways for fast Li+ transport and contributes to the high ambient ionic conductivity of 1.47 × 10−3 S cm−1. The micropores and abundant polar functional groups selectively restrict the transport of anions to afford a homogeneous Li+ flux and a high Li+ transference number (0.56). Simultaneously, the MOF@GF provides more effective reinforcement and a remarkably high tensile strength of 48.6 MPa, and Young's modulus of 1.66 GPa is achieved. Furthermore, the lithium metal batteries fabricated with this QCPE exhibit a long, stable operation lifespan of 2000 h and excellent cycling performance with LiFePO4 and NCM811 cathodes. This design strategy generally opens a new avenue for structural batteries with high ionic conductivity and outstanding mechanical properties, which holds great promise for industrial translation.
集成了储能和机械承载能力的结构锂电池为轻型运输车辆带来了巨大的变革前景。然而,目前结构电池的开发在平衡电解质的电化学和机械性能方面面临严峻挑战。本文通过三维原位自组装金属有机框架改性玻璃纤维(MOF@GF)浸泡少量液态电解质来增强聚电解质,成功制备了一种超强准固体复合聚合物电解质(QCPE),为Li+的快速传输提供了连续的离子传导途径,并使其具有1.47 × 10-3 S cm-1的高环境离子电导率。微孔和丰富的极性官能团选择性地限制了阴离子的迁移,从而提供了均匀的 Li+ 通量和较高的 Li+ 迁移数(0.56)。与此同时,MOF@GF 提供了更有效的强化作用,抗拉强度高达 48.6 兆帕,杨氏模量为 1.66 GPa。此外,用这种 QCPE 制成的金属锂电池在使用 LiFePO4 和 NCM811 正极时,具有长达 2000 小时的稳定工作寿命和优异的循环性能。这种设计策略总体上为具有高离子传导性和出色机械性能的结构电池开辟了一条新途径,为工业转化带来了巨大前景。
{"title":"Quasi-Solid Composite Polymer Electrolyte-Based Structural Batteries with High Ionic Conductivity and Excellent Mechanical Properties","authors":"Zeru Wang, Yue Hou, Sen Li, Zhuang Xu, Xiaotao Zhu, Bing Guo, Dong Lu, Ke Wang","doi":"10.1002/sstr.202400050","DOIUrl":"https://doi.org/10.1002/sstr.202400050","url":null,"abstract":"Structural lithium batteries integrated with energy storage and mechanical load-bearing capabilities hold great promise to revolutionize lightweight transport vehicles. However, the current development of structural batteries faces critical challenges in balancing the electrochemical and mechanical properties of the electrolytes. Herein, a super strong quasi-solid composite polymer electrolyte (QCPE) is successfully fabricated by reinforcing polyelectrolyte with 3D in situ self-assembled metal–organic framework-modified glass fiber (MOF@GF) soaking a small amount of liquid electrolyte, which provides continuous ion conductive pathways for fast Li<sup>+</sup> transport and contributes to the high ambient ionic conductivity of 1.47 × 10<sup>−3</sup> S cm<sup>−1</sup>. The micropores and abundant polar functional groups selectively restrict the transport of anions to afford a homogeneous Li<sup>+</sup> flux and a high Li<sup>+</sup> transference number (0.56). Simultaneously, the MOF@GF provides more effective reinforcement and a remarkably high tensile strength of 48.6 MPa, and Young's modulus of 1.66 GPa is achieved. Furthermore, the lithium metal batteries fabricated with this QCPE exhibit a long, stable operation lifespan of 2000 h and excellent cycling performance with LiFePO<sub>4</sub> and NCM811 cathodes. This design strategy generally opens a new avenue for structural batteries with high ionic conductivity and outstanding mechanical properties, which holds great promise for industrial translation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bilingual Nanobiosensor for Cross-Category Integrated Decoding of the Beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1–Aβ Oligomer Signaling Pathway 用于跨类别综合解码β位点淀粉样前体蛋白-切割酶 1-Aβ 寡聚体信号通路的双语纳米生物传感器
Pub Date : 2024-07-10 DOI: 10.1002/sstr.202400241
Tao Cheng, Peifen Lu, Yixi Dong, Jiabao Yu, Gang Wang, Jianwei Jiao, Peng Miao, Jin Jiao
Herein, a sequentially responsive peptide DNA bilingual nanobiosensor is developed, which allows integrated quantification of amyloid signaling pathway. In this system, upstream beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protease and downstream Aβ oligomer (AβO) are designed as two inputs for the AND DNA logic gate. In the existence of both inputs, peptide substrate with aptamer can be sequentially cleaved, reporting electrochemical and fluorescence dual-mode outputs. In comparison with conventional single protease activity assay based on peptide nanotechnology, this strategy permits accurate diagnosis of Alzheimer's disease (AD) from normal subjects. More importantly, it can achieve distinguished diagnosis between AD and type 2 diabetes mellitus patients. This bilingual nanobiosensor is successfully applied to detect BACE1 (1–100 U mL−1) and AβO (5–1000 pg mL−1) with limit of detections as low as 0.10 U mL−1 and 0.76 pg mL−1, respectively. Furthermore, this strategy inspires advanced nanobiosensors to target the activation of other signaling pathways, which are potential tools for future biology and medicine investigation.
本文开发了一种顺序响应肽 DNA 双语纳米生物传感器,可对淀粉样蛋白信号通路进行综合定量。在该系统中,上游的β位淀粉样前体蛋白切割酶1(BACE1)蛋白酶和下游的Aβ寡聚体(AβO)被设计为AND DNA逻辑门的两个输入端。在两个输入端同时存在的情况下,带有适配体的多肽底物可以依次被裂解,从而产生电化学和荧光双模式输出。与传统的基于多肽纳米技术的单一蛋白酶活性检测相比,该策略可准确诊断正常人与阿尔茨海默病(AD)。更重要的是,它还能实现对阿尔茨海默病和 2 型糖尿病患者的鉴别诊断。这种双语纳米生物传感器成功应用于检测 BACE1(1-100 U mL-1)和 AβO(5-1000 pg mL-1),检测限分别低至 0.10 U mL-1 和 0.76 pg mL-1。此外,这种策略还启发了针对其他信号通路激活的先进纳米生物传感器,它们是未来生物学和医学研究的潜在工具。
{"title":"A Bilingual Nanobiosensor for Cross-Category Integrated Decoding of the Beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1–Aβ Oligomer Signaling Pathway","authors":"Tao Cheng, Peifen Lu, Yixi Dong, Jiabao Yu, Gang Wang, Jianwei Jiao, Peng Miao, Jin Jiao","doi":"10.1002/sstr.202400241","DOIUrl":"https://doi.org/10.1002/sstr.202400241","url":null,"abstract":"Herein, a sequentially responsive peptide DNA bilingual nanobiosensor is developed, which allows integrated quantification of amyloid signaling pathway. In this system, upstream beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protease and downstream Aβ oligomer (AβO) are designed as two inputs for the AND DNA logic gate. In the existence of both inputs, peptide substrate with aptamer can be sequentially cleaved, reporting electrochemical and fluorescence dual-mode outputs. In comparison with conventional single protease activity assay based on peptide nanotechnology, this strategy permits accurate diagnosis of Alzheimer's disease (AD) from normal subjects. More importantly, it can achieve distinguished diagnosis between AD and type 2 diabetes mellitus patients. This bilingual nanobiosensor is successfully applied to detect BACE1 (1–100 U mL<sup>−1</sup>) and AβO (5–1000 pg mL<sup>−1</sup>) with limit of detections as low as 0.10 U mL<sup>−1</sup> and 0.76 pg mL<sup>−1</sup>, respectively. Furthermore, this strategy inspires advanced nanobiosensors to target the activation of other signaling pathways, which are potential tools for future biology and medicine investigation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gadolinium-Manganese-Based Nanoplatform Reverses Radiotherapy Resistant Factors for Radiotherapy Sensitization and Computed Tomography/Magnetic Resonance Dual-Modal Imaging 钆锰基纳米平台可逆转放疗抗性因素,用于放疗增敏和计算机断层扫描/磁共振双模态成像
Pub Date : 2024-07-10 DOI: 10.1002/sstr.202400033
Yingwen Li, Panhong Niu, Zhenzhong Han, Xueqian Wang, Duanmin Gao, Yunjian Xu, Qingbin He, Jianfeng Qiu, Yinglun Sun
Insufficient reactive oxygen species originating from hypoxia and high glutathione (GSH) in the tumor microenvironment (TME) is an important reason for radiotherapy (RT) resistance. Currently, radiosensitizers that remodel TME are widely investigated to enhance RT. However, developing an effective nano-radiosensitization system that removes radiotherapy-resistant factors from TME to boost RT effect while visualizing tumor imaging to aid therapy remains a challenge. Herein, MnO2 nanosheets are grown on the surface of ultrasmall Eu-doped NaGdF4 (NaGdF4:Eu3+) nanoparticles and modified by biocompatible DSPE-PEG2000 to prepare NaGdF4:Eu3+@MnO2@PEG nanoparticles (denoted as GMP NPs) as a radiosensitizer, which not only can reverse the TME by degrading H2O2 to produce oxygen and consuming high GSH but also achieve computed tomography (CT)and magnetic resonance (MR) imaging. When GMP NPs synergize with X-ray, a better antitumor effect is achieved in both HeLa cells and tumor-bearing mice, compared with X-ray alone. In addition, both paramagnetic Mn2+ ionsproduced by decomposing MnO2 in TME and NaGdF4:Eu3+ nanoparticles enhance T1-weighted MR imaging. NaGdF4:Eu3+ nanoparticles containing high atomic number of Gd/Eu effectively attenuate X-ray to enhance CT imaging. The work provides new insights for developing an efficient RT sensitization platform integrating antitumor therapeutic effect as well as CT/MR dual-modal imaging.
肿瘤微环境(TME)中缺氧和高谷胱甘肽(GSH)导致的活性氧不足是放疗(RT)耐药的重要原因。目前,重塑肿瘤微环境的放射增敏剂被广泛用于增强放疗。然而,开发一种有效的纳米放射增敏系统,既能清除肿瘤微环境中的放疗耐药因子,提高放疗效果,又能通过可视化肿瘤成像辅助治疗,仍然是一项挑战。在此,MnO2 纳米片生长在超小 Eu 掺杂 NaGdF4(NaGdF4:Eu3+)纳米颗粒表面,并用生物相容性 DSPE-PEG2000 修饰,制备出 NaGdF4:Eu3+@MnO2@PEG 纳米粒子(简称 GMP NPs)作为放射增敏剂,不仅能通过降解 H2O2 产生氧气和消耗大量 GSH 来逆转 TME,还能实现计算机断层扫描(CT)和磁共振(MR)成像。当 GMP NPs 与 X 射线协同作用时,对 HeLa 细胞和肿瘤小鼠的抗肿瘤效果比单独使用 X 射线更好。此外,TME 中 MnO2 分解产生的顺磁 Mn2+ 离子和 NaGdF4:Eu3+ 纳米粒子都能增强 T1 加权磁共振成像。含有高原子序数 Gd/Eu 的 NaGdF4:Eu3+ 纳米粒子能有效衰减 X 射线,从而增强 CT 成像。这项工作为开发集抗肿瘤治疗效果和 CT/MR 双模态成像于一体的高效 RT 增敏平台提供了新的思路。
{"title":"Gadolinium-Manganese-Based Nanoplatform Reverses Radiotherapy Resistant Factors for Radiotherapy Sensitization and Computed Tomography/Magnetic Resonance Dual-Modal Imaging","authors":"Yingwen Li, Panhong Niu, Zhenzhong Han, Xueqian Wang, Duanmin Gao, Yunjian Xu, Qingbin He, Jianfeng Qiu, Yinglun Sun","doi":"10.1002/sstr.202400033","DOIUrl":"https://doi.org/10.1002/sstr.202400033","url":null,"abstract":"Insufficient reactive oxygen species originating from hypoxia and high glutathione (GSH) in the tumor microenvironment (TME) is an important reason for radiotherapy (RT) resistance. Currently, radiosensitizers that remodel TME are widely investigated to enhance RT. However, developing an effective nano-radiosensitization system that removes radiotherapy-resistant factors from TME to boost RT effect while visualizing tumor imaging to aid therapy remains a challenge. Herein, MnO<sub>2</sub> nanosheets are grown on the surface of ultrasmall Eu-doped NaGdF<sub>4</sub> (NaGdF<sub>4</sub>:Eu<sup>3+</sup>) nanoparticles and modified by biocompatible DSPE-PEG<sub>2000</sub> to prepare NaGdF<sub>4</sub>:Eu<sup>3+</sup>@MnO<sub>2</sub>@PEG nanoparticles (denoted as GMP NPs) as a radiosensitizer, which not only can reverse the TME by degrading H<sub>2</sub>O<sub>2</sub> to produce oxygen and consuming high GSH but also achieve computed tomography (CT)and magnetic resonance (MR) imaging. When GMP NPs synergize with X-ray, a better antitumor effect is achieved in both HeLa cells and tumor-bearing mice, compared with X-ray alone. In addition, both paramagnetic Mn<sup>2+</sup> ionsproduced by decomposing MnO<sub>2</sub> in TME and NaGdF<sub>4</sub>:Eu<sup>3+</sup> nanoparticles enhance T<sub>1</sub>-weighted MR imaging. NaGdF<sub>4</sub>:Eu<sup>3+</sup> nanoparticles containing high atomic number of Gd/Eu effectively attenuate X-ray to enhance CT imaging. The work provides new insights for developing an efficient RT sensitization platform integrating antitumor therapeutic effect as well as CT/MR dual-modal imaging.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tenfold Enhancement of Wear Resistance by Electrosynthesis of a Nanostructured Self-Lubricating Al2O3/Sn(S)?MoS2 Composite Film on Al?Si?Cu Casting Alloys 电合成纳米结构自润滑 Al2O3/Sn(S)?MoS2复合膜可将铝硅铜铸造合金的耐磨性提高十倍
Pub Date : 2024-07-10 DOI: 10.1002/sstr.202400172
Jiacheng Liu, Song-Zhu Kure-Chu, Shuji Katsuta, Mengmeng Zhang, Shaoli Fang, Takashi Matsubara, Yoko Sakurai, Takehiko Hihara, Ray H. Baughman, Hitoshi Yashiro, Long Pan, Wei Zhang, Zheng Ming Sun
Enhancing tribological performance through nanostructure control is crucial for saving energy and improving wear resistance for diverse applications. We introduce a new electrochemical approach that integrates aluminum (Al) anodization, tin alternating current (AC) electrodeposition, and anodic MoS2 electrosynthesis for fabricating nanostructured Al2O3/Sn(S)MoS2 composite films on AlSiCu casting alloys. Our unique process uses Sn-modified MoS2 deposition to form robust solid lubricant MoS2–SnS electrodeposits within the nanochannels and microsized voids/defects of anodic alumina matrix films on the base materials, resulting in a bilayered Al2O3/SnSMoS2 and MoS2–SnS–Sn composite film. The AC-deposited Sn enhances conductivity in the anodic alumina matrix film, acts as catalytic nuclei for Sn@SnS@MoS2 core-shell nanoparticles and a dense top layer, and serves as a reductant for the direct synthesis of hybrid solid lubricant MoS2–SnS from MoS3 by anodic electrolysis of MoS42− ions. The resulting nanocomposite film provides a two-fold increase in lubricity (friction coefficient (COF) μ = 0.14 ⇒ 0.07) and a ten-fold improvement in wear resistance (COF μ < 0.2) compared to conventional Al2O3/MoS2 film formed by anodizing and reanodizing. The effectiveness of the Al2O3/Sn(S)MoS2 composite is further validated through real automotive engine piston tests.
通过纳米结构控制来提高摩擦学性能对于各种应用中节约能源和提高耐磨性至关重要。我们介绍了一种新的电化学方法,该方法将铝(Al)阳极氧化、锡交流电(AC)电沉积和阳极 MoS2 电合成整合在一起,用于在 AlSiCu 铸造合金上制造纳米结构的 Al2O3/Sn(S)MoS2 复合薄膜。我们的独特工艺采用 Sn 改性 MoS2 沉积,在基体材料上阳极氧化铝基体薄膜的纳米通道和微小空隙/缺陷内形成坚固的固体润滑剂 MoS2-SnS 电沉积,从而形成双层 Al2O3/SnSMoS2 和 MoS2-SnS-Sn 复合薄膜。交流沉积的锡增强了阳极氧化铝基质膜的导电性,可作为 Sn@SnS@MoS2 核壳纳米粒子和致密顶层的催化核,还可作为还原剂,通过阳极电解 MoS42- 离子,从 MoS3 直接合成混合固体润滑剂 MoS2-SnS。与通过阳极氧化和再阳极氧化形成的传统 Al2O3/MoS2 薄膜相比,生成的纳米复合薄膜的润滑性提高了两倍(摩擦系数 (COF) μ = 0.14 ⇒ 0.07),耐磨性提高了十倍(COF μ < 0.2)。Al2O3/Sn(S)MoS2 复合材料的有效性通过实际汽车发动机活塞测试得到了进一步验证。
{"title":"Tenfold Enhancement of Wear Resistance by Electrosynthesis of a Nanostructured Self-Lubricating Al2O3/Sn(S)?MoS2 Composite Film on Al?Si?Cu Casting Alloys","authors":"Jiacheng Liu, Song-Zhu Kure-Chu, Shuji Katsuta, Mengmeng Zhang, Shaoli Fang, Takashi Matsubara, Yoko Sakurai, Takehiko Hihara, Ray H. Baughman, Hitoshi Yashiro, Long Pan, Wei Zhang, Zheng Ming Sun","doi":"10.1002/sstr.202400172","DOIUrl":"https://doi.org/10.1002/sstr.202400172","url":null,"abstract":"Enhancing tribological performance through nanostructure control is crucial for saving energy and improving wear resistance for diverse applications. We introduce a new electrochemical approach that integrates aluminum (Al) anodization, tin alternating current (AC) electrodeposition, and anodic MoS<sub>2</sub> electrosynthesis for fabricating nanostructured Al<sub>2</sub>O<sub>3</sub>/Sn(S)<span></span>MoS<sub>2</sub> composite films on Al<span></span>Si<span></span>Cu casting alloys. Our unique process uses Sn-modified MoS<sub>2</sub> deposition to form robust solid lubricant MoS<sub>2</sub>–SnS electrodeposits within the nanochannels and microsized voids/defects of anodic alumina matrix films on the base materials, resulting in a bilayered Al<sub>2</sub>O<sub>3</sub>/SnS<span></span>MoS<sub>2</sub> and MoS<sub>2</sub>–SnS–Sn composite film. The AC-deposited Sn enhances conductivity in the anodic alumina matrix film, acts as catalytic nuclei for Sn@SnS@MoS<sub>2</sub> core-shell nanoparticles and a dense top layer, and serves as a reductant for the direct synthesis of hybrid solid lubricant MoS<sub>2</sub>–SnS from MoS<sub>3</sub> by anodic electrolysis of MoS<sub>4</sub><sup>2−</sup> ions. The resulting nanocomposite film provides a two-fold increase in lubricity (friction coefficient (COF) μ = 0.14 ⇒ 0.07) and a ten-fold improvement in wear resistance (COF μ &lt; 0.2) compared to conventional Al<sub>2</sub>O<sub>3</sub>/MoS<sub>2</sub> film formed by anodizing and reanodizing. The effectiveness of the Al<sub>2</sub>O<sub>3</sub>/Sn(S)<span></span>MoS<sub>2</sub> composite is further validated through real automotive engine piston tests.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Functional Biohybrid Materials Based on Saccharomyces Cerevisiae Biomass 基于酿酒酵母生物质的功能性生物杂交材料的表征
Pub Date : 2024-07-08 DOI: 10.1002/sstr.202470033
Torben Hüsing, Daniel Van Opdenbosch, Broder Rühmann, Cordt Zollfrank, Ellen Reuter, Volker Sieber
Biohybrid Materials
生物杂交材料
{"title":"Characterization of Functional Biohybrid Materials Based on Saccharomyces Cerevisiae Biomass","authors":"Torben Hüsing, Daniel Van Opdenbosch, Broder Rühmann, Cordt Zollfrank, Ellen Reuter, Volker Sieber","doi":"10.1002/sstr.202470033","DOIUrl":"https://doi.org/10.1002/sstr.202470033","url":null,"abstract":"<b>Biohybrid Materials</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing 用于压力和湿度传感的表面活性剂功能化纤维素纳米晶体柔性光子薄膜
Pub Date : 2024-07-08 DOI: 10.1002/sstr.202470032
Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran
Cellulose Nanocrystals
纤维素纳米晶体
{"title":"Flexible, Photonic Films of Surfactant-Functionalized Cellulose Nanocrystals for Pressure and Humidity Sensing","authors":"Diogo V. Saraiva, Steven N. Remiëns, Ethan I. L. Jull, Ivo R. Vermaire, Lisa Tran","doi":"10.1002/sstr.202470032","DOIUrl":"https://doi.org/10.1002/sstr.202470032","url":null,"abstract":"<b>Cellulose Nanocrystals</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Red, Green, and Blue Carbon Quantum Dots and Construction of Multicolor Cellulose-Based Light-Emitting Diodes 红、绿、蓝碳量子点的合成与多色纤维素基发光二极管的构建
Pub Date : 2024-07-08 DOI: 10.1002/sstr.202470034
Xinrui Chen, Xing Han, Caixia Zhang, Xue Ou, Xiaoli Liu, Junhua Zhang, Wei Liu, Arthur J. Ragauskas, Xueping Song, Zhanying Zhang
Light-Emitting Diodes
发光二极管
{"title":"Synthesis of Red, Green, and Blue Carbon Quantum Dots and Construction of Multicolor Cellulose-Based Light-Emitting Diodes","authors":"Xinrui Chen, Xing Han, Caixia Zhang, Xue Ou, Xiaoli Liu, Junhua Zhang, Wei Liu, Arthur J. Ragauskas, Xueping Song, Zhanying Zhang","doi":"10.1002/sstr.202470034","DOIUrl":"https://doi.org/10.1002/sstr.202470034","url":null,"abstract":"<b>Light-Emitting Diodes</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Dopant to Host: Solution Synthesis and Light-Emitting Applications of Organic-Inorganic Lanthanide-Based Metal Halides 从掺杂剂到宿主:有机-无机镧系金属卤化物的溶液合成和发光应用
Pub Date : 2024-07-08 DOI: 10.1002/sstr.202470030
Tianxin Bai, Qiujie Wang, Yunfei Bai, Qichao Meng, Hongyuan Zhao, Ziying Wen, Haibo Sun, Li Huang, Junke Jiang, Dan Huang, Feng Liu, William W. Yu
Lanthanide-Based Metal Halides
镧系金属卤化物
{"title":"From Dopant to Host: Solution Synthesis and Light-Emitting Applications of Organic-Inorganic Lanthanide-Based Metal Halides","authors":"Tianxin Bai, Qiujie Wang, Yunfei Bai, Qichao Meng, Hongyuan Zhao, Ziying Wen, Haibo Sun, Li Huang, Junke Jiang, Dan Huang, Feng Liu, William W. Yu","doi":"10.1002/sstr.202470030","DOIUrl":"https://doi.org/10.1002/sstr.202470030","url":null,"abstract":"<b>Lanthanide-Based Metal Halides</b>","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis 通过一锅溶热合成实现共价连接的颜料@TiO2 混合材料
Pub Date : 2024-07-02 DOI: 10.1002/sstr.202400074
Frank Sailer, Hipassia M. Moura, Taniya Purkait, Lars Vogelsang, Markus Sauer, Annette Foelske, Rainer F. Winter, Alexandre Ponrouch, Miriam M. Unterlass
Hybrid materials (HMs) combine the high diversity of functionalities of organic compounds with properties typical for inorganic materials, such as high mechanical strength or high thermal stability. Herein, HMs combining organic pigment molecules and TiO2 as inorganic component, with covalently linked components, i.e., so-called class II HMs, are reported. The synthesis of such HMs is intrinsically challenging, as the apolar organic pigment component and the inorganic polar TiO2 component require different conditions for their respective formation. Herein, we circumvent this issue by employing solvothermal synthesis in superheated isopropanol, which through temperature tunability of the solvent properties allows for both generating and linking both components in one-pot. First, it is shown that an organic benzimidazole-based pigment molecule designed for readily binding to Ti can be synthesized solvothermally. Second, new class II titanium-based HMs are generated from Ti(OiPr)4 and pigment precursors in a solvothermal reaction. The pigment@TiO2 HMs feature significant porosity and are structurally identified as layered structures of lepidocrocite-like TiO2 linked via pigment molecules. These layered HMs assemble into hierarchical nanoflowers, and depending on the pigment segments, different interlayer spacings in between inorganic layers are observed. Third, the pigment@TiO2 materials are shown to be usable as electrode materials in lithium-ion batteries.
混合材料(HMs)结合了有机化合物的高功能多样性和无机材料的典型特性,如高机械强度或高热稳定性。本文报告了有机颜料分子与作为无机成分的二氧化钛(TiO2)共价结合的混合材料,即所谓的第二类混合材料。由于极性有机颜料成分和无机极性二氧化钛成分的形成需要不同的条件,因此合成此类 HMs 本身就具有挑战性。在本文中,我们通过在过热异丙醇中采用溶解热合成法来规避这一问题,该方法通过对溶剂特性的温度调节,可在一锅内同时生成和连接两种成分。首先,我们证明了一种基于苯并咪唑的有机颜料分子可以通过溶解热合成的方式与钛结合。其次,在溶热反应中由 Ti(OiPr)4 和颜料前体生成新的第二类钛基 HM。颜料@TiO2 HMs 具有显著的多孔性,在结构上被确定为通过颜料分子连接的鳞片状二氧化钛的层状结构。这些分层的 HMs 组装成分层的纳米花束,根据颜料段的不同,无机层之间的层间距也不同。第三,颜料@TiO2 材料可用作锂离子电池的电极材料。
{"title":"Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis","authors":"Frank Sailer, Hipassia M. Moura, Taniya Purkait, Lars Vogelsang, Markus Sauer, Annette Foelske, Rainer F. Winter, Alexandre Ponrouch, Miriam M. Unterlass","doi":"10.1002/sstr.202400074","DOIUrl":"https://doi.org/10.1002/sstr.202400074","url":null,"abstract":"Hybrid materials (HMs) combine the high diversity of functionalities of organic compounds with properties typical for inorganic materials, such as high mechanical strength or high thermal stability. Herein, HMs combining organic pigment molecules and TiO<sub>2</sub> as inorganic component, with covalently linked components, i.e., so-called class II HMs, are reported. The synthesis of such HMs is intrinsically challenging, as the apolar organic pigment component and the inorganic polar TiO<sub>2</sub> component require different conditions for their respective formation. Herein, we circumvent this issue by employing solvothermal synthesis in superheated isopropanol, which through temperature tunability of the solvent properties allows for both generating and linking both components in one-pot. First, it is shown that an organic benzimidazole-based pigment molecule designed for readily binding to Ti can be synthesized solvothermally. Second, new class II titanium-based HMs are generated from Ti(O<sup><i>i</i></sup>Pr)<sub>4</sub> and pigment precursors in a solvothermal reaction. The pigment@TiO<sub>2</sub> HMs feature significant porosity and are structurally identified as layered structures of lepidocrocite-like TiO<sub>2</sub> linked via pigment molecules. These layered HMs assemble into hierarchical nanoflowers, and depending on the pigment segments, different interlayer spacings in between inorganic layers are observed. Third, the pigment@TiO<sub>2</sub> materials are shown to be usable as electrode materials in lithium-ion batteries.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Small Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1