Liwan Song, Lu Fan, Qingfei Zhang, Shanshan Huang, Bin Kong, Jian Xiao, Ye Xu
Atopic dermatitis (AD), a chronic and inflammatory skin disease, has brought huge physiological and psychological burdens to patients, which causes wide concerns in society. Herein, a multifunctional microneedle (MN) patch is proposed integrated with a desirable moisturizer and intelligent drug delivery capacity for AD treatment. Such MN patch consists of hyaluronic acid (HA) backing and near-infrared (NIR) responsive tips containing black phosphorous quantum dots (BPQDs), low-melting agarose, polyvinylpyrrolidone (PVP), and triamcinolone acetonide (TA). Among them, the soluble HA serves as a long-term moisturizer for relieving dryness symptoms of AD. By introducing the NIR excitable and photothermal responsive BPQDs into agarose, the state of the composite material can be adjusted intelligently via NIR, thus achieving controllable release of the encapsulated TA in tips. Besides, PVP with enough mechanical strength can help MNs successfully penetrate the thickened skin of AD patients. Based on these advantages, it is demonstrated that the multifunctional MN patch reveals a satisfactory therapeutic effect in the AD model of Balb/c mice. These results indicate the potential values of the proposed MN patch in the treatment of AD skin diseases and other related biomedical fields.
特应性皮炎(AD)是一种慢性炎症性皮肤病,给患者带来了巨大的生理和心理负担,引起了社会的广泛关注。本文提出的多功能微针(MN)贴片集成了理想的保湿剂和智能给药能力,可用于特应性皮炎的治疗。这种微针贴片由透明质酸(HA)衬底和含有黑磷量子点(BPQDs)、低熔琼脂糖、聚乙烯吡咯烷酮(PVP)和曲安奈德(TA)的近红外(NIR)响应尖端组成。其中,可溶性 HA 可作为缓解 AD 干燥症状的长期保湿剂。通过在琼脂糖中引入可激发近红外和光热响应的 BPQDs,可通过近红外智能调节复合材料的状态,从而实现可控地在尖端释放包裹的 TA。此外,具有足够机械强度的 PVP 还能帮助 MNs 成功穿透 AD 患者增厚的皮肤。基于这些优势,多功能 MN 贴片在 Balb/c 小鼠 AD 模型中显示出令人满意的治疗效果。这些结果表明了所提出的多功能 MN 贴片在治疗 AD 皮肤病和其他相关生物医学领域的潜在价值。
{"title":"Multifunctional Triamcinolone Acetonide Microneedle Patches for Atopic Dermatitis Treatment","authors":"Liwan Song, Lu Fan, Qingfei Zhang, Shanshan Huang, Bin Kong, Jian Xiao, Ye Xu","doi":"10.1002/sstr.202400302","DOIUrl":"https://doi.org/10.1002/sstr.202400302","url":null,"abstract":"Atopic dermatitis (AD), a chronic and inflammatory skin disease, has brought huge physiological and psychological burdens to patients, which causes wide concerns in society. Herein, a multifunctional microneedle (MN) patch is proposed integrated with a desirable moisturizer and intelligent drug delivery capacity for AD treatment. Such MN patch consists of hyaluronic acid (HA) backing and near-infrared (NIR) responsive tips containing black phosphorous quantum dots (BPQDs), low-melting agarose, polyvinylpyrrolidone (PVP), and triamcinolone acetonide (TA). Among them, the soluble HA serves as a long-term moisturizer for relieving dryness symptoms of AD. By introducing the NIR excitable and photothermal responsive BPQDs into agarose, the state of the composite material can be adjusted intelligently via NIR, thus achieving controllable release of the encapsulated TA in tips. Besides, PVP with enough mechanical strength can help MNs successfully penetrate the thickened skin of AD patients. Based on these advantages, it is demonstrated that the multifunctional MN patch reveals a satisfactory therapeutic effect in the AD model of Balb/c mice. These results indicate the potential values of the proposed MN patch in the treatment of AD skin diseases and other related biomedical fields.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenhui Hu, Chunjie Shen, Huan Zhou, Jian Han, Zhihua Yang, Kenneth R. Poeppelmeier, Feng Zhang, Shilie Pan
Borates have emerged as a significant resource for exploring birefringent materials in the UV frequency region. The π-conjugated planar anions, such as the [BO3], [B2O5], and [B3O6] units, exhibiting strong polarizability anisotropy, are traditionally good structural models. Both fluorination and hydroxylation have been proven effective strategies to modulate the optical properties of the planar anions. Controlling the ratio between F and OH is the key to realizing a balanced performance between birefringence and bandgap. Based on a fluorination mechanism proposed recently, a novel hydroxyfluorooxoborate (C3N2H5)B3O3F2(OH)2 with an optimal F/OH ratio of 1/1 is synthesized. During the synthesis, another strategy known as “cation activation” is also employed, which further increases birefringence by introducing active cation units. With its superior performance, this compound exhibits a short UV cutoff edge at 214 nm and a substantial birefringence of 0.205 at 546 nm, surpassing the commercial birefringent crystal α-BBO (0.122@532 nm). The synergy between F/OH-ratio optimization and cation activation offers a practical methodology for developing UV birefringent materials.
{"title":"(C3N2H5)B3O3F2(OH)2: Realizing Large Birefringence via a Synergistic Effect between Anion F/OH-Ratio Optimization and Cation Activation","authors":"Chenhui Hu, Chunjie Shen, Huan Zhou, Jian Han, Zhihua Yang, Kenneth R. Poeppelmeier, Feng Zhang, Shilie Pan","doi":"10.1002/sstr.202400296","DOIUrl":"https://doi.org/10.1002/sstr.202400296","url":null,"abstract":"Borates have emerged as a significant resource for exploring birefringent materials in the UV frequency region. The π-conjugated planar anions, such as the [BO<sub>3</sub>], [B<sub>2</sub>O<sub>5</sub>], and [B<sub>3</sub>O<sub>6</sub>] units, exhibiting strong polarizability anisotropy, are traditionally good structural models. Both fluorination and hydroxylation have been proven effective strategies to modulate the optical properties of the planar anions. Controlling the ratio between F and OH is the key to realizing a balanced performance between birefringence and bandgap. Based on a fluorination mechanism proposed recently, a novel hydroxyfluorooxoborate (C<sub>3</sub>N<sub>2</sub>H<sub>5</sub>)B<sub>3</sub>O<sub>3</sub>F<sub>2</sub>(OH)<sub>2</sub> with an optimal F/OH ratio of 1/1 is synthesized. During the synthesis, another strategy known as “cation activation” is also employed, which further increases birefringence by introducing active cation units. With its superior performance, this compound exhibits a short UV cutoff edge at 214 nm and a substantial birefringence of 0.205 at 546 nm, surpassing the commercial birefringent crystal α-BBO (0.122@532 nm). The synergy between F/OH-ratio optimization and cation activation offers a practical methodology for developing UV birefringent materials.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural disorder is common in metal-halide perovskites and important for understanding the functional properties of these materials. First-principles methods can address structure variation on the atomistic scale, but they are often limited by the lack of structure-sampling schemes required to characterize the disorder. Herein, structural disorder in the benchmark inorganic halide perovskites CsPbI3 and CsPbBr3 is computationally studied in terms of the three octahedral-tilting angles. The subsequent variations in energetics and properties are described by 3D potential-energy surfaces (PESs) and property landscapes, delivered by Bayesian optimization as implemented in the Bayesian optimization structure search code sampling density functional theory (DFT) calculations. The rapid convergence of the PES with about 200 DFT data points in 3D searches demonstrates the power of active learning and strategic sampling with Bayesian optimization. Further analysis indicates that disorder grows with increasing temperature and reveals that the material bandgap at finite temperatures is a statistical mean over disordered structures.
{"title":"Structural Disorder by Octahedral Tilting in Inorganic Halide Perovskites: New Insight with Bayesian Optimization","authors":"Jingrui Li, Fang Pan, Guo-Xu Zhang, Zenghui Liu, Hua Dong, Dawei Wang, Zhuangde Jiang, Wei Ren, Zuo-Guang Ye, Milica Todorović, Patrick Rinke","doi":"10.1002/sstr.202400268","DOIUrl":"https://doi.org/10.1002/sstr.202400268","url":null,"abstract":"Structural disorder is common in metal-halide perovskites and important for understanding the functional properties of these materials. First-principles methods can address structure variation on the atomistic scale, but they are often limited by the lack of structure-sampling schemes required to characterize the disorder. Herein, structural disorder in the benchmark inorganic halide perovskites CsPbI<sub>3</sub> and CsPbBr<sub>3</sub> is computationally studied in terms of the three octahedral-tilting angles. The subsequent variations in energetics and properties are described by 3D potential-energy surfaces (PESs) and property landscapes, delivered by Bayesian optimization as implemented in the Bayesian optimization structure search code sampling density functional theory (DFT) calculations. The rapid convergence of the PES with about 200 DFT data points in 3D searches demonstrates the power of active learning and strategic sampling with Bayesian optimization. Further analysis indicates that disorder grows with increasing temperature and reveals that the material bandgap at finite temperatures is a statistical mean over disordered structures.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"164 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiale Wu, Kang Wang, Song Ye, Qinglin Zhou, Shengqi Lu, Yuquan Laigao, Lai Jiang, Lanxin Wei, Aming Xie, Haibo Zeng, Weijin Li
Rational heterostructure design can bring interfacial polarization relaxation to significantly enhance the electromagnetic wave (EMW) absorption performance. However, intelligently building a homogeneous heterostructure with superior EMW absorption properties remains a great challenge. Herein, a typical conductive metal–organic framework Cu3(HHTP)2 (hexahydroxytriphenylene, HHTP) is delicately packed onto a polypyrrole (PPy) conductive polymer surface via a one-step in situ polymerization approach. Results show that Cu3(HHTP)2 is well packed on the PPy surface to form an elegant Cu3(HHTP)2@PPy hybrids interfacial microstructure with a unique superiority regarding EMW absorption compared with single components of PPy and Cu3(HHTP)2. Interestingly, the interfacial microstructure of Cu3(HHTP)2@PPy hybrids can be tuned by adjusting the composition of the PPy and Cu3(HHTP)2, resulting in the improvement of impedance matching, conductive loss, and enhancement of interfacial polarization relaxation, endowing the optimization of the EM wave absorption properties of the Cu3(HHTP)2@PPy. The broad effective absorption bandwidth covers a range as broad as 6.68 GHz (11.00–17.68 GHz), which is higher than most reported metal-organic frameworks (MOFs) and conductive polymer-based EM absorbing materials. Herein, new insight for developing highly efficient EMW absorption materials through hybridized interfacial microstructure engineering is provided.
{"title":"One-Pot Synthesis of Conductive Metal–Organic Framework@polypyrrole Hybrids with Enhanced Electromagnetic Wave Absorption Performance","authors":"Jiale Wu, Kang Wang, Song Ye, Qinglin Zhou, Shengqi Lu, Yuquan Laigao, Lai Jiang, Lanxin Wei, Aming Xie, Haibo Zeng, Weijin Li","doi":"10.1002/sstr.202400205","DOIUrl":"https://doi.org/10.1002/sstr.202400205","url":null,"abstract":"Rational heterostructure design can bring interfacial polarization relaxation to significantly enhance the electromagnetic wave (EMW) absorption performance. However, intelligently building a homogeneous heterostructure with superior EMW absorption properties remains a great challenge. Herein, a typical conductive metal–organic framework Cu<sub>3</sub>(HHTP)<sub>2</sub> (hexahydroxytriphenylene, HHTP) is delicately packed onto a polypyrrole (PPy) conductive polymer surface via a one-step in situ polymerization approach. Results show that Cu<sub>3</sub>(HHTP)<sub>2</sub> is well packed on the PPy surface to form an elegant Cu<sub>3</sub>(HHTP)<sub>2</sub>@PPy hybrids interfacial microstructure with a unique superiority regarding EMW absorption compared with single components of PPy and Cu<sub>3</sub>(HHTP)<sub>2</sub>. Interestingly, the interfacial microstructure of Cu<sub>3</sub>(HHTP)<sub>2</sub>@PPy hybrids can be tuned by adjusting the composition of the PPy and Cu<sub>3</sub>(HHTP)<sub>2</sub>, resulting in the improvement of impedance matching, conductive loss, and enhancement of interfacial polarization relaxation, endowing the optimization of the EM wave absorption properties of the Cu<sub>3</sub>(HHTP)<sub>2</sub>@PPy. The broad effective absorption bandwidth covers a range as broad as 6.68 GHz (11.00–17.68 GHz), which is higher than most reported metal-organic frameworks (MOFs) and conductive polymer-based EM absorbing materials. Herein, new insight for developing highly efficient EMW absorption materials through hybridized interfacial microstructure engineering is provided.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Rabbe, Jaime Andres Garcia-Diosa, Guido Grundmeier, Adrian Keller
DNA origami nanostructures are promising carries for drug delivery applications. However, their limited stability under relevant conditions often presents a challenge. Herein, the structural stability of DNA origami nanostructures is investigated in a setting compatible with their application in photodynamic therapy (PDT). To this end, DNA origami triangles and six-helix bundles (6HBs) are loaded with the clinically tested photosensitizer methylene blue, which upon irradiation with red light generates reactive oxygen species (ROS) that attack the DNA origami nanostructures. ROS-induced structural damage is observed to depend on the ionic composition of the surrounding medium and becomes more severe at low ionic strength. Mg2+ ions can efficiently protect the DNA origami nanostructures from ROS-induced damage and may even heal some of the damage obtained under Mg2+-free conditions when added after irradiation. Finally, the employed DNA origami 6HBs are more resistant toward ROS-induced structural damage than the triangles, which is attributed to their markedly different mechanical properties. These results thus provide some fundamental insights into the stabilizing role of DNA origami superstructure that may guide the selection or design of DNA origami nanocarriers with optimized stability for their application in PDT.
DNA 折纸纳米结构是很有前途的药物输送应用载体。然而,它们在相关条件下有限的稳定性往往是一个挑战。在此,我们研究了DNA折纸纳米结构在光动力疗法(PDT)应用环境下的结构稳定性。为此,在 DNA 折纸三角形和六螺旋束(6HB)中加入了临床测试过的光敏剂亚甲基蓝,亚甲基蓝在红光照射下会产生活性氧(ROS),攻击 DNA 折纸纳米结构。据观察,ROS 引发的结构破坏取决于周围介质的离子成分,在离子强度较低时破坏更为严重。Mg2+ 离子可以有效地保护 DNA 折纸纳米结构免受 ROS 诱导的破坏,甚至在辐照后加入 Mg2+ 离子还可以修复一些在无 Mg2+ 条件下产生的破坏。最后,所采用的 DNA 折纸 6HB 比三角形更能抵抗 ROS 引起的结构损伤,这归因于它们明显不同的机械性能。因此,这些结果为DNA折纸上层结构的稳定作用提供了一些基本见解,可指导选择或设计具有最佳稳定性的DNA折纸纳米载体,以应用于光导治疗。
{"title":"Ion-Dependent Stability of DNA Origami Nanostructures in the Presence of Photo-Generated Reactive Oxygen Species","authors":"Lukas Rabbe, Jaime Andres Garcia-Diosa, Guido Grundmeier, Adrian Keller","doi":"10.1002/sstr.202400094","DOIUrl":"https://doi.org/10.1002/sstr.202400094","url":null,"abstract":"DNA origami nanostructures are promising carries for drug delivery applications. However, their limited stability under relevant conditions often presents a challenge. Herein, the structural stability of DNA origami nanostructures is investigated in a setting compatible with their application in photodynamic therapy (PDT). To this end, DNA origami triangles and six-helix bundles (6HBs) are loaded with the clinically tested photosensitizer methylene blue, which upon irradiation with red light generates reactive oxygen species (ROS) that attack the DNA origami nanostructures. ROS-induced structural damage is observed to depend on the ionic composition of the surrounding medium and becomes more severe at low ionic strength. Mg<sup>2+</sup> ions can efficiently protect the DNA origami nanostructures from ROS-induced damage and may even heal some of the damage obtained under Mg<sup>2+</sup>-free conditions when added after irradiation. Finally, the employed DNA origami 6HBs are more resistant toward ROS-induced structural damage than the triangles, which is attributed to their markedly different mechanical properties. These results thus provide some fundamental insights into the stabilizing role of DNA origami superstructure that may guide the selection or design of DNA origami nanocarriers with optimized stability for their application in PDT.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"2013 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evolution of CO2 nanobubbles generated by gas–hydrate dissociation is comprehensively studied in this research, employing a synergistic approach that combines laboratory experiments and molecular dynamics simulations. The results show that a higher concentration of nanobubbles can be observed in the early stages of hydrate dissociation, while smaller, thus-generated, nanobubbles are less stable and prefer to amalgamate into larger bubbles through coalescence or Ostwald ripening. From the high Laplace pressure inside some nanobubbles as well as their higher local densities, they may transform into nanodroplets by densification fluctuations. Thus, the dynamic coexistence of nanobubbles and -droplets is confirmed from both experimental and simulation measurements. The number and size of the nanobubbles in the system affects the interaction between water molecules and their movements so that the water molecules diffuse faster upon this condition. The water–water interactions become more pronounced in the presence of nanobubbles and the hydrogen bond network is better preserved in the bulk. This study provides new insights into the microscale mechanisms of gas–hydrate dissociation and highlights the complex interactions between nanobubbles/ -droplets, and the aqueous environment after CO2–hydrate dissociation.
{"title":"Fate of Nanobubbles Generated from CO2–Hydrate Dissociation: Coexistence with Nanodroplets—A Combined Investigation from Experiment and Molecular Dynamics Simulations","authors":"Mengdi Pan, Parisa Naeiji, Niall J. English","doi":"10.1002/sstr.202400080","DOIUrl":"https://doi.org/10.1002/sstr.202400080","url":null,"abstract":"The evolution of CO<sub>2</sub> nanobubbles generated by gas–hydrate dissociation is comprehensively studied in this research, employing a synergistic approach that combines laboratory experiments and molecular dynamics simulations. The results show that a higher concentration of nanobubbles can be observed in the early stages of hydrate dissociation, while smaller, thus-generated, nanobubbles are less stable and prefer to amalgamate into larger bubbles through coalescence or Ostwald ripening. From the high Laplace pressure inside some nanobubbles as well as their higher local densities, they may transform into nanodroplets by densification fluctuations. Thus, the dynamic coexistence of nanobubbles and -droplets is confirmed from both experimental and simulation measurements. The number and size of the nanobubbles in the system affects the interaction between water molecules and their movements so that the water molecules diffuse faster upon this condition. The water–water interactions become more pronounced in the presence of nanobubbles and the hydrogen bond network is better preserved in the bulk. This study provides new insights into the microscale mechanisms of gas–hydrate dissociation and highlights the complex interactions between nanobubbles/ -droplets, and the aqueous environment after CO<sub>2</sub>–hydrate dissociation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ridwan A. Ahmed, Kevin V. Carballo, Krishna P. Koirala, Qian Zhao, Peiyuan Gao, Ju-Myung Kim, Cassidy S. Anderson, Xiangbo Meng, Chongmin Wang, Ji-Guang Zhang, Wu Xu
The high energy density advantage of lithium (Li) metal batteries (LMBs) makes them increasingly desirable; however, problems such as strong reactivity and dendrite growth of Li metal anode limit their practical uses. In this work, a novel Li-containing glycerol (LiGL) or lithicone protection layer on a 50 μm thick Li metal anode is employed for improving the performance of LMBs. This LiGL layer was accurately deposited via a molecular layer deposition (MLD) process at 150 °C, using lithium tert-butoxide and glycerol as precursors. The as-formed LiGL coating layer is highly tunable in its thickness by simply adjusting MLD cycles and shows a good stability and outstanding ionic transport properties. The LiGL layer is found to effectively mitigate side reactions and enhance cycling stability in both symmetric cells and full cells. Specifically, the LMBs with LiGL@Li anode of 400 MLD cycles and LiNi0.6Mn0.2Co0.2O2 cathode enable a capacity retention of ≈87%, much higher than ≈35% of the cells with bare Li after 200 cycles at a charge/discharge current density of 2.1 mA cm−2. This work paves a feasible way for practical LMBs with improved capacity and stability through applying an innovative protection layer on Li metal anodes.
{"title":"Lithicone-Protected Lithium Metal Anodes for Lithium Metal Batteries with Nickel-Rich Cathode Materials","authors":"Ridwan A. Ahmed, Kevin V. Carballo, Krishna P. Koirala, Qian Zhao, Peiyuan Gao, Ju-Myung Kim, Cassidy S. Anderson, Xiangbo Meng, Chongmin Wang, Ji-Guang Zhang, Wu Xu","doi":"10.1002/sstr.202400174","DOIUrl":"https://doi.org/10.1002/sstr.202400174","url":null,"abstract":"The high energy density advantage of lithium (Li) metal batteries (LMBs) makes them increasingly desirable; however, problems such as strong reactivity and dendrite growth of Li metal anode limit their practical uses. In this work, a novel Li-containing glycerol (LiGL) or lithicone protection layer on a 50 μm thick Li metal anode is employed for improving the performance of LMBs. This LiGL layer was accurately deposited via a molecular layer deposition (MLD) process at 150 °C, using lithium tert-butoxide and glycerol as precursors. The as-formed LiGL coating layer is highly tunable in its thickness by simply adjusting MLD cycles and shows a good stability and outstanding ionic transport properties. The LiGL layer is found to effectively mitigate side reactions and enhance cycling stability in both symmetric cells and full cells. Specifically, the LMBs with LiGL@Li anode of 400 MLD cycles and LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> cathode enable a capacity retention of ≈87%, much higher than ≈35% of the cells with bare Li after 200 cycles at a charge/discharge current density of 2.1 mA cm<sup>−2</sup>. This work paves a feasible way for practical LMBs with improved capacity and stability through applying an innovative protection layer on Li metal anodes.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanyan Cui, Yushu Tang, Jing Lin, Junbo Wang, Horst Hahn, B. Breitung, Simon Schweidler, T. Brezesinski, M. Botros
High‐entropy materials have drawn much attention as battery materials due to their distinctive properties. Lithiated high‐entropy oxide (Li0.33(MgCoNiCuZn)0.67O, LiHEO) exhibits both high lithium‐ion and electronic conductivity, making it a potential coating material for layered Ni‐rich oxide cathodes (Li1+x(Ni1−y−zCoyMnz)1−xO2, NCM or NMC) in conventional Li‐ion battery cells; however, high‐temperature synthesis limits its application. Therefore, a photonic curing strategy is used for synthesizing LiHEO and the non‐lithiated form (denoted as high‐entropy oxide [HEO]), and nanoscale coatings are successfully produced on LiNi0.85Co0.1Mn0.05O2 (NCM851005) particles. To one's knowledge, this is the first report on particle coating with high‐entropy materials using photonic curing. NCM851005 with LiHEO‐modified surface shows good cycling stability, with a capacity retention of 97% at 1 C rate after 200 cycles. The improvement in electrochemical performance is attributed to the conformal coating that prevents structural changes caused by the reaction between cathode material and liquid electrolyte. Compared to bare NCM851005, the coated material shows a significantly reduced tendency for intergranular cracking, successfully preventing electrolyte penetration and suppressing side reactions. Overall, photonic curing presents a novel cost‐ and energy‐efficient synthesis and coating procedure that paves the way for surface modification of any heat‐sensitive material for a wide range of applications.
{"title":"Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles","authors":"Yanyan Cui, Yushu Tang, Jing Lin, Junbo Wang, Horst Hahn, B. Breitung, Simon Schweidler, T. Brezesinski, M. Botros","doi":"10.1002/sstr.202400197","DOIUrl":"https://doi.org/10.1002/sstr.202400197","url":null,"abstract":"High‐entropy materials have drawn much attention as battery materials due to their distinctive properties. Lithiated high‐entropy oxide (Li0.33(MgCoNiCuZn)0.67O, LiHEO) exhibits both high lithium‐ion and electronic conductivity, making it a potential coating material for layered Ni‐rich oxide cathodes (Li1+x(Ni1−y−zCoyMnz)1−xO2, NCM or NMC) in conventional Li‐ion battery cells; however, high‐temperature synthesis limits its application. Therefore, a photonic curing strategy is used for synthesizing LiHEO and the non‐lithiated form (denoted as high‐entropy oxide [HEO]), and nanoscale coatings are successfully produced on LiNi0.85Co0.1Mn0.05O2 (NCM851005) particles. To one's knowledge, this is the first report on particle coating with high‐entropy materials using photonic curing. NCM851005 with LiHEO‐modified surface shows good cycling stability, with a capacity retention of 97% at 1 C rate after 200 cycles. The improvement in electrochemical performance is attributed to the conformal coating that prevents structural changes caused by the reaction between cathode material and liquid electrolyte. Compared to bare NCM851005, the coated material shows a significantly reduced tendency for intergranular cracking, successfully preventing electrolyte penetration and suppressing side reactions. Overall, photonic curing presents a novel cost‐ and energy‐efficient synthesis and coating procedure that paves the way for surface modification of any heat‐sensitive material for a wide range of applications.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"13 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeru Wang, Yue Hou, Sen Li, Zhuang Xu, Xiaotao Zhu, Bing Guo, Dong Lu, Ke Wang
Structural lithium batteries integrated with energy storage and mechanical load-bearing capabilities hold great promise to revolutionize lightweight transport vehicles. However, the current development of structural batteries faces critical challenges in balancing the electrochemical and mechanical properties of the electrolytes. Herein, a super strong quasi-solid composite polymer electrolyte (QCPE) is successfully fabricated by reinforcing polyelectrolyte with 3D in situ self-assembled metal–organic framework-modified glass fiber (MOF@GF) soaking a small amount of liquid electrolyte, which provides continuous ion conductive pathways for fast Li+ transport and contributes to the high ambient ionic conductivity of 1.47 × 10−3 S cm−1. The micropores and abundant polar functional groups selectively restrict the transport of anions to afford a homogeneous Li+ flux and a high Li+ transference number (0.56). Simultaneously, the MOF@GF provides more effective reinforcement and a remarkably high tensile strength of 48.6 MPa, and Young's modulus of 1.66 GPa is achieved. Furthermore, the lithium metal batteries fabricated with this QCPE exhibit a long, stable operation lifespan of 2000 h and excellent cycling performance with LiFePO4 and NCM811 cathodes. This design strategy generally opens a new avenue for structural batteries with high ionic conductivity and outstanding mechanical properties, which holds great promise for industrial translation.
{"title":"Quasi-Solid Composite Polymer Electrolyte-Based Structural Batteries with High Ionic Conductivity and Excellent Mechanical Properties","authors":"Zeru Wang, Yue Hou, Sen Li, Zhuang Xu, Xiaotao Zhu, Bing Guo, Dong Lu, Ke Wang","doi":"10.1002/sstr.202400050","DOIUrl":"https://doi.org/10.1002/sstr.202400050","url":null,"abstract":"Structural lithium batteries integrated with energy storage and mechanical load-bearing capabilities hold great promise to revolutionize lightweight transport vehicles. However, the current development of structural batteries faces critical challenges in balancing the electrochemical and mechanical properties of the electrolytes. Herein, a super strong quasi-solid composite polymer electrolyte (QCPE) is successfully fabricated by reinforcing polyelectrolyte with 3D in situ self-assembled metal–organic framework-modified glass fiber (MOF@GF) soaking a small amount of liquid electrolyte, which provides continuous ion conductive pathways for fast Li<sup>+</sup> transport and contributes to the high ambient ionic conductivity of 1.47 × 10<sup>−3</sup> S cm<sup>−1</sup>. The micropores and abundant polar functional groups selectively restrict the transport of anions to afford a homogeneous Li<sup>+</sup> flux and a high Li<sup>+</sup> transference number (0.56). Simultaneously, the MOF@GF provides more effective reinforcement and a remarkably high tensile strength of 48.6 MPa, and Young's modulus of 1.66 GPa is achieved. Furthermore, the lithium metal batteries fabricated with this QCPE exhibit a long, stable operation lifespan of 2000 h and excellent cycling performance with LiFePO<sub>4</sub> and NCM811 cathodes. This design strategy generally opens a new avenue for structural batteries with high ionic conductivity and outstanding mechanical properties, which holds great promise for industrial translation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Cheng, Peifen Lu, Yixi Dong, Jiabao Yu, Gang Wang, Jianwei Jiao, Peng Miao, Jin Jiao
Herein, a sequentially responsive peptide DNA bilingual nanobiosensor is developed, which allows integrated quantification of amyloid signaling pathway. In this system, upstream beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protease and downstream Aβ oligomer (AβO) are designed as two inputs for the AND DNA logic gate. In the existence of both inputs, peptide substrate with aptamer can be sequentially cleaved, reporting electrochemical and fluorescence dual-mode outputs. In comparison with conventional single protease activity assay based on peptide nanotechnology, this strategy permits accurate diagnosis of Alzheimer's disease (AD) from normal subjects. More importantly, it can achieve distinguished diagnosis between AD and type 2 diabetes mellitus patients. This bilingual nanobiosensor is successfully applied to detect BACE1 (1–100 U mL−1) and AβO (5–1000 pg mL−1) with limit of detections as low as 0.10 U mL−1 and 0.76 pg mL−1, respectively. Furthermore, this strategy inspires advanced nanobiosensors to target the activation of other signaling pathways, which are potential tools for future biology and medicine investigation.
本文开发了一种顺序响应肽 DNA 双语纳米生物传感器,可对淀粉样蛋白信号通路进行综合定量。在该系统中,上游的β位淀粉样前体蛋白切割酶1(BACE1)蛋白酶和下游的Aβ寡聚体(AβO)被设计为AND DNA逻辑门的两个输入端。在两个输入端同时存在的情况下,带有适配体的多肽底物可以依次被裂解,从而产生电化学和荧光双模式输出。与传统的基于多肽纳米技术的单一蛋白酶活性检测相比,该策略可准确诊断正常人与阿尔茨海默病(AD)。更重要的是,它还能实现对阿尔茨海默病和 2 型糖尿病患者的鉴别诊断。这种双语纳米生物传感器成功应用于检测 BACE1(1-100 U mL-1)和 AβO(5-1000 pg mL-1),检测限分别低至 0.10 U mL-1 和 0.76 pg mL-1。此外,这种策略还启发了针对其他信号通路激活的先进纳米生物传感器,它们是未来生物学和医学研究的潜在工具。
{"title":"A Bilingual Nanobiosensor for Cross-Category Integrated Decoding of the Beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1–Aβ Oligomer Signaling Pathway","authors":"Tao Cheng, Peifen Lu, Yixi Dong, Jiabao Yu, Gang Wang, Jianwei Jiao, Peng Miao, Jin Jiao","doi":"10.1002/sstr.202400241","DOIUrl":"https://doi.org/10.1002/sstr.202400241","url":null,"abstract":"Herein, a sequentially responsive peptide DNA bilingual nanobiosensor is developed, which allows integrated quantification of amyloid signaling pathway. In this system, upstream beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protease and downstream Aβ oligomer (AβO) are designed as two inputs for the AND DNA logic gate. In the existence of both inputs, peptide substrate with aptamer can be sequentially cleaved, reporting electrochemical and fluorescence dual-mode outputs. In comparison with conventional single protease activity assay based on peptide nanotechnology, this strategy permits accurate diagnosis of Alzheimer's disease (AD) from normal subjects. More importantly, it can achieve distinguished diagnosis between AD and type 2 diabetes mellitus patients. This bilingual nanobiosensor is successfully applied to detect BACE1 (1–100 U mL<sup>−1</sup>) and AβO (5–1000 pg mL<sup>−1</sup>) with limit of detections as low as 0.10 U mL<sup>−1</sup> and 0.76 pg mL<sup>−1</sup>, respectively. Furthermore, this strategy inspires advanced nanobiosensors to target the activation of other signaling pathways, which are potential tools for future biology and medicine investigation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}