Pub Date : 2023-01-01DOI: 10.20517/energymater.2023.48
Matteo Palluzzi, Akiko Tsurumaki, Henry Adenusi, Maria Assunta Navarra, Stefano Passerini
Lithium-ion batteries (LIBs) are the predominant power source for portable electronic devices, and in recent years, their use has extended to higher-energy and larger devices. However, to satisfy the stringent requirements of safety and energy density, further material advancements are required. Due to the inherent flammability and incompatibility of organic solvent-based liquid electrolytes with materials utilized in high energy devices, it is necessary to transition to alternative conductive mediums. The focus is shifting from molecular materials to a class of materials based on ions, including ionic liquids (ILs) and their derivatives such as zwitterionic ILs, polymerized ILs, and solvated ILs, which possess high levels of safety, stability, compatibility, and the ability to rationally design ILs for specific applications. Ion design is crucial to achieve superior control of electrode/electrolyte interphases (EEIs) both on anode and cathode surfaces to realize safer and higher-energy lithium-metal batteries (LMBs). This review summarizes the different uses of ILs in electrolytes (both liquid and solids) for LMBs, reporting the most promising results obtained during the last years and highlighting their role in the formation of suitable EEIs. Furthermore, a discussion on the use of deep-eutectic solvents is also provided, which is a class of material with similar properties to ILs and an important alternative from the viewpoint of sustainability. Lastly, future prospects for the optimization of IL-based electrolytes are summarized, ranging from the functional design of ionic structures to the realization of nanophases with specific features.
{"title":"Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives","authors":"Matteo Palluzzi, Akiko Tsurumaki, Henry Adenusi, Maria Assunta Navarra, Stefano Passerini","doi":"10.20517/energymater.2023.48","DOIUrl":"https://doi.org/10.20517/energymater.2023.48","url":null,"abstract":"Lithium-ion batteries (LIBs) are the predominant power source for portable electronic devices, and in recent years, their use has extended to higher-energy and larger devices. However, to satisfy the stringent requirements of safety and energy density, further material advancements are required. Due to the inherent flammability and incompatibility of organic solvent-based liquid electrolytes with materials utilized in high energy devices, it is necessary to transition to alternative conductive mediums. The focus is shifting from molecular materials to a class of materials based on ions, including ionic liquids (ILs) and their derivatives such as zwitterionic ILs, polymerized ILs, and solvated ILs, which possess high levels of safety, stability, compatibility, and the ability to rationally design ILs for specific applications. Ion design is crucial to achieve superior control of electrode/electrolyte interphases (EEIs) both on anode and cathode surfaces to realize safer and higher-energy lithium-metal batteries (LMBs). This review summarizes the different uses of ILs in electrolytes (both liquid and solids) for LMBs, reporting the most promising results obtained during the last years and highlighting their role in the formation of suitable EEIs. Furthermore, a discussion on the use of deep-eutectic solvents is also provided, which is a class of material with similar properties to ILs and an important alternative from the viewpoint of sustainability. Lastly, future prospects for the optimization of IL-based electrolytes are summarized, ranging from the functional design of ionic structures to the realization of nanophases with specific features.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134889776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.70
{"title":"Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries","authors":"","doi":"10.20517/energymater.2022.70","DOIUrl":"https://doi.org/10.20517/energymater.2022.70","url":null,"abstract":"","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73585092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.78
Yao Ren, Juntian Fan, Yong Fu
The energy density of lithium-ion batteries based on intercalated electrode materials has reached its upper limit, which makes it challenging to meet the growing demand for high-energy storage systems. Electrode materials based on conversion reactions such as sulfur, organosulfides, and oxygen involving breakage and reformation of chemical bonds can provide higher specific capacity and energy density. In addition, they usually consist of abundant elements, making them renewable. Although they have the aforementioned benefits, they face numerous challenges for practical applications. For example, the cycled products of sulfur and molecular organosulfides could be soluble in a liquid electrolyte, resulting in the shuttle effect and significant capacity loss. The discharged product of oxygen is Li2O2, which could result in high charge overpotential and decomposition of the electrolyte. In this review, we present an overview of the current strategies for improving the performances of lithium-sulfur, lithium-organosulfide, and lithium-oxygen batteries. First, we summarize the efforts to overcome the issues facing sulfur and organosulfide cathodes, as well as the strategies to increase the capacity of organosulfides. Then, we introduce the latest research progress on catalysts in lithium-oxygen batteries. Finally, we summarize and provide outlooks for the conversion of electrode materials.
{"title":"Recent strategies for improving the performances of rechargeable lithium batteries with sulfur- and oxygen-based conversion cathodes","authors":"Yao Ren, Juntian Fan, Yong Fu","doi":"10.20517/energymater.2022.78","DOIUrl":"https://doi.org/10.20517/energymater.2022.78","url":null,"abstract":"The energy density of lithium-ion batteries based on intercalated electrode materials has reached its upper limit, which makes it challenging to meet the growing demand for high-energy storage systems. Electrode materials based on conversion reactions such as sulfur, organosulfides, and oxygen involving breakage and reformation of chemical bonds can provide higher specific capacity and energy density. In addition, they usually consist of abundant elements, making them renewable. Although they have the aforementioned benefits, they face numerous challenges for practical applications. For example, the cycled products of sulfur and molecular organosulfides could be soluble in a liquid electrolyte, resulting in the shuttle effect and significant capacity loss. The discharged product of oxygen is Li2O2, which could result in high charge overpotential and decomposition of the electrolyte. In this review, we present an overview of the current strategies for improving the performances of lithium-sulfur, lithium-organosulfide, and lithium-oxygen batteries. First, we summarize the efforts to overcome the issues facing sulfur and organosulfide cathodes, as well as the strategies to increase the capacity of organosulfides. Then, we introduce the latest research progress on catalysts in lithium-oxygen batteries. Finally, we summarize and provide outlooks for the conversion of electrode materials.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89622023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The lithium-sulfur (Li-S) battery has been attracting much more attention in recent years due to its high theoretical capacity and low cost, although various issues, such as the “shuttle effect” and the low use ratio of active materials, have been hindering the development and application of Li-S batteries. The separator is an important part of Li-S batteries, and its modification is a simple and effective strategy to improve the electrochemical performance of Li-S batteries. In this work, we explore separators with different functions on their two sides that have been produced by a step-by-step electrospinning method. The multifunctional separator on one side is pure gelatin, and the other side is zeolitic imidazolate framework-67 (ZIF-67)-C60-gelatin. The ZIF-67-C60-gelatin layer on the cathode side is of great importance. The chemisorption sites on it are provided by ZIF-67, and the transformation sites of lithium polysulfide are provided by C60. Gelatin, which is on the anode side, as an admirable separator material, makes the lithium flux uniform and thus prevents the generation of lithium dendrites. This type of multifunctional nanofiber separator based on double gelatin layers plays an important role in the adsorption and conversion of polysulfides, and it improves the overall performance of the Li-S battery. As a result, the Li-S batteries assembled with the prepared separator can still maintain the capacity of 888 mAh g-1 after 100 cycles at 0.2 C, and the capacity retention rate of the Li-S batteries is 72.9% after 400 cycles at 2 C. This simple preparation method and high-performance bilayer membrane structure provide a new route for commercial application.
{"title":"C60 and ZIF-67 synergistically modified gelatin-based nanofibrous separators for Li-S batteries","authors":"Xin Liang, Dongqing Zhao, Lulu Wang, Qianqian Huang, Chonghai Deng, Lili Wang, Leilei Hu, Sheng Liang, Huaxia Deng, H. Xiang","doi":"10.20517/energymater.2022.63","DOIUrl":"https://doi.org/10.20517/energymater.2022.63","url":null,"abstract":"The lithium-sulfur (Li-S) battery has been attracting much more attention in recent years due to its high theoretical capacity and low cost, although various issues, such as the “shuttle effect” and the low use ratio of active materials, have been hindering the development and application of Li-S batteries. The separator is an important part of Li-S batteries, and its modification is a simple and effective strategy to improve the electrochemical performance of Li-S batteries. In this work, we explore separators with different functions on their two sides that have been produced by a step-by-step electrospinning method. The multifunctional separator on one side is pure gelatin, and the other side is zeolitic imidazolate framework-67 (ZIF-67)-C60-gelatin. The ZIF-67-C60-gelatin layer on the cathode side is of great importance. The chemisorption sites on it are provided by ZIF-67, and the transformation sites of lithium polysulfide are provided by C60. Gelatin, which is on the anode side, as an admirable separator material, makes the lithium flux uniform and thus prevents the generation of lithium dendrites. This type of multifunctional nanofiber separator based on double gelatin layers plays an important role in the adsorption and conversion of polysulfides, and it improves the overall performance of the Li-S battery. As a result, the Li-S batteries assembled with the prepared separator can still maintain the capacity of 888 mAh g-1 after 100 cycles at 0.2 C, and the capacity retention rate of the Li-S batteries is 72.9% after 400 cycles at 2 C. This simple preparation method and high-performance bilayer membrane structure provide a new route for commercial application.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87864656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2023.12
Xiaodong Chen, Zhiyuan Zhang, Ya Chen, Runjing Xu, Chunyu Song, Tiefeng Yuan, Wenshuai Tang, Xin Gao, N. Wang, Lifeng Cui
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are crucial half-reactions of green electrochemical energy storage and conversion technologies, such as electrochemical water-splitting devices and regenerative fuel cells. Researchers always committed to synthesizing earth-abundant-element-based nanomaterials as high-efficiency electrocatalysts for realizing their industrial applications. In this review, we briefly elaborate on the underlying mechanisms of OER and ORR during the electrochemical process. Then, we systematically sum up the recent research progress in representative metal-free carbon (C)-based electrocatalysts; metal-nitrogen-C electrocatalysts; and nonprecious-metal OER/ORR electrocatalysts, including transition-metal oxides, phosphides, nitrides/oxynitrides, chalcogenides, and carbides. Among these, some representative bifunctional electrocatalysts for the OER/ORR are mentioned. In particular, we discuss the effects of physicochemical properties-morphology, phases, crystallinity, composition, defects, heteroatom doping, and strain engineering-on the comprehensive performance of the abovementioned electrocatalysts, with the aim of establishing the nanostructure-function relationships of the electrocatalysts. In addition, the development directions of OER and ORR electrocatalysts are determined and highlighted. The generic approach in this review expands the frontiers of and provides inspiration for developing high-efficiency OER/ORR electrocatalysts.
{"title":"Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction","authors":"Xiaodong Chen, Zhiyuan Zhang, Ya Chen, Runjing Xu, Chunyu Song, Tiefeng Yuan, Wenshuai Tang, Xin Gao, N. Wang, Lifeng Cui","doi":"10.20517/energymater.2023.12","DOIUrl":"https://doi.org/10.20517/energymater.2023.12","url":null,"abstract":"The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are crucial half-reactions of green electrochemical energy storage and conversion technologies, such as electrochemical water-splitting devices and regenerative fuel cells. Researchers always committed to synthesizing earth-abundant-element-based nanomaterials as high-efficiency electrocatalysts for realizing their industrial applications. In this review, we briefly elaborate on the underlying mechanisms of OER and ORR during the electrochemical process. Then, we systematically sum up the recent research progress in representative metal-free carbon (C)-based electrocatalysts; metal-nitrogen-C electrocatalysts; and nonprecious-metal OER/ORR electrocatalysts, including transition-metal oxides, phosphides, nitrides/oxynitrides, chalcogenides, and carbides. Among these, some representative bifunctional electrocatalysts for the OER/ORR are mentioned. In particular, we discuss the effects of physicochemical properties-morphology, phases, crystallinity, composition, defects, heteroatom doping, and strain engineering-on the comprehensive performance of the abovementioned electrocatalysts, with the aim of establishing the nanostructure-function relationships of the electrocatalysts. In addition, the development directions of OER and ORR electrocatalysts are determined and highlighted. The generic approach in this review expands the frontiers of and provides inspiration for developing high-efficiency OER/ORR electrocatalysts.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79063312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.68
{"title":"Rational design of Ru/TiO2/CNTs as cathode: promotion of cycling performance for aprotic lithium-oxygen battery","authors":"","doi":"10.20517/energymater.2022.68","DOIUrl":"https://doi.org/10.20517/energymater.2022.68","url":null,"abstract":"","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76477829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.65
{"title":"Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries","authors":"","doi":"10.20517/energymater.2022.65","DOIUrl":"https://doi.org/10.20517/energymater.2022.65","url":null,"abstract":"","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79852021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.89
{"title":". Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries","authors":"","doi":"10.20517/energymater.2022.89","DOIUrl":"https://doi.org/10.20517/energymater.2022.89","url":null,"abstract":"","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90192975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2023.07
Sebastian P. Kühn, Matthias Weiling, D. Diddens, M. Baghernejad, Martin Winter, I. Cekic‐Laskovic
Research on lithium metal as a high-capacity anode for future lithium metal batteries (LMBs) is currently at an all-time high. To date, the different influences of a highly pure argon glovebox (GB) and an industry-relevant ambient dry room (DR) atmosphere have received little attention in the scientific community. In this paper, we report on the impact of in coin cell atmosphere (ICCA) on the performance of an LMB as well as its interphase characteristics and properties in combination with three organic carbonate-based electrolytes with and without two well-known interphase-forming additives, namely fluoroethylene carbonate (FEC) and vinylene carbonate (VC). The results obtained from this carefully executed systematic study show a substantial impact of the ICCA on solid electrolyte interphase (SEI) resistance (RSEI) and lithium stripping/plating homogeneity. In a transition metal cathode (NMC811) containing LMBs, a DR ICCA results in an up to 50% increase in lifetime due to the improved chemical composition of the cathode electrolyte interphase (CEI). Furthermore, different impacts on electrode characteristics and cell performance were observed depending on the utilized functional additive. Since this study focuses on a largely overlooked influential factor of LMB performance, it highlights the importance of comparability and transparency in published research and the importance of taking differences between research and industrial environments into consideration in the aim of establishing and commercializing LMB cell components.
{"title":"Impact of in coin cell atmosphere on lithium metal battery performance","authors":"Sebastian P. Kühn, Matthias Weiling, D. Diddens, M. Baghernejad, Martin Winter, I. Cekic‐Laskovic","doi":"10.20517/energymater.2023.07","DOIUrl":"https://doi.org/10.20517/energymater.2023.07","url":null,"abstract":"Research on lithium metal as a high-capacity anode for future lithium metal batteries (LMBs) is currently at an all-time high. To date, the different influences of a highly pure argon glovebox (GB) and an industry-relevant ambient dry room (DR) atmosphere have received little attention in the scientific community. In this paper, we report on the impact of in coin cell atmosphere (ICCA) on the performance of an LMB as well as its interphase characteristics and properties in combination with three organic carbonate-based electrolytes with and without two well-known interphase-forming additives, namely fluoroethylene carbonate (FEC) and vinylene carbonate (VC). The results obtained from this carefully executed systematic study show a substantial impact of the ICCA on solid electrolyte interphase (SEI) resistance (RSEI) and lithium stripping/plating homogeneity. In a transition metal cathode (NMC811) containing LMBs, a DR ICCA results in an up to 50% increase in lifetime due to the improved chemical composition of the cathode electrolyte interphase (CEI). Furthermore, different impacts on electrode characteristics and cell performance were observed depending on the utilized functional additive. Since this study focuses on a largely overlooked influential factor of LMB performance, it highlights the importance of comparability and transparency in published research and the importance of taking differences between research and industrial environments into consideration in the aim of establishing and commercializing LMB cell components.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"92 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83824104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2023.02
C. Lai, Xuejun Zhou, Meng Lei, Wenlong Liu, X. Mu, Chilin Li
The application of Li-S batteries (LSBs) is hindered by the undesired shuttle effect that leads to the fast consumption of active materials. The separator modification by using the carbon matrix with embedded metal nitride as catalyst can ease the problem. However, the previous synthesis processes of metal nitride catalysts are difficult to achieve a balance between their high-density production, homogenous distribution and excellent electronic contact with conductive substrates. Herein, we propose a bond scissoring strategy based on g-C3N4 to prepare NbN catalyst domains with high-density loading uniformly embedded in mesoporous thin-layer conductive carbon network (NbN/C) for durable LSBs. The molten salt reaction process is favorable for the diffusion of Nb cations into a porous g-C3N4 precursor to break the C-N bond and immobilize the N element. The residual monolithic carbon framework with space confinement effect limits the irregular growth and stacking of NbN precipitates. The NbN catalytic domains exhibit a strong adsorption effect on lithium polysulfides (LiPSs) and accelerate their liquid-solid conversion reactions. The LSBs utilizing an NbN/C-modified separator show superior cycling and rate performance, with a high-capacity retention of 72.7% after 1,000 cycles under 2 C and a high areal capacity of ~7.08 mA h cm-2 under a high sulfur loading of 6.6 mg cm-2. This g-C3N4-assisted strategy opens a new gate for the design of an integrated catalysis-conduction network for high-performance LSBs.
锂离子电池(LSBs)的应用受阻于不希望的穿梭效应,导致活性物质的快速消耗。采用嵌入金属氮化物的碳基体作为催化剂对分离器进行改性可以缓解这一问题。然而,以往的金属氮化物催化剂的合成工艺很难在其高密度生产、均匀分布和与导电衬底良好的电子接触之间取得平衡。在此,我们提出了一种基于g-C3N4的键剪策略,以制备高密度负载均匀嵌入介孔薄层导电碳网络(NbN/C)的NbN催化剂结构域。熔盐反应过程有利于Nb阳离子扩散到多孔g-C3N4前驱体中,破坏C-N键,固定N元素。具有空间约束效应的残余单片碳骨架限制了NbN析出物的不规则生长和堆积。NbN催化结构域对锂多硫化物(LiPSs)具有较强的吸附作用,加速了其液固转化反应。采用NbN/C改性分离器制备的lsb具有优良的循环和倍率性能,在2℃条件下循环1000次后的容量保留率高达72.7%,在高硫负荷为6.6 mg cm-2时的面积容量高达~7.08 mA h cm-2。这种g- c3n4辅助策略为高性能lsb集成催化传导网络的设计打开了新的大门。
{"title":"Scissor g-C3N4 for high-density loading of catalyst domains in mesoporous thin-layer conductive network for durable Li-S batteries","authors":"C. Lai, Xuejun Zhou, Meng Lei, Wenlong Liu, X. Mu, Chilin Li","doi":"10.20517/energymater.2023.02","DOIUrl":"https://doi.org/10.20517/energymater.2023.02","url":null,"abstract":"The application of Li-S batteries (LSBs) is hindered by the undesired shuttle effect that leads to the fast consumption of active materials. The separator modification by using the carbon matrix with embedded metal nitride as catalyst can ease the problem. However, the previous synthesis processes of metal nitride catalysts are difficult to achieve a balance between their high-density production, homogenous distribution and excellent electronic contact with conductive substrates. Herein, we propose a bond scissoring strategy based on g-C3N4 to prepare NbN catalyst domains with high-density loading uniformly embedded in mesoporous thin-layer conductive carbon network (NbN/C) for durable LSBs. The molten salt reaction process is favorable for the diffusion of Nb cations into a porous g-C3N4 precursor to break the C-N bond and immobilize the N element. The residual monolithic carbon framework with space confinement effect limits the irregular growth and stacking of NbN precipitates. The NbN catalytic domains exhibit a strong adsorption effect on lithium polysulfides (LiPSs) and accelerate their liquid-solid conversion reactions. The LSBs utilizing an NbN/C-modified separator show superior cycling and rate performance, with a high-capacity retention of 72.7% after 1,000 cycles under 2 C and a high areal capacity of ~7.08 mA h cm-2 under a high sulfur loading of 6.6 mg cm-2. This g-C3N4-assisted strategy opens a new gate for the design of an integrated catalysis-conduction network for high-performance LSBs.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89569762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}