{"title":"Electrocatalysts for Energy Provision","authors":"A. Bandarenka","doi":"10.1201/9781003025498-3","DOIUrl":"https://doi.org/10.1201/9781003025498-3","url":null,"abstract":"","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76343509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.20517/energymater.2022.02
Zhe Yang, Chaoliang Zheng, Zhicheng Wei, Jian-jian Zhong, Huirong Liu, Jiameng Feng, Jianling Li, F. Kang
Lithium-rich manganese-based cathode materials are expected to promote the commercialization of lithium-ion batteries to a new stage by virtue of their ultrahigh specific capacity and energy density advantages. However, they are still restricted by complex phase transitions and electrochemical performance degradation caused by labile anion charge compensation. A deep understanding of the electrochemical properties contained in their intrinsic structures and the key driving factors of structural deterioration during cycling are crucial to guide the preparation and optimization of lithium-rich materials. Considering recent progress, this review introduces the intrinsic properties of Li-rich manganese-based cathode materials from interatomic interactions to particle morphology at multiple scales in the spatial dimension. The charge compensation mechanism and energy band reorganization of the initial charge and discharge, the structural evolution during cycling and the electrochemical reaction kinetics of the materials are analyzed in the temporal dimension. Based on the relationship between structure and electrochemical performance, preparation methods and modification methods are introduced to guide and design cathode materials. Effective characterization methods for studying anion charge compensation behavior are also demonstrated. This review provides important guidance and suggestions for making full use of the high specific capacity in these materials derived from anion redox and the maintaining of its stability.
{"title":"Multi-dimensional correlation of layered Li-rich Mn-based cathode materials","authors":"Zhe Yang, Chaoliang Zheng, Zhicheng Wei, Jian-jian Zhong, Huirong Liu, Jiameng Feng, Jianling Li, F. Kang","doi":"10.20517/energymater.2022.02","DOIUrl":"https://doi.org/10.20517/energymater.2022.02","url":null,"abstract":"Lithium-rich manganese-based cathode materials are expected to promote the commercialization of lithium-ion batteries to a new stage by virtue of their ultrahigh specific capacity and energy density advantages. However, they are still restricted by complex phase transitions and electrochemical performance degradation caused by labile anion charge compensation. A deep understanding of the electrochemical properties contained in their intrinsic structures and the key driving factors of structural deterioration during cycling are crucial to guide the preparation and optimization of lithium-rich materials. Considering recent progress, this review introduces the intrinsic properties of Li-rich manganese-based cathode materials from interatomic interactions to particle morphology at multiple scales in the spatial dimension. The charge compensation mechanism and energy band reorganization of the initial charge and discharge, the structural evolution during cycling and the electrochemical reaction kinetics of the materials are analyzed in the temporal dimension. Based on the relationship between structure and electrochemical performance, preparation methods and modification methods are introduced to guide and design cathode materials. Effective characterization methods for studying anion charge compensation behavior are also demonstrated. This review provides important guidance and suggestions for making full use of the high specific capacity in these materials derived from anion redox and the maintaining of its stability.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81579765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.20517/energymater.2022.15
Yue Li, Wen Yang, Lu Han, Haiyang Li, Zhiguo Wen, Yan Li, Xiaoguang Wang, Hengchao Sun, Ting Lu, Min Xu, L. Pan
Zinc-ion supercapacitors (ZISCs) are recognized as one of the most promising types of energy storage devices with the advantages of high theoretical capacity and safety, nontoxicity, low cost, abundant resources (~300 times higher than lithium), and lightweight. So far, multifunctional integrated ZISCs have greatly broadened their application scenarios. In addition to enhancing the electrochemical performance via the design of advanced electrodes and electrolytes, the complex application scenarios and in-depth development of energy storage devices have resulted in higher requirements for ZISCs with multifunctional integrated applications. However, to the best of our knowledge, there is no relevant review about summarizing advanced multifunctional ZISCs. In this review, various advanced multifunctional ZISCs, including micro, self-powered integrated, antifreezing, and stretchable ZISCs, are comprehensively presented to fully understand the advanced evolution of multifunctional ZISCs. The working principles and challenges of ZISCs are analyzed and the future development directions and expectations of advanced multifunctional ZISCs are discussed. This review provides significant guidance for the multifunctional development of ZISCs for future studies.
{"title":"Recent progress and perspective of multifunctional integrated zinc-ion supercapacitors","authors":"Yue Li, Wen Yang, Lu Han, Haiyang Li, Zhiguo Wen, Yan Li, Xiaoguang Wang, Hengchao Sun, Ting Lu, Min Xu, L. Pan","doi":"10.20517/energymater.2022.15","DOIUrl":"https://doi.org/10.20517/energymater.2022.15","url":null,"abstract":"Zinc-ion supercapacitors (ZISCs) are recognized as one of the most promising types of energy storage devices with the advantages of high theoretical capacity and safety, nontoxicity, low cost, abundant resources (~300 times higher than lithium), and lightweight. So far, multifunctional integrated ZISCs have greatly broadened their application scenarios. In addition to enhancing the electrochemical performance via the design of advanced electrodes and electrolytes, the complex application scenarios and in-depth development of energy storage devices have resulted in higher requirements for ZISCs with multifunctional integrated applications. However, to the best of our knowledge, there is no relevant review about summarizing advanced multifunctional ZISCs. In this review, various advanced multifunctional ZISCs, including micro, self-powered integrated, antifreezing, and stretchable ZISCs, are comprehensively presented to fully understand the advanced evolution of multifunctional ZISCs. The working principles and challenges of ZISCs are analyzed and the future development directions and expectations of advanced multifunctional ZISCs are discussed. This review provides significant guidance for the multifunctional development of ZISCs for future studies.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85431785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.20517/energymater.2022.21
Qingyang Fan, Hang Zhou, Y. Zhao, Sining Yun
Based on density functional theory, a new two-dimensional boron nitride, Pmma BN, is proposed and studied in detail for the first time. The stability of Pmma BN is demonstrated by phonon spectra, ab initio molecular dynamics simulations at 300 and 500 K, and in-plane elastic constants. The orientation dependences of the Young’s modulus and Poisson’s ratio show that Pmma BN has large mechanical anisotropy. Pmma BN is an indirect band gap semiconductor material with a band gap of 5.15 eV, and the hole and electron effective mass have high anisotropy. The electron carrier mobility of Pmma BN along the x and y directions is similar, while the hole carrier mobility along the y direction is more than twice that along the x direction. By studying the effect of uniaxial tensile strain on Pmma BN, the band gap of Pmma BN remains indirect under the uniaxial strain, and its adjustable range reaches 0.64 eV at uniaxial strain along the x direction. When uniaxial strain is applied along the y direction, the positions of the conduction band minimum and valence band maximum change. Pmma BN under uniaxial strain show strong optical absorption capacity in the ultraviolet region. To explore clean energy applications, the thermoelectric properties are also investigated.
{"title":"Predicting a novel two-dimensional BN material with a wide band gap","authors":"Qingyang Fan, Hang Zhou, Y. Zhao, Sining Yun","doi":"10.20517/energymater.2022.21","DOIUrl":"https://doi.org/10.20517/energymater.2022.21","url":null,"abstract":"Based on density functional theory, a new two-dimensional boron nitride, Pmma BN, is proposed and studied in detail for the first time. The stability of Pmma BN is demonstrated by phonon spectra, ab initio molecular dynamics simulations at 300 and 500 K, and in-plane elastic constants. The orientation dependences of the Young’s modulus and Poisson’s ratio show that Pmma BN has large mechanical anisotropy. Pmma BN is an indirect band gap semiconductor material with a band gap of 5.15 eV, and the hole and electron effective mass have high anisotropy. The electron carrier mobility of Pmma BN along the x and y directions is similar, while the hole carrier mobility along the y direction is more than twice that along the x direction. By studying the effect of uniaxial tensile strain on Pmma BN, the band gap of Pmma BN remains indirect under the uniaxial strain, and its adjustable range reaches 0.64 eV at uniaxial strain along the x direction. When uniaxial strain is applied along the y direction, the positions of the conduction band minimum and valence band maximum change. Pmma BN under uniaxial strain show strong optical absorption capacity in the ultraviolet region. To explore clean energy applications, the thermoelectric properties are also investigated.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88573694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.20517/energymater.2022.53
Baichuan Ding, Xufei An, Jing Yu, Wei Lv, F. Kang, Yanjia He
Although various hosts have been proposed to accommodate the Lithium (Li) metal to solve the uneven Li deposition and infinite volume change, the pulverization of the host or lithiophilic modification layer easily leads to structural damage and the poor cycling stability of the composite anode. Herein, we design a host of metal nitrides (Mo2N and WN heterostructures) nanoparticles capsulated in the hollow carbon nanospheres, which can accommodate Li metal to form a stable composite anode. The lithiophilic Mo2N guides uniform infusion and reduces the nucleation barriers of Li metal during electrochemical process. Note that the rigid WN matrix is uniformly composited with Mo2N, which can suppress the pulverization of Mo2N during the repeat Li plating/stripping, ensuring the stability of regulated deposition during long cycling. High mechanical strength, uniform surface potential distribution and good electrolyte wettability of the Li metal-based composite anode guarantee the rapid Li plating/stripping kinetics. Thus, the obtained composite anode can stably cycle 1400 h at 1 mA cm-2 and 1 mA h cm-2 in the symmetric battery. The assembled full cells with LiNi0.8Mn0.1Co0.1O2 (NCM811) also deliver high capacity retention under the high loading (8.6 mg cm-2) or lean electrolyte (2 μL mg-1) condition. This work suggests a promising host structure design to construct a highly stable lithium metal anode for practical applications.
为了解决锂沉积不均匀和体积变化无限的问题,人们提出了多种载体来容纳锂金属,但载体或亲锂改性层的粉碎化容易导致复合阳极的结构破坏和循环稳定性差。在此,我们设计了一系列金属氮化物(Mo2N和WN异质结构)纳米颗粒包裹在空心碳纳米球中,可以容纳Li金属形成稳定的复合阳极。在电化学过程中,亲锂Mo2N引导均匀注入,降低了锂金属的成核障碍。需要注意的是,刚性WN基体与Mo2N均匀复合,可以抑制重复镀锂/剥离过程中Mo2N的粉化,保证长时间循环过程中调控沉积的稳定性。高的机械强度、均匀的表面电位分布和良好的电解质润湿性保证了锂金属基复合阳极的快速镀/剥离动力学。因此,所获得的复合阳极可以在对称电池中以1ma cm-2和1ma h cm-2稳定循环1400 h。在高负载(8.6 mg cm-2)或低电解质(2 μL mg-1)条件下,LiNi0.8Mn0.1Co0.1O2 (NCM811)组装的全电池也具有较高的容量保持率。本工作提出了一种有前途的主体结构设计,用于构建高稳定的锂金属阳极的实际应用。
{"title":"Metal nitride heterostructures capsulated in carbon nanospheres to accommodate lithium metal for constructing a stable composite anode","authors":"Baichuan Ding, Xufei An, Jing Yu, Wei Lv, F. Kang, Yanjia He","doi":"10.20517/energymater.2022.53","DOIUrl":"https://doi.org/10.20517/energymater.2022.53","url":null,"abstract":"Although various hosts have been proposed to accommodate the Lithium (Li) metal to solve the uneven Li deposition and infinite volume change, the pulverization of the host or lithiophilic modification layer easily leads to structural damage and the poor cycling stability of the composite anode. Herein, we design a host of metal nitrides (Mo2N and WN heterostructures) nanoparticles capsulated in the hollow carbon nanospheres, which can accommodate Li metal to form a stable composite anode. The lithiophilic Mo2N guides uniform infusion and reduces the nucleation barriers of Li metal during electrochemical process. Note that the rigid WN matrix is uniformly composited with Mo2N, which can suppress the pulverization of Mo2N during the repeat Li plating/stripping, ensuring the stability of regulated deposition during long cycling. High mechanical strength, uniform surface potential distribution and good electrolyte wettability of the Li metal-based composite anode guarantee the rapid Li plating/stripping kinetics. Thus, the obtained composite anode can stably cycle 1400 h at 1 mA cm-2 and 1 mA h cm-2 in the symmetric battery. The assembled full cells with LiNi0.8Mn0.1Co0.1O2 (NCM811) also deliver high capacity retention under the high loading (8.6 mg cm-2) or lean electrolyte (2 μL mg-1) condition. This work suggests a promising host structure design to construct a highly stable lithium metal anode for practical applications.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80641371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.20517/energymater.2022.46
Tao Tao, Zhi-Sheng Zheng, Yuxuan Gao, Baozhi Yu, Ye Fan, Y. Chen, Shaoming Huang, Shengguo Lu
All-solid-state lithium-sulfur batteries (ASSLSBs) exhibit huge potential applications in electrical energy storage systems due to their unique advantages, such as low costs, safety and high energy density. However, the issues facing solid-state electrolyte (SSE)/electrode interfaces, including lithium dendrite growth, poor interfacial capability and large interfacial resistance, seriously hinder their commercial development. Furthermore, an insufficient fundamental understanding of the interfacial roles during cycling is also a significant challenge for designing and constructing high-performance ASSLSBs. This article provides an in-depth analysis of the origin and issues of SSE/electrode interfaces, summarizes various strategies for resolving these interfacial issues and highlights advanced analytical characterization techniques to effectively investigate the interfacial properties of these systems. Future possible research directions for developing high-performance ASSLSBs are also suggested. Overall, advanced in-situ characterization techniques, intelligent interfacial engineering and a deeper understanding of the interfacial properties will aid the realization of high-performance ASSLSBs.
{"title":"Understanding the role of interfaces in solid-state lithium-sulfur batteries","authors":"Tao Tao, Zhi-Sheng Zheng, Yuxuan Gao, Baozhi Yu, Ye Fan, Y. Chen, Shaoming Huang, Shengguo Lu","doi":"10.20517/energymater.2022.46","DOIUrl":"https://doi.org/10.20517/energymater.2022.46","url":null,"abstract":"All-solid-state lithium-sulfur batteries (ASSLSBs) exhibit huge potential applications in electrical energy storage systems due to their unique advantages, such as low costs, safety and high energy density. However, the issues facing solid-state electrolyte (SSE)/electrode interfaces, including lithium dendrite growth, poor interfacial capability and large interfacial resistance, seriously hinder their commercial development. Furthermore, an insufficient fundamental understanding of the interfacial roles during cycling is also a significant challenge for designing and constructing high-performance ASSLSBs. This article provides an in-depth analysis of the origin and issues of SSE/electrode interfaces, summarizes various strategies for resolving these interfacial issues and highlights advanced analytical characterization techniques to effectively investigate the interfacial properties of these systems. Future possible research directions for developing high-performance ASSLSBs are also suggested. Overall, advanced in-situ characterization techniques, intelligent interfacial engineering and a deeper understanding of the interfacial properties will aid the realization of high-performance ASSLSBs.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75770541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to the global energy crisis, water splitting has become one of the most efficient methods to produce hydrogen as an excellent substitute for fossil fuels. The diffusion coefficient of hydrogen and its interaction with iron have granted carbon steel (CS) the susceptible nature to hydrogen, and therefore CS is considered a promising electrocatalyst in the hydrogen evolution reaction. Compared to many traditional alkaline electrolytes, simulated seawater exhibits reasonable performance that facilitates an effective hydrogen evolution reaction. In the electrolysis of simulated seawater, the lowest overpotential of strained CS samples (-391.08 mV) is comparable to that of Pt plate electrodes (-377.31 mV). This is the result of the plane strain introduced to CS samples by a hydraulic press and indentation, which help to facilitate mass transport through diffusion for hydrogen evolution. The susceptibility of CS is verified by the formation of nanoscale hydrogen blisters that form in the proximity of grain boundaries. These blisters are the result of hydrogen gas pressure that is built up by the absorbed atomic hydrogen. These hydrogen atoms are believed to accumulate along the CS {1 1 0} planes adjacent to grain boundaries. CS has so far not been studied for the catalysis of water splitting. In this study, CS is used as an electrocatalyst for the first time as a cost-effective method for the utilization of seawater that further contributes to the promotion of green energy production.
{"title":"Strained carbon steel as a highly efficient catalyst for seawater electrolysis","authors":"Xun Cao, Liying Zhang, K. Huang, Bowei Zhang, Junsheng Wu, Yizhong Huang","doi":"10.20517/energymater.2022.06","DOIUrl":"https://doi.org/10.20517/energymater.2022.06","url":null,"abstract":"In response to the global energy crisis, water splitting has become one of the most efficient methods to produce hydrogen as an excellent substitute for fossil fuels. The diffusion coefficient of hydrogen and its interaction with iron have granted carbon steel (CS) the susceptible nature to hydrogen, and therefore CS is considered a promising electrocatalyst in the hydrogen evolution reaction. Compared to many traditional alkaline electrolytes, simulated seawater exhibits reasonable performance that facilitates an effective hydrogen evolution reaction. In the electrolysis of simulated seawater, the lowest overpotential of strained CS samples (-391.08 mV) is comparable to that of Pt plate electrodes (-377.31 mV). This is the result of the plane strain introduced to CS samples by a hydraulic press and indentation, which help to facilitate mass transport through diffusion for hydrogen evolution. The susceptibility of CS is verified by the formation of nanoscale hydrogen blisters that form in the proximity of grain boundaries. These blisters are the result of hydrogen gas pressure that is built up by the absorbed atomic hydrogen. These hydrogen atoms are believed to accumulate along the CS {1 1 0} planes adjacent to grain boundaries. CS has so far not been studied for the catalysis of water splitting. In this study, CS is used as an electrocatalyst for the first time as a cost-effective method for the utilization of seawater that further contributes to the promotion of green energy production.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"103 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80026331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.20517/energymater.2022.01
H. Su, Zhao Jiang, Yu Liu, Jingru Li, C. Gu, Xiuli Wang, X. Xia, J. Tu
Solid electrolytes are recognized as being pivotal to next-generation energy storage technologies. Sulfide electrolytes with high ionic conductivity represent some of the most promising materials to realize high-energy-density all-solid-state lithium batteries. Due to their soft nature, sulfides possess good wettability against Li metal and their preparation process is relatively effortless. High cell-level sulfide-based all-solid-state lithium batteries have gradually been realized in recent years. However, there are still several disadvantages that sulfide electrolytes need to overcome, including their sensitivity to humid air and instability to electrodes. Herein, the recent progress for sulfide electrolytes, with particular attention given to electrolyte synthesis mechanisms, electrochemical and chemical stability, interphase stabilization and all-solid-state lithium batteries with high cell-level energy density, is presented.
{"title":"Recent progress of sulfide electrolytes for all-solid-state lithium batteries","authors":"H. Su, Zhao Jiang, Yu Liu, Jingru Li, C. Gu, Xiuli Wang, X. Xia, J. Tu","doi":"10.20517/energymater.2022.01","DOIUrl":"https://doi.org/10.20517/energymater.2022.01","url":null,"abstract":"Solid electrolytes are recognized as being pivotal to next-generation energy storage technologies. Sulfide electrolytes with high ionic conductivity represent some of the most promising materials to realize high-energy-density all-solid-state lithium batteries. Due to their soft nature, sulfides possess good wettability against Li metal and their preparation process is relatively effortless. High cell-level sulfide-based all-solid-state lithium batteries have gradually been realized in recent years. However, there are still several disadvantages that sulfide electrolytes need to overcome, including their sensitivity to humid air and instability to electrodes. Herein, the recent progress for sulfide electrolytes, with particular attention given to electrolyte synthesis mechanisms, electrochemical and chemical stability, interphase stabilization and all-solid-state lithium batteries with high cell-level energy density, is presented.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"115 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86466380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electroactive organics have attracted significant attention as electrode materials for next-generation rechargeable batteries because of their structural diversity, molecular adjustability, abundance, flexibility, environmental friendliness and low cost. To date, a large number of organic materials have been applied in a variety of energy storage devices. However, the inherent problems of organic materials, such as their dissolution in electrolytes and low electronic conductivity, have restricted the development of organic electrodes. In order to solve these problems, many groups have carried out research and remarkable progress has been made. Nevertheless, most reviews of organic electrodes have focused on the positive electrode rather than the negative electrode. This review first provides an overview of the recent work on organic anodes for Li- and Na-ion batteries. Six categories of organic anodes are summarized and discussed. Many of the key factors that influence the electrochemical performance of organic anodes are highlighted and their prospects and remaining challenges are evaluated.
{"title":"Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries","authors":"Xiang Li, Yan Wang, Linze Lv, Guobin Zhu, Q. Qu, Honghe Zheng","doi":"10.20517/energymater.2022.11","DOIUrl":"https://doi.org/10.20517/energymater.2022.11","url":null,"abstract":"Electroactive organics have attracted significant attention as electrode materials for next-generation rechargeable batteries because of their structural diversity, molecular adjustability, abundance, flexibility, environmental friendliness and low cost. To date, a large number of organic materials have been applied in a variety of energy storage devices. However, the inherent problems of organic materials, such as their dissolution in electrolytes and low electronic conductivity, have restricted the development of organic electrodes. In order to solve these problems, many groups have carried out research and remarkable progress has been made. Nevertheless, most reviews of organic electrodes have focused on the positive electrode rather than the negative electrode. This review first provides an overview of the recent work on organic anodes for Li- and Na-ion batteries. Six categories of organic anodes are summarized and discussed. Many of the key factors that influence the electrochemical performance of organic anodes are highlighted and their prospects and remaining challenges are evaluated.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87343884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}