Pub Date : 2023-10-09DOI: 10.20517/energymater.2023.24
Shifei Kang, Jinmin Cheng, Weikang Gao, Lifeng Cui
The energy density of conventional graphite anode batteries is insufficient to meet the requirement for portable devices, electric cars, and smart grids. As a result, researchers have diverted to lithium metal anode batteries. Lithium metal has a theoretical specific capacity (3,860 mAh·g-1) significantly higher than that of graphite. Additionally, it has a lower redox potential of -3.04 V compared to standard hydrogen electrodes. These properties make high-energy lithium metal batteries a promising candidate for next-generation energy storage devices, which have garnered significant interest for several years. However, the high activity of lithium metal anodes poses safety risks (e.g., short circuits and thermal runaway) that hinder their commercial growth. Currently, modification of reversible lithium anodes is the primary focus of lithium metal batteries. This article presents conceptual models and numerical simulations that address failure processes and offer specific techniques to mitigate the challenges of lithium metal anodes, including electrolyte design, interface engineering, and electrode modification. It is expected that lithium metal batteries will recover and become a feasible energy storage solution.
{"title":"Toward safer lithium metal batteries: a review","authors":"Shifei Kang, Jinmin Cheng, Weikang Gao, Lifeng Cui","doi":"10.20517/energymater.2023.24","DOIUrl":"https://doi.org/10.20517/energymater.2023.24","url":null,"abstract":"The energy density of conventional graphite anode batteries is insufficient to meet the requirement for portable devices, electric cars, and smart grids. As a result, researchers have diverted to lithium metal anode batteries. Lithium metal has a theoretical specific capacity (3,860 mAh·g-1) significantly higher than that of graphite. Additionally, it has a lower redox potential of -3.04 V compared to standard hydrogen electrodes. These properties make high-energy lithium metal batteries a promising candidate for next-generation energy storage devices, which have garnered significant interest for several years. However, the high activity of lithium metal anodes poses safety risks (e.g., short circuits and thermal runaway) that hinder their commercial growth. Currently, modification of reversible lithium anodes is the primary focus of lithium metal batteries. This article presents conceptual models and numerical simulations that address failure processes and offer specific techniques to mitigate the challenges of lithium metal anodes, including electrolyte design, interface engineering, and electrode modification. It is expected that lithium metal batteries will recover and become a feasible energy storage solution.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-08DOI: 10.20517/energymater.2023.29
Lei Yang, Jingwei Chen, Sangbaek Park, Huanlei Wang
Potassium-ion batteries (PIBs) are considered as promising alternatives to lithium-ion batteries (LIBs) due to their abundant potassium resources, cost-effectiveness, and comparable electrochemical performance to LIBs. However, the practical application of PIBs is hindered by the slow dynamics and large volume expansion of anode materials. Owing to their unique morphology, rich pores, abundant active sites, and tunable composition, metal-organic framework (MOF)-derived carbon and its composites have been widely studied and developed as PIB anodes. In this review, the basic configuration, performance evaluation indicators, and energy storage mechanisms of PIBs were first introduced, followed by a comprehensive summary of the research progress in MOF-derived carbon and its composites, especially the design strategies and different types of composites. Moreover, the advances of in situ characterization techniques to understand the electrochemical mechanism during potassiation/depotassiation were also highlighted, which is crucial for the directional optimization of the electrochemical performance of PIBs. Finally, the challenges and development prospects of MOF-derived carbon and its composites for PIBs are prospected. It is envisioned that this review will guide and inspire more research efforts toward advanced MOF-derived PIB anode materials in the future.
{"title":"Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries","authors":"Lei Yang, Jingwei Chen, Sangbaek Park, Huanlei Wang","doi":"10.20517/energymater.2023.29","DOIUrl":"https://doi.org/10.20517/energymater.2023.29","url":null,"abstract":"Potassium-ion batteries (PIBs) are considered as promising alternatives to lithium-ion batteries (LIBs) due to their abundant potassium resources, cost-effectiveness, and comparable electrochemical performance to LIBs. However, the practical application of PIBs is hindered by the slow dynamics and large volume expansion of anode materials. Owing to their unique morphology, rich pores, abundant active sites, and tunable composition, metal-organic framework (MOF)-derived carbon and its composites have been widely studied and developed as PIB anodes. In this review, the basic configuration, performance evaluation indicators, and energy storage mechanisms of PIBs were first introduced, followed by a comprehensive summary of the research progress in MOF-derived carbon and its composites, especially the design strategies and different types of composites. Moreover, the advances of in situ characterization techniques to understand the electrochemical mechanism during potassiation/depotassiation were also highlighted, which is crucial for the directional optimization of the electrochemical performance of PIBs. Finally, the challenges and development prospects of MOF-derived carbon and its composites for PIBs are prospected. It is envisioned that this review will guide and inspire more research efforts toward advanced MOF-derived PIB anode materials in the future.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventional ether electrolytes are generally considered unsuitable for use with graphite anodes and high-voltage cathodes due to their co-intercalation with graphite and poor oxidation stability, respectively. In this work, a highly fluorinated ether molecule, 1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy) methoxy] ethane (TTME), is introduced as a co-solvent into the conventional ether system to construct a fluorinated ether electrolyte, which not only avoids the co-intercalation with graphite but also is compatible with high-voltage cathodes. Li||graphite half-cells using the fluorinated ether electrolyte deliver stable cycling with a capacity retention of 91.7% for 300 cycles. Moreover, LiNi0.8Co0.1Mn0.1O2 (NCM811)||graphite and LiCoO2 (LCO)||graphite full-cells (cathode loadings are ≈3 mAh/cm2) with the fluorinated ether electrolyte show capacity retentions of > 90% over 200 cycles with a charge cut-off voltage of 4.4 V and > 97% for 100 cycles with a charge cut-off voltage of 4.5 V, respectively. The dense and firm solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) formed by the fluorinated ether electrolyte on the anode and cathode, respectively, are key to excellent cell performance. These results have significance for the subsequent application of ether electrolytes for high-voltage lithium ion batteries (up to 4.5 V) with graphite anodes.
{"title":"Highly fluorinated co-solvent enabling ether electrolyte for high-voltage lithium ion batteries with graphite anode","authors":"Ruo Wang, Haonan Wang, Huajun Zhao, Mingman Yuan, Zhongbo Liu, Guangzhao Zhang, Tong Zhang, Yunxian Qian, Jun Wang, Iseult Lynch, Yonghong Deng","doi":"10.20517/energymater.2023.28","DOIUrl":"https://doi.org/10.20517/energymater.2023.28","url":null,"abstract":"Conventional ether electrolytes are generally considered unsuitable for use with graphite anodes and high-voltage cathodes due to their co-intercalation with graphite and poor oxidation stability, respectively. In this work, a highly fluorinated ether molecule, 1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy) methoxy] ethane (TTME), is introduced as a co-solvent into the conventional ether system to construct a fluorinated ether electrolyte, which not only avoids the co-intercalation with graphite but also is compatible with high-voltage cathodes. Li||graphite half-cells using the fluorinated ether electrolyte deliver stable cycling with a capacity retention of 91.7% for 300 cycles. Moreover, LiNi0.8Co0.1Mn0.1O2 (NCM811)||graphite and LiCoO2 (LCO)||graphite full-cells (cathode loadings are ≈3 mAh/cm2) with the fluorinated ether electrolyte show capacity retentions of > 90% over 200 cycles with a charge cut-off voltage of 4.4 V and > 97% for 100 cycles with a charge cut-off voltage of 4.5 V, respectively. The dense and firm solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) formed by the fluorinated ether electrolyte on the anode and cathode, respectively, are key to excellent cell performance. These results have significance for the subsequent application of ether electrolytes for high-voltage lithium ion batteries (up to 4.5 V) with graphite anodes.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"1789 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.20517/energymater.2023.36
M. Salado, Marco Amores, C. Pozo‐Gonzalo, Maria Forsyth, S. Lanceros‐Méndez
Rechargeable potassium-ion batteries (PIBs) have gained attention as sustainable, environmentally friendly, and cost-effective large-scale stationary energy storage technology. However, although this technology was assumed to perform in a manner similar to that of its monovalent counterparts, huge anode volume expansion and sluggish kinetics are posing challenges in up-scaling it. Apart from the efforts to develop and optimise electrode materials, recent research endeavours have also focussed on the essential role of sustainability. These attempts have often relied on bio-derived and bio-inspired materials to mimic the effectiveness of nature. Furthermore, the use of materials with self-healing properties can alleviate electrode degradation after cycling and augment its electrochemical performance. This review summarises the development of smart materials with self-healing properties that aid in overcoming the present issues of PIBs and highlights the relevance of the interphases. In addition, state-of-the-art design strategies for bio-derived and bio-inspired materials are presented and discussed. The incorporation of recycled and sustainable materials into the manufacturing of PIBs is expected to contribute towards the ultimate goal of achieving truly circular economy ecosystems. Finally, perspectives for further advancements are provided to kindle new ideas and open questions regarding the use of new-generation materials in the development of PIBs.
{"title":"Advanced and sustainable functional materials for potassium-ion batteries","authors":"M. Salado, Marco Amores, C. Pozo‐Gonzalo, Maria Forsyth, S. Lanceros‐Méndez","doi":"10.20517/energymater.2023.36","DOIUrl":"https://doi.org/10.20517/energymater.2023.36","url":null,"abstract":"Rechargeable potassium-ion batteries (PIBs) have gained attention as sustainable, environmentally friendly, and cost-effective large-scale stationary energy storage technology. However, although this technology was assumed to perform in a manner similar to that of its monovalent counterparts, huge anode volume expansion and sluggish kinetics are posing challenges in up-scaling it. Apart from the efforts to develop and optimise electrode materials, recent research endeavours have also focussed on the essential role of sustainability. These attempts have often relied on bio-derived and bio-inspired materials to mimic the effectiveness of nature. Furthermore, the use of materials with self-healing properties can alleviate electrode degradation after cycling and augment its electrochemical performance. This review summarises the development of smart materials with self-healing properties that aid in overcoming the present issues of PIBs and highlights the relevance of the interphases. In addition, state-of-the-art design strategies for bio-derived and bio-inspired materials are presented and discussed. The incorporation of recycled and sustainable materials into the manufacturing of PIBs is expected to contribute towards the ultimate goal of achieving truly circular economy ecosystems. Finally, perspectives for further advancements are provided to kindle new ideas and open questions regarding the use of new-generation materials in the development of PIBs.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81928886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.20517/energymater.2023.22
V. Shipitsyn, Nicholas Antrasian, Vijayendra Soni, Linqin Mu, Lin Ma
Despite extensive research efforts to develop non-aqueous sodium-ion batteries (SIBs) as alternatives to lithium-based energy storage battery systems, their performance is still hindered by electrode-electrolyte side reactions. As a feasible strategy, the engineering of electrolyte additives has been regarded as one of the effective ways to address these critical problems. In this review, we provide a comprehensive overview of recent progress in electrolyte additives for non-aqueous SIBs. We classify the additives based on their effects on specific electrode materials and discuss the functions and mechanisms of each additive category. Finally, we propose future directions for electrolyte additive research, including studies on additives for improving cell performance under extreme conditions, optimizing electrolyte additive combinations, understanding the effect of additives on cathode-anode interactions, and understanding the characteristics of electrolyte additives.
{"title":"Fundamentals and perspectives of electrolyte additives for non-aqueous Na-ion batteries","authors":"V. Shipitsyn, Nicholas Antrasian, Vijayendra Soni, Linqin Mu, Lin Ma","doi":"10.20517/energymater.2023.22","DOIUrl":"https://doi.org/10.20517/energymater.2023.22","url":null,"abstract":"Despite extensive research efforts to develop non-aqueous sodium-ion batteries (SIBs) as alternatives to lithium-based energy storage battery systems, their performance is still hindered by electrode-electrolyte side reactions. As a feasible strategy, the engineering of electrolyte additives has been regarded as one of the effective ways to address these critical problems. In this review, we provide a comprehensive overview of recent progress in electrolyte additives for non-aqueous SIBs. We classify the additives based on their effects on specific electrode materials and discuss the functions and mechanisms of each additive category. Finally, we propose future directions for electrolyte additive research, including studies on additives for improving cell performance under extreme conditions, optimizing electrolyte additive combinations, understanding the effect of additives on cathode-anode interactions, and understanding the characteristics of electrolyte additives.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84962153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.20517/energymater.2023.27
Junli Shi, Huu‐Dat Nguyen, Zhen Chen, Rui Wang, Dominik Steinle, L. Barnsley, Jie Li, H. Frielinghaus, D. Bresser, C. Iojoiu, Elie Paillard
Herein, a single-ion polymer electrolyte is reported for high-voltage and low-temperature lithium-metal batteries that enables suppressing the growth of dendrites, even at high current densities of 2 mA cm-2. The nanostructured electrolyte was introduced into the cell by mechanically processing the polymer powder via an easily scalable process. Important for the potential application in commercial battery cells is the finding that it does not induce aluminum corrosion at high voltages and leads to low interfacial resistance with lithium metal. These beneficial characteristics, in combination with its high single-ion conductivity and its high anodic stability, allow for the stable cycling of state-of-the-art lithium-ion cathodes, such as NMC111 and NMC622, in combination with a lithium metal anode at 20 °C and even 0 °C for several hundred cycles.
本文报道了一种用于高压低温锂金属电池的单离子聚合物电解质,即使在2 mA cm-2的高电流密度下也能抑制枝晶的生长。纳米结构的电解质是通过易于扩展的工艺通过机械加工聚合物粉末引入电池的。对于商业电池的潜在应用来说,重要的是发现它在高压下不会引起铝腐蚀,并且导致与锂金属的低界面电阻。这些有益的特性,结合其高单离子电导率和高阳极稳定性,允许最先进的锂离子阴极(如NMC111和NMC622)与锂金属阳极在20°C甚至0°C下稳定循环数百次。
{"title":"Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries","authors":"Junli Shi, Huu‐Dat Nguyen, Zhen Chen, Rui Wang, Dominik Steinle, L. Barnsley, Jie Li, H. Frielinghaus, D. Bresser, C. Iojoiu, Elie Paillard","doi":"10.20517/energymater.2023.27","DOIUrl":"https://doi.org/10.20517/energymater.2023.27","url":null,"abstract":"Herein, a single-ion polymer electrolyte is reported for high-voltage and low-temperature lithium-metal batteries that enables suppressing the growth of dendrites, even at high current densities of 2 mA cm-2. The nanostructured electrolyte was introduced into the cell by mechanically processing the polymer powder via an easily scalable process. Important for the potential application in commercial battery cells is the finding that it does not induce aluminum corrosion at high voltages and leads to low interfacial resistance with lithium metal. These beneficial characteristics, in combination with its high single-ion conductivity and its high anodic stability, allow for the stable cycling of state-of-the-art lithium-ion cathodes, such as NMC111 and NMC622, in combination with a lithium metal anode at 20 °C and even 0 °C for several hundred cycles.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"59 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89754488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.20517/energymater.2023.20
Anh Le Mong, Yeonho Ahn, Rangaswamy Puttaswamy, Dukjoon Kim
High lithium (Li)-ion conductive solid electrolytes with mechanical stability are quite important in the development of long-term safe and high-performance solid-state Li-sulfur batteries (LSBs). Accordingly, we prepared a pore-filling solid electrolyte (PFSE) by introducing poly(ethylene glycol) double-grafted (poly(arylene ether sulfone) (PAES-g-2PEG), ionic liquid (IL), and ethylene carbonate (EC) into a porous polypropylene/polyethylene/polypropylene (PP/PE/PP) substrate. While the PP/PE/PP substrate provides the membrane with the mechanical strength, the PAES-g-2PEG filler provides high Li-ion conductivity due to the facile ion conduction pathway formation via percolation in the presence of IL and EC. This synergistic effect allowed the prepared PFSE membranes to exhibit both high mechanical strength of 200 MPa, thermal stability above 150 °C, and high ion conductivity of 0.604 mS cm-1 with a Li-transfer number of 0.41. Moreover, PFSE membranes also achieved a large electrochemical potential window of 4.60 V and high cyclic stability after 500 h of Li-stripping/plating. The LSB cell based on a PFSE membrane showed excellent electrochemical performance with preserving 95% of initial capacity after 200 cycles at a 0.2 C-rate.
具有机械稳定性的高锂离子导电固体电解质对于开发长期安全、高性能的固态锂硫电池至关重要。因此,我们将聚乙二醇双接枝(聚芳醚砜)(PAES-g-2PEG)、离子液体(IL)和碳酸乙烯(EC)引入多孔聚丙烯/聚乙烯/聚丙烯(PP/PE/PP)基质中,制备了多孔填充固体电解质(PFSE)。PP/PE/PP衬底为膜提供了机械强度,PAES-g-2PEG填料由于在IL和EC存在下通过渗透形成易离子传导途径而提供了高锂离子导电性。这种协同效应使得制备的PFSE膜具有200 MPa的高机械强度,150℃以上的热稳定性,以及0.604 mS cm-1的高离子电导率和0.41的锂离子转移数。此外,经过500 h的锂剥离/镀后,PFSE膜还具有4.60 V的大电化学电位窗口和较高的循环稳定性。基于PFSE膜的LSB电池表现出优异的电化学性能,在0.2 c倍率下循环200次后仍保持95%的初始容量。
{"title":"Pore filled solid electrolytes with high ionic conduction and electrochemical stability for lithium sulfur battery","authors":"Anh Le Mong, Yeonho Ahn, Rangaswamy Puttaswamy, Dukjoon Kim","doi":"10.20517/energymater.2023.20","DOIUrl":"https://doi.org/10.20517/energymater.2023.20","url":null,"abstract":"High lithium (Li)-ion conductive solid electrolytes with mechanical stability are quite important in the development of long-term safe and high-performance solid-state Li-sulfur batteries (LSBs). Accordingly, we prepared a pore-filling solid electrolyte (PFSE) by introducing poly(ethylene glycol) double-grafted (poly(arylene ether sulfone) (PAES-g-2PEG), ionic liquid (IL), and ethylene carbonate (EC) into a porous polypropylene/polyethylene/polypropylene (PP/PE/PP) substrate. While the PP/PE/PP substrate provides the membrane with the mechanical strength, the PAES-g-2PEG filler provides high Li-ion conductivity due to the facile ion conduction pathway formation via percolation in the presence of IL and EC. This synergistic effect allowed the prepared PFSE membranes to exhibit both high mechanical strength of 200 MPa, thermal stability above 150 °C, and high ion conductivity of 0.604 mS cm-1 with a Li-transfer number of 0.41. Moreover, PFSE membranes also achieved a large electrochemical potential window of 4.60 V and high cyclic stability after 500 h of Li-stripping/plating. The LSB cell based on a PFSE membrane showed excellent electrochemical performance with preserving 95% of initial capacity after 200 cycles at a 0.2 C-rate.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80981426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.62
The feasibility of the commercialization of lithium-sulfur (Li-S) batteries is troubled by sluggish redox conversion kinetics and the shuttle effect of polysulfides. Herein, a zeolitic imidazolate framework derived amorphous CoP combined with carbon nanotubes conductive network composites (aCoP@CNTs) has been synthesized as an effective dual-electrocatalyst for accelerating the redox kinetics of polysulfides to prolong the lifespan of Li-S batteries. Compared with crystalline CoP, unsaturated Co atoms of aCoP@CNTs exhibit stronger chemical adsorption capacity for polysulfides and serve as catalytic centers to accelerate the conversion from soluble polysulfides to solid-state lithium sulfide. Meanwhile, the 3D porous conductive network not only facilitates ion/electron transportation but also forms a physical barrier to limit the migration of polysulfides. Benefiting from the above preponderances, the batteries with aCoP@CNTs modified interlayer exhibited excellent cycle stability (initial discharge capacity of 1227.9 mAh g-1 at 0.2 C), rate performance (795.9 mAh g-1 at 2.5 C), long-term cycle reliability (decay rate of 0.049% per cycle at 1 C over 1000 cycles), and superior high-loading performance (high initial discharge capacity of 886 mAh g-1 and 753.6 mAh g-1 at 1 C under high S loading of 3 mg cm-2 and 4 mg cm-2).
锂硫电池商业化的可行性受到氧化还原转化动力学迟缓和多硫化物的穿梭效应的困扰。本文合成了一种由沸石基咪唑酸盐框架衍生的非晶态CoP与碳纳米管导电网络复合材料(aCoP@CNTs)作为有效的双电催化剂,用于加速多硫化物的氧化还原动力学,延长Li-S电池的寿命。与结晶CoP相比,aCoP@CNTs的不饱和Co原子对多硫化物表现出更强的化学吸附能力,并作为催化中心加速了可溶性多硫化物向固态硫化锂的转化。同时,三维多孔导电网络不仅促进了离子/电子的传输,而且形成了物理屏障,限制了多硫化物的迁移。受益于上述优势,电池与aCoP@CNTs改性层间表现出良好的循环稳定性(初始放电容量1227.9 mAh g1在0.2摄氏度),速率性能(795.9 mAh g - 1在2.5 C级),长期循环可靠性(每周期衰变率为0.049%在1 C / 1000周期),并分别优越性能(高的初始放电容量886 mAh g - 1和753.6级mAh g - 1在1 C级高的加载3毫克cm-2和4毫克cm-2)。
{"title":"Accelerating redox kinetics by ZIF-67 derived amorphous cobalt phosphide electrocatalyst for high-performance lithium-sulfur batteries","authors":"","doi":"10.20517/energymater.2022.62","DOIUrl":"https://doi.org/10.20517/energymater.2022.62","url":null,"abstract":"The feasibility of the commercialization of lithium-sulfur (Li-S) batteries is troubled by sluggish redox conversion kinetics and the shuttle effect of polysulfides. Herein, a zeolitic imidazolate framework derived amorphous CoP combined with carbon nanotubes conductive network composites (aCoP@CNTs) has been synthesized as an effective dual-electrocatalyst for accelerating the redox kinetics of polysulfides to prolong the lifespan of Li-S batteries. Compared with crystalline CoP, unsaturated Co atoms of aCoP@CNTs exhibit stronger chemical adsorption capacity for polysulfides and serve as catalytic centers to accelerate the conversion from soluble polysulfides to solid-state lithium sulfide. Meanwhile, the 3D porous conductive network not only facilitates ion/electron transportation but also forms a physical barrier to limit the migration of polysulfides. Benefiting from the above preponderances, the batteries with aCoP@CNTs modified interlayer exhibited excellent cycle stability (initial discharge capacity of 1227.9 mAh g-1 at 0.2 C), rate performance (795.9 mAh g-1 at 2.5 C), long-term cycle reliability (decay rate of 0.049% per cycle at 1 C over 1000 cycles), and superior high-loading performance (high initial discharge capacity of 886 mAh g-1 and 753.6 mAh g-1 at 1 C under high S loading of 3 mg cm-2 and 4 mg cm-2).","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79399372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2022.83
Peng Cui, Chun Sun, Wei Wei
{"title":"Polyurethane/Li10GeP2S12 composite electrolyte with high ions transfer number and ions capture for all-solid-state lithium batteries","authors":"Peng Cui, Chun Sun, Wei Wei","doi":"10.20517/energymater.2022.83","DOIUrl":"https://doi.org/10.20517/energymater.2022.83","url":null,"abstract":"","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86785453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.20517/energymater.2023.38
Zafer Acar, Phu Nguyen, Xiaoqi Cui, Kah Chun Lau
Ionic liquids (ILs) are a new group of novel solvents with great potential in design-synthesis. They are promising electrolyte candidates in energy storage applications, especially in rechargeable batteries. However, in practice, their usage remains limited due to the unfavorable high-viscosity (η) property at ambient conditions. To optimize the design synthesis of ILs, a systematic fundamental study of their structure-property relationship is deemed necessary. In this study, we employed a deep-learning (DL) model to predict the room-temperature viscosity of a wide range of ILs that consist of various cationic and anionic families. Based on this DL model, accurate prediction of IL viscosity can be realized, reaching an R2 score of 0.99 with a root mean square error of ~45 mPa·s. To further help identify low- and high-η ILs, a low/high-η binary classification model with an overall accuracy of 93% for test prediction is obtained based on the DL model. From the important structure-property relationship analysis governed by the top-rank molecular descriptors of this model, a list of very low-η ILs (i.e., η < 30 mPa·s) that could be potentially useful in battery electrolytes is identified. Based on the finding of the DL model, it suggests that in order to achieve low-η, grafting IL cations into smaller sizes (e.g., smaller head rings) and short alkyl chains and reducing ionization potentials/energies will help. Meanwhile, for the same cations, further reducing anions in sizes, chain lengths, and hydrogen bonds might be useful to further reduce the viscosity. Thus, with a fine selection and molecular grafting of anionic and cationic species in ILs, we believe fine-tuning IL viscosities can be achieved through the proper design synthesis of functional groups in ILs.
{"title":"Room temperature ionic liquids viscosity prediction from deep-learning models","authors":"Zafer Acar, Phu Nguyen, Xiaoqi Cui, Kah Chun Lau","doi":"10.20517/energymater.2023.38","DOIUrl":"https://doi.org/10.20517/energymater.2023.38","url":null,"abstract":"Ionic liquids (ILs) are a new group of novel solvents with great potential in design-synthesis. They are promising electrolyte candidates in energy storage applications, especially in rechargeable batteries. However, in practice, their usage remains limited due to the unfavorable high-viscosity (η) property at ambient conditions. To optimize the design synthesis of ILs, a systematic fundamental study of their structure-property relationship is deemed necessary. In this study, we employed a deep-learning (DL) model to predict the room-temperature viscosity of a wide range of ILs that consist of various cationic and anionic families. Based on this DL model, accurate prediction of IL viscosity can be realized, reaching an R2 score of 0.99 with a root mean square error of ~45 mPa·s. To further help identify low- and high-η ILs, a low/high-η binary classification model with an overall accuracy of 93% for test prediction is obtained based on the DL model. From the important structure-property relationship analysis governed by the top-rank molecular descriptors of this model, a list of very low-η ILs (i.e., η < 30 mPa·s) that could be potentially useful in battery electrolytes is identified. Based on the finding of the DL model, it suggests that in order to achieve low-η, grafting IL cations into smaller sizes (e.g., smaller head rings) and short alkyl chains and reducing ionization potentials/energies will help. Meanwhile, for the same cations, further reducing anions in sizes, chain lengths, and hydrogen bonds might be useful to further reduce the viscosity. Thus, with a fine selection and molecular grafting of anionic and cationic species in ILs, we believe fine-tuning IL viscosities can be achieved through the proper design synthesis of functional groups in ILs.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84691015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}