首页 > 最新文献

Surface and Interface Analysis最新文献

英文 中文
Depth profile study of LaAl1‐xCrxO3/SrTiO3 (x = 0, 0.2, 0.6, and 1) using time of flight secondary ion mass spectrometry (TOF‐SIMS) 利用飞行时间二次离子质谱 (TOF-SIMS) 对 LaAl1-xCrxO3/SrTiO3 (x = 0、0.2、0.6 和 1)进行深度剖面研究
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-07-08 DOI: 10.1002/sia.7341
Manas Kumar Dalai, Gupteswar Samal, Trupti R. Das, Pramod Kumar, Geetanjali Sehgal, Anjana Dogra
The conducting two‐dimensional electron gas (2DEG) behavior in LaAlO3 (LAO)/SrTiO3 (STO) and their associated mechanisms from various aspects have brought tremendous attention in the concerned area of research. To correlate the 2DEG behavior with their compositions, we have performed time of flight secondary ion mass spectrometry (TOF‐SIMS) depth profile analysis of thin films of Cr‐doped LAO/STO system as LaAl1‐xCrxO3 (x = 0, 0.2, 0.6 and 1) deposited over TiO2 terminated STO substrate, which includes two parent compounds LAO/STO (metallic) and LCO/STO (insulating). The uniform decrease of La and Al concentration at the interface of LAO/STO (metallic) system and in the contrary the nonuniformity of La and Cr concentration in LCO/STO (insulating) system have been highlighted. The uniform variation of ionic concentration at the interface of LAO/STO may increase the career concentrations to make the system metallic. The upward and downward diffusion at the interfaces of intermediate compositions varies differently from their parent ones due to the mixing of Al and Cr. Our results may help to understand the conducting nature of LAO/STO system for future developments and applications in such system.
LaAlO3(LAO)/SrTiO3(STO)中的导电二维电子气(2DEG)行为及其相关机制从各个方面引起了相关研究领域的极大关注。为了将 2DEG 行为与它们的组成联系起来,我们对沉积在以二氧化钛为端基的 STO(包括两种母体化合物 LAO/STO(金属)和 LCO/STO(绝缘))上的掺铬 LAO/STO 系统薄膜进行了飞行时间二次离子质谱(TOF-SIMS)深度剖面分析。LAO/STO(金属)体系界面上 La 和 Al 的浓度均匀下降,相反,LCO/STO(绝缘)体系中 La 和 Cr 的浓度则不均匀。LAO/STO 界面上离子浓度的均匀变化可能会增加职业浓度,从而使系统具有金属特性。由于铝和铬的混合,中间成分界面上的向上和向下扩散与母体不同。我们的研究结果可能有助于了解 LAO/STO 系统的导电性质,从而促进此类系统的未来开发和应用。
{"title":"Depth profile study of LaAl1‐xCrxO3/SrTiO3 (x = 0, 0.2, 0.6, and 1) using time of flight secondary ion mass spectrometry (TOF‐SIMS)","authors":"Manas Kumar Dalai, Gupteswar Samal, Trupti R. Das, Pramod Kumar, Geetanjali Sehgal, Anjana Dogra","doi":"10.1002/sia.7341","DOIUrl":"https://doi.org/10.1002/sia.7341","url":null,"abstract":"The conducting two‐dimensional electron gas (2DEG) behavior in LaAlO<jats:sub>3</jats:sub> (LAO)/SrTiO<jats:sub>3</jats:sub> (STO) and their associated mechanisms from various aspects have brought tremendous attention in the concerned area of research. To correlate the 2DEG behavior with their compositions, we have performed time of flight secondary ion mass spectrometry (TOF‐SIMS) depth profile analysis of thin films of Cr‐doped LAO/STO system as LaAl<jats:sub>1‐x</jats:sub>Cr<jats:sub>x</jats:sub>O<jats:sub>3</jats:sub> (<jats:italic>x</jats:italic> = 0, 0.2, 0.6 and 1) deposited over TiO<jats:sub>2</jats:sub> terminated STO substrate, which includes two parent compounds LAO/STO (metallic) and LCO/STO (insulating). The uniform decrease of La and Al concentration at the interface of LAO/STO (metallic) system and in the contrary the nonuniformity of La and Cr concentration in LCO/STO (insulating) system have been highlighted. The uniform variation of ionic concentration at the interface of LAO/STO may increase the career concentrations to make the system metallic. The upward and downward diffusion at the interfaces of intermediate compositions varies differently from their parent ones due to the mixing of Al and Cr. Our results may help to understand the conducting nature of LAO/STO system for future developments and applications in such system.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"135 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New challenges associated with hard X‐ray photoelectron spectroscopy (report on the 2023 ASTM E42‐ASSD AVS workshop) 与硬 X 射线光电子能谱相关的新挑战(关于 2023 年 ASTM E42-ASSD AVS 研讨会的报告)
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-06-29 DOI: 10.1002/sia.7340
Alberto Herrera‐Gomez, David J. H. Cant, Thierry Conard, Olivier Renault, Matthew R. Linford, Joshua W. Pinder, Jeff Fenton, Donald R. Baer
In contrast to traditional X‐ray photoelectron spectroscopy (XPS), hard X‐ray photoelectron spectroscopy (HAXPES) can provide information from deeper within a sample while maintaining chemical resolution. However, working with higher energy X‐rays introduces a series of new or different issues ranging from energy calibration to factors associated with quantitative analysis. As part of the efforts to identify and increase community awareness about these issues, a workshop was held to review HAXPES metrology challenges with the perspective of converting it into a quantitative technique. A summary is hereby given of this workshop, which was entitled “What New Challenges Come with the Capabilities of HAXPES?” It was held in Portland, OR, USA, on November 7, 2023, and was primarily sponsored by the ASTM E42 Committee and the Applied Surface Science Division of the American Vacuum Society. This report contains summaries of the presentations and discussions at this workshop regarding the current open problems in HAXPES metrology. There were 20 participants at the workshop.
与传统的 X 射线光电子能谱(XPS)相比,硬 X 射线光电子能谱(HAXPES)可以在保持化学分辨率的同时提供样品内部更深层的信息。然而,使用能量更高的 X 射线会带来一系列新的或不同的问题,从能量校准到定量分析的相关因素。为了查明这些问题并提高社会对这些问题的认识,举办了一次研讨会,从将 HAXPES 转化为定量技术的角度,审查 HAXPES 计量方面的挑战。该研讨会的主题是 "HAXPES 的能力带来了哪些新挑战?",特此摘要介绍。研讨会于 2023 年 11 月 7 日在美国俄勒冈州波特兰市举行,主要由 ASTM E42 委员会和美国真空学会应用表面科学部主办。本报告包含研讨会上关于 HAXPES 计量学当前未决问题的发言和讨论摘要。共有 20 人参加了此次研讨会。
{"title":"New challenges associated with hard X‐ray photoelectron spectroscopy (report on the 2023 ASTM E42‐ASSD AVS workshop)","authors":"Alberto Herrera‐Gomez, David J. H. Cant, Thierry Conard, Olivier Renault, Matthew R. Linford, Joshua W. Pinder, Jeff Fenton, Donald R. Baer","doi":"10.1002/sia.7340","DOIUrl":"https://doi.org/10.1002/sia.7340","url":null,"abstract":"In contrast to traditional X‐ray photoelectron spectroscopy (XPS), hard X‐ray photoelectron spectroscopy (HAXPES) can provide information from deeper within a sample while maintaining chemical resolution. However, working with higher energy X‐rays introduces a series of new or different issues ranging from energy calibration to factors associated with quantitative analysis. As part of the efforts to identify and increase community awareness about these issues, a workshop was held to review HAXPES metrology challenges with the perspective of converting it into a quantitative technique. A summary is hereby given of this workshop, which was entitled “What New Challenges Come with the Capabilities of HAXPES?” It was held in Portland, OR, USA, on November 7, 2023, and was primarily sponsored by the ASTM E42 Committee and the Applied Surface Science Division of the American Vacuum Society. This report contains summaries of the presentations and discussions at this workshop regarding the current open problems in HAXPES metrology. There were 20 participants at the workshop.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"75 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of CNT grafting on the mechanical properties of the UHMWPE fiber/HDPE composite CNT 接枝对超高分子量聚乙烯纤维/高密度聚乙烯复合材料机械性能的影响
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-06-22 DOI: 10.1002/sia.7339
Li Jian, Xu Gaofeng
In order to improve the mechanical properties of the ultra‐high molecular weight polyethylene (UHMWPE) fiber‐reinforced high‐density polyethylene (HDPE) composite, carbon nanotube (CNT) was grafted on the UHMWPE fiber. The UHMWPE fiber/HDPE composite was prepared by injection molding process, and the effects of CNT contents on the mechanical properties of composite materials were studied. The results show that the mass fraction of CNT will significantly affect the mechanical properties of the composite. When the CNT content is 4 wt%, the tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength of the UHMWPE fiber/treated CNT/HDPE composite increased compared to the UHMWPE fiber/CNT/HDPE composite and UHMWPE fiber/HDPE composite. When the CNT content is 4 wt%, the above‐mentioned performance is the best. Pull‐out and fracture, bridging effect, and crack deflection effect are the main mechanisms of CNTs in UHMWPE fiber/HDPE composites. This study provides new insights into the interface design of UHMWPE fiber/HDPE composites and paves the way for their further development.
为了改善超高分子量聚乙烯(UHMWPE)纤维增强高密度聚乙烯(HDPE)复合材料的力学性能,在超高分子量聚乙烯纤维上接枝了碳纳米管(CNT)。通过注塑工艺制备了超高分子量聚乙烯纤维/高密度聚乙烯复合材料,并研究了碳纳米管含量对复合材料力学性能的影响。结果表明,CNT 的质量分数会显著影响复合材料的力学性能。当 CNT 含量为 4 wt% 时,与 UHMWPE 纤维/CNT/HDPE 复合材料和 UHMWPE 纤维/HDPE 复合材料相比,UHMWPE 纤维/处理过的 CNT/HDPE 复合材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和冲击强度都有所提高。当 CNT 含量为 4 wt% 时,上述性能最佳。超高分子量聚乙烯纤维/高密度聚乙烯复合材料中 CNT 的主要作用机理是拉拔断裂、架桥效应和裂纹挠曲效应。本研究为超高分子量聚乙烯纤维/高密度聚乙烯复合材料的界面设计提供了新的见解,为其进一步发展铺平了道路。
{"title":"The effect of CNT grafting on the mechanical properties of the UHMWPE fiber/HDPE composite","authors":"Li Jian, Xu Gaofeng","doi":"10.1002/sia.7339","DOIUrl":"https://doi.org/10.1002/sia.7339","url":null,"abstract":"In order to improve the mechanical properties of the ultra‐high molecular weight polyethylene (UHMWPE) fiber‐reinforced high‐density polyethylene (HDPE) composite, carbon nanotube (CNT) was grafted on the UHMWPE fiber. The UHMWPE fiber/HDPE composite was prepared by injection molding process, and the effects of CNT contents on the mechanical properties of composite materials were studied. The results show that the mass fraction of CNT will significantly affect the mechanical properties of the composite. When the CNT content is 4 wt%, the tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength of the UHMWPE fiber/treated CNT/HDPE composite increased compared to the UHMWPE fiber/CNT/HDPE composite and UHMWPE fiber/HDPE composite. When the CNT content is 4 wt%, the above‐mentioned performance is the best. Pull‐out and fracture, bridging effect, and crack deflection effect are the main mechanisms of CNTs in UHMWPE fiber/HDPE composites. This study provides new insights into the interface design of UHMWPE fiber/HDPE composites and paves the way for their further development.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"68 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface science insight note: Imaging X‐ray photoelectron spectroscopy 表面科学启示录:成像 X 射线光电子能谱学
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-29 DOI: 10.1002/sia.7337
Vincent Fernandez, Neal Fairley, David Morgan, Pascal Bargiela, Jonas Baltrusaitis
Quantification of X‐ray photoelectron spectroscopy (XPS) data is often limited by the heterogeneous nature of the material surface. However, it is often the case that heterogeneous material contains areas within the analyzed area that are effectively homogeneous. In this Insight note, concepts, and methods used to analyze both XPS data are presented to extract both spatial and spectral information from heterogeneous surfaces. These concepts and methods are applied to a specific material surface that contains three chemical compounds separated spatially. The analysis entails converting XPS image data to spectral data and is designed to highlight the potential of XPS imaging in revealing compositional information correlation with spatial information. Properties of algorithms used to evaluate XPS images and spectra are described to outline their application to image data. A case study of an imaging XPS data set is presented that demonstrates how poor signal‐to‐noise images, where the signal is recorded for 4 s per image, are still open to analysis yielding useful information. Ultimately, the methods presented here will aid in interpreting complex XPS data obtained from spatially complex materials often obtained during extensive cycling, such as conventional or electrocatalysts.
X 射线光电子能谱 (XPS) 数据的定量通常受到材料表面异质性质的限制。然而,通常情况下,异质材料在分析区域内包含的区域实际上是均质的。本 Insight 说明介绍了用于分析 XPS 数据的概念和方法,以便从异质表面提取空间和光谱信息。这些概念和方法适用于包含三种空间上分离的化合物的特定材料表面。分析需要将 XPS 图像数据转换为光谱数据,旨在突出 XPS 成像在揭示成分信息与空间信息相关性方面的潜力。描述了用于评估 XPS 图像和光谱的算法特性,以概述其在图像数据中的应用。还介绍了一个 XPS 成像数据集案例研究,该案例展示了信噪比较差的图像(每幅图像记录 4 秒钟的信号)是如何通过分析获得有用信息的。最终,本文介绍的方法将有助于解释从空间复杂材料(如传统材料或电催化剂)中获得的复杂 XPS 数据。
{"title":"Surface science insight note: Imaging X‐ray photoelectron spectroscopy","authors":"Vincent Fernandez, Neal Fairley, David Morgan, Pascal Bargiela, Jonas Baltrusaitis","doi":"10.1002/sia.7337","DOIUrl":"https://doi.org/10.1002/sia.7337","url":null,"abstract":"Quantification of X‐ray photoelectron spectroscopy (XPS) data is often limited by the heterogeneous nature of the material surface. However, it is often the case that heterogeneous material contains areas within the analyzed area that are effectively homogeneous. In this <jats:italic>Insight</jats:italic> note, concepts, and methods used to analyze both XPS data are presented to extract both spatial and spectral information from heterogeneous surfaces. These concepts and methods are applied to a specific material surface that contains three chemical compounds separated spatially. The analysis entails converting XPS image data to spectral data and is designed to highlight the potential of XPS imaging in revealing compositional information correlation with spatial information. Properties of algorithms used to evaluate XPS images and spectra are described to outline their application to image data. A case study of an imaging XPS data set is presented that demonstrates how poor signal‐to‐noise images, where the signal is recorded for 4 s per image, are still open to analysis yielding useful information. Ultimately, the methods presented here will aid in interpreting complex XPS data obtained from spatially complex materials often obtained during extensive cycling, such as conventional or electrocatalysts.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"43 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying quantum effects of fine scaling on the buckling behavior of CNTs under torsional loading using the density functional theory and molecular mechanics approach 利用密度泛函理论和分子力学方法研究细微缩放对扭转载荷下 CNT 弯曲行为的量子效应
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-29 DOI: 10.1002/sia.7336
Mahdi Mirnezhad, Reza Ansari, Seyed Reza Falahatgar, Peyman Aghdasi
In this study, we introduce a comprehensive investigation into the buckling behavior of carbon nanotubes (CNTs) using a combined approach of quantum mechanics and molecular mechanics methods. A novel aspect of our research lies in the exploration of the quantum effects of fine scaling on the buckling behavior of finite‐length nanotubes across various dimensions and chiralities. Specifically, we analyze the critical buckling strain variations in CNTs with distinct lengths, diameters, and chiralities, revealing pronounced differences influenced by atomic arrangement and the type of structure used in nanotube construction. Our findings elucidate that at smaller dimensions, nanotubes exhibit a higher critical buckling strain than other chiralities, while zigzag atomic arrangements demonstrate greater resistance to torsional loading at larger diameters. Additionally, we compare the buckling behavior of nanotubes obtained by wrapping armchair and zigzag nanosheets, highlighting differential resistance trends. This research not only underscores the critical role of quantum effects in determining nanotube buckling but also provides valuable insights into the nuanced influences of atomic arrangement and nanosheet type on the mechanical properties of CNTs. Thus, our work contributes a novel perspective to the field, bridging the gap between quantum mechanics and the mechanical behavior of nanostructures, which has significant implications for the design and application of nanoscale materials
在本研究中,我们采用量子力学和分子力学相结合的方法,对碳纳米管(CNTs)的屈曲行为进行了全面研究。我们研究的一个新颖之处在于探索精细缩放对不同尺寸和手性的有限长度纳米管屈曲行为的量子效应。具体来说,我们分析了具有不同长度、直径和手性的 CNT 的临界屈曲应变变化,揭示了受原子排列和纳米管结构类型影响的明显差异。我们的研究结果表明,在较小的尺寸上,纳米管比其他手性表现出更高的临界屈曲应变,而在较大的直径上,人字形原子排列表现出更强的抗扭转负载能力。此外,我们还比较了通过包裹 "臂形 "和 "人字形 "纳米片获得的纳米管的屈曲行为,突出显示了不同的阻力趋势。这项研究不仅强调了量子效应在决定纳米管屈曲中的关键作用,还为原子排列和纳米片类型对 CNT 机械性能的细微影响提供了宝贵的见解。因此,我们的工作为该领域提供了一个新的视角,弥合了量子力学与纳米结构力学行为之间的鸿沟,对纳米级材料的设计和应用具有重要意义。
{"title":"Studying quantum effects of fine scaling on the buckling behavior of CNTs under torsional loading using the density functional theory and molecular mechanics approach","authors":"Mahdi Mirnezhad, Reza Ansari, Seyed Reza Falahatgar, Peyman Aghdasi","doi":"10.1002/sia.7336","DOIUrl":"https://doi.org/10.1002/sia.7336","url":null,"abstract":"In this study, we introduce a comprehensive investigation into the buckling behavior of carbon nanotubes (CNTs) using a combined approach of quantum mechanics and molecular mechanics methods. A novel aspect of our research lies in the exploration of the quantum effects of fine scaling on the buckling behavior of finite‐length nanotubes across various dimensions and chiralities. Specifically, we analyze the critical buckling strain variations in CNTs with distinct lengths, diameters, and chiralities, revealing pronounced differences influenced by atomic arrangement and the type of structure used in nanotube construction. Our findings elucidate that at smaller dimensions, nanotubes exhibit a higher critical buckling strain than other chiralities, while zigzag atomic arrangements demonstrate greater resistance to torsional loading at larger diameters. Additionally, we compare the buckling behavior of nanotubes obtained by wrapping armchair and zigzag nanosheets, highlighting differential resistance trends. This research not only underscores the critical role of quantum effects in determining nanotube buckling but also provides valuable insights into the nuanced influences of atomic arrangement and nanosheet type on the mechanical properties of CNTs. Thus, our work contributes a novel perspective to the field, bridging the gap between quantum mechanics and the mechanical behavior of nanostructures, which has significant implications for the design and application of nanoscale materials","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"41 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Humic acid as eco‐friendly corrosion inhibitor for EH40 ship plate steel 腐植酸作为 EH40 船板钢的环保型缓蚀剂
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-25 DOI: 10.1002/sia.7335
Sizhu Wang, Zhipeng Liang, Yiyong Wang, Hui Jin, Shengli Li, Rui Guan
In this study, a new type of green corrosion inhibitor, namely, sodium humate (SH), was extracted from humus soil, which is a natural humus plant, by dissolution‐neutralization, and then used for corrosion inhibition of low carbon steel in seawater. The corrosion inhibition performance of SH on low carbon steel EH40 in seawater was tested by weight loss method and electrochemical technology. The surface and corrosion products of low carbon steel were observed and analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), contact angle and X‐ray photoelectron spectroscopy (XPS). The results show that SH is a mixed corrosion inhibitor, and the optimum concentration is 2 g L−1. At this concentration, the inhibition rate can reach 93.6%. It mainly affects the semi‐reaction of cathodic corrosion. By forming a corrosion protection layer with uniform adsorption on the surface of EH40 steel, EH40 steel becomes more resistant to seawater corrosion.
本研究采用溶解-中和的方法,从天然腐殖质植物--腐殖土中提取了一种新型绿色缓蚀剂--腐殖酸钠(SH),并将其用于海水中低碳钢的缓蚀。采用失重法和电化学技术测试了 SH 对海水中低碳钢 EH40 的缓蚀性能。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、接触角和 X 射线光电子能谱(XPS)对低碳钢的表面和腐蚀产物进行了观察和分析。结果表明,SH 是一种混合缓蚀剂,最佳浓度为 2 g L-1。在此浓度下,抑制率可达 93.6%。它主要影响阴极腐蚀的半反应。通过在 EH40 钢表面形成均匀吸附的腐蚀保护层,提高了 EH40 钢的耐海水腐蚀能力。
{"title":"Humic acid as eco‐friendly corrosion inhibitor for EH40 ship plate steel","authors":"Sizhu Wang, Zhipeng Liang, Yiyong Wang, Hui Jin, Shengli Li, Rui Guan","doi":"10.1002/sia.7335","DOIUrl":"https://doi.org/10.1002/sia.7335","url":null,"abstract":"In this study, a new type of green corrosion inhibitor, namely, sodium humate (SH), was extracted from humus soil, which is a natural humus plant, by dissolution‐neutralization, and then used for corrosion inhibition of low carbon steel in seawater. The corrosion inhibition performance of SH on low carbon steel EH40 in seawater was tested by weight loss method and electrochemical technology. The surface and corrosion products of low carbon steel were observed and analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), contact angle and X‐ray photoelectron spectroscopy (XPS). The results show that SH is a mixed corrosion inhibitor, and the optimum concentration is 2 g L<jats:sup>−1</jats:sup>. At this concentration, the inhibition rate can reach 93.6%. It mainly affects the semi‐reaction of cathodic corrosion. By forming a corrosion protection layer with uniform adsorption on the surface of EH40 steel, EH40 steel becomes more resistant to seawater corrosion.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"160 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative modeling of monolayer puckered arsenene: Bridging quantum mechanics and finite element analysis 单层皱褶砷烯的创新建模:量子力学与有限元分析的桥梁
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-09 DOI: 10.1002/sia.7319
Peyman Aghdasi, Shayesteh Yousefi, Reza Ansari
Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.
本研究提出了一种结合有限元建模和密度泛函理论计算的新型混合方法,用于研究单层皱褶砷烯的力学性能。本研究中的多尺度分析利用有限元分析作为一种独特的方法,通过克服密度泛函理论和分子动力学在表示复杂情况时所面临的限制,补充了密度泛函理论和分子动力学的纳米尺度能力。此外,有限元分析还能提高大型结构的计算效率,使其适用于原子模拟可能不切实际的系统。这种混合方法通过协同整合两种计算技术的优势,为准确预测弹性模量和屈曲力等关键属性提供了独特的框架。除了证明我们的方法在准确捕捉材料行为方面的有效性外,我们的研究结果还揭示了纳米级力学的基本方面,对纳米技术、材料科学和结构工程中的各种应用具有重要意义。通过深入了解二维材料的力学响应,我们的研究有助于推动纳米材料工程领域的发展,并为设计具有定制力学性能的创新纳米结构提供信息。
{"title":"Innovative modeling of monolayer puckered arsenene: Bridging quantum mechanics and finite element analysis","authors":"Peyman Aghdasi, Shayesteh Yousefi, Reza Ansari","doi":"10.1002/sia.7319","DOIUrl":"https://doi.org/10.1002/sia.7319","url":null,"abstract":"Current study presents a novel hybrid approach combining finite element modeling and density functional theory calculations to investigate the mechanical properties of monolayer puckered arsenene. The multiscale analysis in this study leverages finite element analysis as a distinctive approach, complementing the nano‐scale capabilities of density functional theory and molecular dynamics by overcoming limitations faced by these two methods in representing complex scenarios. Furthermore, finite element analysis demonstrates computational efficiency for larger structures, making it suitable for systems where atomistic simulations may be impractical. This hybrid methodology offers a unique framework for accurately predicting key properties, including elastic modulus and buckling force, by synergistically integrating the strengths of both computational techniques. In addition to demonstrating the effectiveness of our approach in accurately capturing material behavior, our findings shed light on fundamental aspects of nanoscale mechanics, with implications for various applications in nanotechnology, materials science, and structural engineering. By providing a deeper understanding of the mechanical response of 2D materials, our research contributes to advancing the field of nanoscale materials engineering and informs the design of innovative nanostructures with tailored mechanical properties.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"81 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements and challenges of HAXPES for materials sciences and technologies HAXPES 在材料科学与技术领域的进展与挑战
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-08 DOI: 10.1002/sia.7318
Lars P. H. Jeurgens, Claudia Cancellieri, Andreas Borgschulte, John F. Watts
{"title":"Advancements and challenges of HAXPES for materials sciences and technologies","authors":"Lars P. H. Jeurgens, Claudia Cancellieri, Andreas Borgschulte, John F. Watts","doi":"10.1002/sia.7318","DOIUrl":"https://doi.org/10.1002/sia.7318","url":null,"abstract":"","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"2016 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective flotation separation of gypsum and quartz using dodecyl amine hydrochloride as collector: Mechanism and application 使用十二烷基胺盐酸盐作为捕收剂对石膏和石英进行选择性浮选分离:机理与应用
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-07 DOI: 10.1002/sia.7320
Mengyao Qi, Weijun Peng, Wei Wang, Yijun Cao, Guixia Fan, Yukun Huang
The selective flotation separation of gypsum and quartz in phosphogypsum (PG) is an urgent problem that is very important for the high‐value utilization of PG. In the work, dodecyl amine hydrochloride (DH) was introduced as a collector for the selective flotation separation of gypsum and quartz. The flotation property and selective mechanism of DH on the surface of gypsum and quartz were researched by single mineral flotation experiments, Fourier transform attenuated total reflection infrared spectroscopy analyzer, zeta potential analyzer, X‐ray photoelectron spectrum, molecular dynamic (MD) simulation, etc. Additionally, H+ was introduced into the mineral‐water system simulated by MD to take into account the effect of acidic conditions on the adsorption of DH. The pre‐adsorption of H+ on the quartz surface under strongly acidic conditions hindered the electrostatic force adsorption of DH on the quartz surface. Furthermore, DH was adopted as a collector in the direct flotation recovery of gypsum from PG, and the gypsum concentrates with productivity of 69.85%, CaSO4·2H2O content of 96.33%, and whiteness of 55.00% were obtained. The SiO2 content in the gypsum concentrate decreased from 9.08% to 0.616%. It suggested that DH could serve as a promising collector in the selective separation of gypsum and quartz in PG via flotation.
磷石膏(PG)中石膏和石英的选择性浮选分离是一个亟待解决的问题,对于磷石膏的高值化利用非常重要。该研究引入十二烷基胺盐酸盐(DH)作为捕收剂,用于石膏和石英的选择性浮选分离。通过单矿物浮选实验、傅立叶变换衰减全反射红外光谱分析仪、ZETA电位分析仪、X射线光电子能谱、分子动力学(MD)模拟等手段研究了DH在石膏和石英表面的浮选特性和选择性机理。此外,为了考虑酸性条件对 DH 吸附的影响,还在 MD 模拟的矿物-水系统中引入了 H+。在强酸性条件下,H+在石英表面的预吸附阻碍了 DH 在石英表面的静电力吸附。此外,采用 DH 作为捕收剂从 PG 中直接浮选回收石膏,获得了生产率为 69.85%、CaSO4-2H2O 含量为 96.33%、白度为 55.00%的石膏浓缩物。石膏浓缩物中的 SiO2 含量从 9.08% 降至 0.616%。这表明,在通过浮选选择性分离 PG 中的石膏和石英时,DH 可以作为一种很有前途的捕收剂。
{"title":"Selective flotation separation of gypsum and quartz using dodecyl amine hydrochloride as collector: Mechanism and application","authors":"Mengyao Qi, Weijun Peng, Wei Wang, Yijun Cao, Guixia Fan, Yukun Huang","doi":"10.1002/sia.7320","DOIUrl":"https://doi.org/10.1002/sia.7320","url":null,"abstract":"The selective flotation separation of gypsum and quartz in phosphogypsum (PG) is an urgent problem that is very important for the high‐value utilization of PG. In the work, dodecyl amine hydrochloride (DH) was introduced as a collector for the selective flotation separation of gypsum and quartz. The flotation property and selective mechanism of DH on the surface of gypsum and quartz were researched by single mineral flotation experiments, Fourier transform attenuated total reflection infrared spectroscopy analyzer, zeta potential analyzer, X‐ray photoelectron spectrum, molecular dynamic (MD) simulation, etc. Additionally, H<jats:sup>+</jats:sup> was introduced into the mineral‐water system simulated by MD to take into account the effect of acidic conditions on the adsorption of DH. The pre‐adsorption of H<jats:sup>+</jats:sup> on the quartz surface under strongly acidic conditions hindered the electrostatic force adsorption of DH on the quartz surface. Furthermore, DH was adopted as a collector in the direct flotation recovery of gypsum from PG, and the gypsum concentrates with productivity of 69.85%, CaSO<jats:sub>4</jats:sub>·2H<jats:sub>2</jats:sub>O content of 96.33%, and whiteness of 55.00% were obtained. The SiO<jats:sub>2</jats:sub> content in the gypsum concentrate decreased from 9.08% to 0.616%. It suggested that DH could serve as a promising collector in the selective separation of gypsum and quartz in PG via flotation.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface plasmon resonance‐based fiber optic sensor utilizing tin oxide and zinc sulfide: An experimental analysis 利用氧化锡和硫化锌的基于表面等离子体共振的光纤传感器:实验分析
IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2024-05-02 DOI: 10.1002/sia.7317
Vicky Kapoor, Navneet K. Sharma
Surface plasmon resonance‐based fiber optic sensors with Ag‐SnO2 and Ag‐ZnS bi‐layers are proposed experimentally and compared in detail in terms of sensitivity. Effect of SnO2 and ZnS layer thicknesses on the sensitivity is examined. Largest sensitivities are achieved by sensors with 40 nm Ag‐10 nm SnO2 layers and 40 nm Ag‐10 nm ZnS layers. Sensor with 40 nm Ag‐10 nm SnO2 layers is found to demonstrate better sensitivity than that with 40 nm Ag‐10 nm ZnS layers.
通过实验提出了具有 Ag-SnO2 和 Ag-ZnS 双层的基于表面等离子体共振的光纤传感器,并对其灵敏度进行了详细比较。研究了二氧化锡和锌锡层厚度对灵敏度的影响。具有 40 nm Ag-10 nm SnO2 层和 40 nm Ag-10 nm ZnS 层的传感器灵敏度最高。与具有 40 nm Ag-10 nm ZnS 层的传感器相比,具有 40 nm Ag-10 nm SnO2 层的传感器具有更好的灵敏度。
{"title":"Surface plasmon resonance‐based fiber optic sensor utilizing tin oxide and zinc sulfide: An experimental analysis","authors":"Vicky Kapoor, Navneet K. Sharma","doi":"10.1002/sia.7317","DOIUrl":"https://doi.org/10.1002/sia.7317","url":null,"abstract":"Surface plasmon resonance‐based fiber optic sensors with Ag‐SnO<jats:sub>2</jats:sub> and Ag‐ZnS bi‐layers are proposed experimentally and compared in detail in terms of sensitivity. Effect of SnO<jats:sub>2</jats:sub> and ZnS layer thicknesses on the sensitivity is examined. Largest sensitivities are achieved by sensors with 40 nm Ag‐10 nm SnO<jats:sub>2</jats:sub> layers and 40 nm Ag‐10 nm ZnS layers. Sensor with 40 nm Ag‐10 nm SnO<jats:sub>2</jats:sub> layers is found to demonstrate better sensitivity than that with 40 nm Ag‐10 nm ZnS layers.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"87 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface and Interface Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1