Pub Date : 2024-08-23DOI: 10.1016/j.synthmet.2024.117726
A.S. Al-Janabi, M. Hussin, Y.Z.N. Htwe, W. Yasmin
This study focuses on the rheological and tribological effects of the addition of graphene (GR) and functionalised multi-wall carbon nanotubes (FMWCNTs) as mono and hybrid nanoparticles in a polyester lubricant. We conduct a rheological study of viscosity in the range 30–100°C, following the ASTM D2270 standard. We also carry out a tribological study based on a four-ball test following the ASTM D4172 and ASTM D2783 standards for both wear and extreme pressure sample analysis. These studies reveal that FMWCNT has a higher degree of shear-thinning flow behaviour compared to GR nanolubricant samples. Samples with a higher GR ratio with added CTAB surfactant gave higher compared to samples with a lower GR ratio. The CTAB surfactant is found to enhance the dispersion and stability of the hybrid nanolubricant, and the hybrid nanoparticle system helps in preserving the complexity of the system, even at higher temperatures. The tribological findings show that the samples with GR tend to have a reduced coefficient of friction (COF) and increased wear scar diameter (WSD), while the samples with FMWCNTs tend to have increased COF and reduced WSD. This is due to the presence of the GR ball, which consists of nanoplatelets that have a spherical form and function as a nano ball bearing. This study explores the properties of a unique hybrid material that has promise as a lubricant additive to reduce friction and wear.
本研究的重点是在聚酯润滑剂中添加石墨烯 (GR) 和功能化多壁碳纳米管 (FMWCNT) 作为单纳米颗粒和混合纳米颗粒对流变学和摩擦学的影响。我们按照 ASTM D2270 标准对 30-100°C 范围内的粘度进行了流变学研究。我们还按照 ASTM D4172 和 ASTM D2783 标准对磨损和极压样品分析进行了基于四球测试的摩擦学研究。这些研究表明,与 GR 纳米润滑剂样品相比,FMWCNT 具有更高的剪切稀化流动特性。与 GR 比率较低的样品相比,添加了 CTAB 表面活性剂的 GR 比率较高的样品具有更高的流动性。研究发现,CTAB 表面活性剂提高了混合纳米润滑剂的分散性和稳定性,即使在较高温度下,混合纳米粒子系统也有助于保持系统的复杂性。摩擦学研究结果表明,含有 GR 的样品往往摩擦系数(COF)降低,磨损痕直径(WSD)增大,而含有 FMWCNTs 的样品往往摩擦系数(COF)增大,磨损痕直径(WSD)减小。这是由于 GR 球的存在,它由纳米颗粒组成,具有球形形状,可作为纳米球轴承使用。本研究探讨了一种独特混合材料的特性,这种材料有望用作润滑油添加剂,以减少摩擦和磨损。
{"title":"Experimental investigation on the tribological and rheological properties of graphene and FMWCNT based nanolubricants with CTAB surfactants","authors":"A.S. Al-Janabi, M. Hussin, Y.Z.N. Htwe, W. Yasmin","doi":"10.1016/j.synthmet.2024.117726","DOIUrl":"10.1016/j.synthmet.2024.117726","url":null,"abstract":"<div><p>This study focuses on the rheological and tribological effects of the addition of graphene (GR) and functionalised multi-wall carbon nanotubes (FMWCNTs) as mono and hybrid nanoparticles in a polyester lubricant. We conduct a rheological study of viscosity in the range 30–100°C, following the ASTM D2270 standard. We also carry out a tribological study based on a four-ball test following the ASTM D4172 and ASTM D2783 standards for both wear and extreme pressure sample analysis. These studies reveal that FMWCNT has a higher degree of shear-thinning flow behaviour compared to GR nanolubricant samples. Samples with a higher GR ratio with added CTAB surfactant gave higher compared to samples with a lower GR ratio. The CTAB surfactant is found to enhance the dispersion and stability of the hybrid nanolubricant, and the hybrid nanoparticle system helps in preserving the complexity of the system, even at higher temperatures. The tribological findings show that the samples with GR tend to have a reduced coefficient of friction (COF) and increased wear scar diameter (WSD), while the samples with FMWCNTs tend to have increased COF and reduced WSD. This is due to the presence of the GR ball, which consists of nanoplatelets that have a spherical form and function as a nano ball bearing. This study explores the properties of a unique hybrid material that has promise as a lubricant additive to reduce friction and wear.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117726"},"PeriodicalIF":4.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.synthmet.2024.117729
Tahereh Mohammadi , Mir Ghasem Hosseini , Karim Asadpour-Zeynali , Mir Reza Majidi
The Ni-Co nanoparticles with various Ni/Co ratios are immobilized on a Ni foam (NF) template, coated with reduced graphene oxides (rGO), and used as a novel noble-metal-free anode electrocatalyst for enhanced performance direct borohydride fuel cells. The electrochemical active surface area (EASA) of Ni50Co50 /rGO/NF (1515 cm2) catalyst is 45.5 times larger than NF (33.3 cm2). A comprehensive study of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) by Pt/C (0.5 mg cm−2) as a cathode and Ni50-Co50/rGO/NF as an anode is accomplished, so an open-circuit potential (OCP) of 1.90 V and the maximum power density of 309 mW cm−2 is obtained at 60 ◦C. These results show that electrocatalyst Ni50Co50/rGO/NF is a suitable candidate for use as an electrocatalyst in DBHPFC due to its low cost, ease of synthesis, excellent structural stability, and high catalytic performance.
{"title":"High-performance direct borohydride-hydrogen peroxide fuel cell using Ni foam-supported Ni-Co nanoparticles as a noble-metal free anode electrocatalyst","authors":"Tahereh Mohammadi , Mir Ghasem Hosseini , Karim Asadpour-Zeynali , Mir Reza Majidi","doi":"10.1016/j.synthmet.2024.117729","DOIUrl":"10.1016/j.synthmet.2024.117729","url":null,"abstract":"<div><p>The Ni-Co nanoparticles with various Ni/Co ratios are immobilized on a Ni foam (NF) template, coated with reduced graphene oxides (rGO), and used as a novel noble-metal-free anode electrocatalyst for enhanced performance direct borohydride fuel cells. The electrochemical active surface area (EASA) of Ni<sub>50</sub>Co<sub>50</sub> /rGO/NF (1515 cm<sup>2</sup>) catalyst is 45.5 times larger than NF (33.3 cm<sup>2</sup>). A comprehensive study of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) by Pt/C (0.5 mg cm<sup>−2</sup>) as a cathode and Ni<sub>50</sub>-Co<sub>50</sub>/rGO/NF as an anode is accomplished, so an open-circuit potential (OCP) of 1.90 V and the maximum power density of 309 mW cm<sup>−2</sup> is obtained at 60 <sup>◦</sup>C. These results show that electrocatalyst Ni<sub>50</sub>Co<sub>50</sub>/rGO/NF is a suitable candidate for use as an electrocatalyst in DBHPFC due to its low cost, ease of synthesis, excellent structural stability, and high catalytic performance.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117729"},"PeriodicalIF":4.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.synthmet.2024.117718
Abear Abdullah El-Gamal , Rania Mounir , Eman M. Gaber , M.M. El Zayat
The effect of graphite nanoflakes (GNFs)/modified barium titanate (MBT) hybrid fillers on the mechanical, electrical, and thermal properties of ethylene-propylene-diene monomer (EPDM) was extensively investigated in the current study. Moreover, the effect of gamma irradiation on the different properties of the prepared nanocomposites was investigated. To accomplish this goal, EPDM/MBT composites with various GNFs contents (0, 2, 4, 6, and 8 phr) were fabricated using a conventional roll mill. Graphite was expanded by heating and subsequently modified using tween 80 surfactant, resulting in the formation of GNFs. The presence of various functional groups on the surface of the modified BaTiO3 particles was verified by Fourier transform infrared spectroscopy (FTIR). The scanning electron microscopy (SEM) analysis revealed a uniform dispersion of GNFs in EPDM/MBT composites, with a concentration up to 6 phr. The study revealed that the mechanical properties of the nanocomposites were reinforced by the inclusion of GNFs up to 6 phr. The irradiated EPDM/MBT/6 phr GNFs nanocomposite exhibited the maximum elastic modulus value of 4.8 MPa, which was approximately 32 % higher than that of the corresponding unirradiated nanocomposite. The thermal conductivity of the irradiated EPDM/MBT/8 phr GNFs nanocomposite increased from 0.213 W/m.K to 0.260 W/m.K (22 %), while the dielectric constant increased from 4.475 to 5.551 (24 % increase) at 103 Hz as compared to the pure EPDM/MBT composite. The enhanced electric and thermal performance of GNFs can be attributed to the mobility of their π-electrons.
{"title":"Impact of graphite nanoflakes and gamma radiation on the mechanical, electrical, and thermal properties of EPDM/modified BaTiO3 composites","authors":"Abear Abdullah El-Gamal , Rania Mounir , Eman M. Gaber , M.M. El Zayat","doi":"10.1016/j.synthmet.2024.117718","DOIUrl":"10.1016/j.synthmet.2024.117718","url":null,"abstract":"<div><p>The effect of graphite nanoflakes (GNFs)/modified barium titanate (MBT) hybrid fillers on the mechanical, electrical, and thermal properties of ethylene-propylene-diene monomer (EPDM) was extensively investigated in the current study. Moreover, the effect of gamma irradiation on the different properties of the prepared nanocomposites was investigated. To accomplish this goal, EPDM/MBT composites with various GNFs contents (0, 2, 4, 6, and 8 phr) were fabricated using a conventional roll mill. Graphite was expanded by heating and subsequently modified using tween 80 surfactant, resulting in the formation of GNFs. The presence of various functional groups on the surface of the modified BaTiO<sub>3</sub> particles was verified by Fourier transform infrared spectroscopy (FTIR). The scanning electron microscopy (SEM) analysis revealed a uniform dispersion of GNFs in EPDM/MBT composites, with a concentration up to 6 phr. The study revealed that the mechanical properties of the nanocomposites were reinforced by the inclusion of GNFs up to 6 phr. The irradiated EPDM/MBT/6 phr GNFs nanocomposite exhibited the maximum elastic modulus value of 4.8 MPa, which was approximately 32 % higher than that of the corresponding unirradiated nanocomposite. The thermal conductivity of the irradiated EPDM/MBT/8 phr GNFs nanocomposite increased from 0.213 W/m.K to 0.260 W/m.K (22 %), while the dielectric constant increased from 4.475 to 5.551 (24 % increase) at 10<sup>3</sup> Hz as compared to the pure EPDM/MBT composite. The enhanced electric and thermal performance of GNFs can be attributed to the mobility of their π-electrons.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117718"},"PeriodicalIF":4.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.synthmet.2024.117727
Haoyu Zheng, Yangxuan Liu, Hengyi Ma, Yani Wang, Kai Xu
Doping of 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene(Spiro-OMeTAD), which is the most common used hole transport material in perovskite solar cells, is widely studied. Especially, bis(trifluoromethane)sulfonamide (Li-TFSI) combined with 4-tert-butylpyridine (TBP) is the most studied dopant to improve the conductivity of Spiro-OMeTAD, with conductivity around 6×10−8 S/cm. In this study, we employed a new oxidizing agent NO2 to dop the Spiro-OMeTAD simply by vapor exposure, showing efficient doping with conductivity up to 2.53×10−3 S/cm and excellent film quality. The doping mechanism was further analyzed by ultraviolet-visible-near infrared spectroscopy (UV-Vis-NIR), electron paramagnetic resonance spectroscopy (EPR), Fourier infrared absorption spectroscopy (TFIR), and X-ray photoelectron spectroscopy. Our findings highlight the potential of molecular doping with NO2 to significantly improve the conductivity of Spiro-OMeTAD, providing a deep understanding of the doping effects on Spiro-OMeTAD.
{"title":"Efficient doping of Spiro-OMeTAD by NO2","authors":"Haoyu Zheng, Yangxuan Liu, Hengyi Ma, Yani Wang, Kai Xu","doi":"10.1016/j.synthmet.2024.117727","DOIUrl":"10.1016/j.synthmet.2024.117727","url":null,"abstract":"<div><p>Doping of 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene(Spiro-OMeTAD), which is the most common used hole transport material in perovskite solar cells, is widely studied. Especially, bis(trifluoromethane)sulfonamide (Li-TFSI) combined with 4-tert-butylpyridine (TBP) is the most studied dopant to improve the conductivity of Spiro-OMeTAD, with conductivity around 6×10<sup>−8</sup> S/cm. In this study, we employed a new oxidizing agent NO<sub>2</sub> to dop the Spiro-OMeTAD simply by vapor exposure, showing efficient doping with conductivity up to 2.53×10<sup>−3</sup> S/cm and excellent film quality. The doping mechanism was further analyzed by ultraviolet-visible-near infrared spectroscopy (UV-Vis-NIR), electron paramagnetic resonance spectroscopy (EPR), Fourier infrared absorption spectroscopy (TFIR), and X-ray photoelectron spectroscopy. Our findings highlight the potential of molecular doping with NO<sub>2</sub> to significantly improve the conductivity of Spiro-OMeTAD, providing a deep understanding of the doping effects on Spiro-OMeTAD.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117727"},"PeriodicalIF":4.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.synthmet.2024.117728
Beatriz Cotting Rossignatti , Marcelo Mulato , Hugo José Nogueira Pedroza Dias Mello
The continuous search for novel materials to meet the requirements of modern technological applications has led to the widespread use of polyaniline (PANI) composites for sensing purposes. Although research has been carried out on both chemical sensors using PANI/polymer composites and chemical sensors with impedimetric/capacitive transduction using PANI composites, there is still a gap in the use of PANI/polymer composites in impedimetric and capacitive transduction platforms for pH sensing. In this study, the influence of composite thin films consisting of PANI and poly(methyl methacrylate) (PMMA) on the sensitivity and linearity of pH sensors based on electrochemical impedance and capacitance spectroscopy (EIS/ECS) was evaluated. The sensitivity and linearity of the devices showed a dependence on the polymer content. For PANI:PMMA equal to 30:70, the EIS and ECS sensitivity reached 12.6 ± 2.7 and 18.7 ± 4.9 %/pH, respectively, after reaching its minimum value for the 50:50 sample. Similarly, the linearity values for the 30:70 sample were 92.7 % and 99.8 % for EIS and ECS, respectively. We were able to encapsulate the PANI in the PMMA matrix, which improved the control of ion diffusion and analyte access to the active redox quinoid rings on the PANI. As a result, the saturation effect of the polymer was reduced. By adjusting the relative content of PANI and PMMA, the structure and properties of the composite can be controlled, directly affecting the sensor parameters. These materials have potential applications in sensors for various fields such as food, biomedical and environmental monitoring, with the ability to tailor their properties for optimal response.
为满足现代技术应用的要求,人们不断寻找新型材料,这促使聚苯胺(PANI)复合材料被广泛用于传感目的。虽然利用 PANI/聚合物复合材料的化学传感器和利用 PANI 复合材料的阻抗/电容传导化学传感器的研究都已开展,但在利用 PANI/聚合物复合材料的阻抗和电容传导平台进行 pH 值传感方面仍存在空白。本研究评估了由 PANI 和聚(甲基丙烯酸甲酯)(PMMA)组成的复合薄膜对基于电化学阻抗和电容光谱(EIS/ECS)的 pH 传感器的灵敏度和线性度的影响。设备的灵敏度和线性度与聚合物含量有关。当 PANI:PMMA 的比例为 30:70 时,EIS 和 ECS 灵敏度分别达到 12.6 ± 2.7 %/pH 和 18.7 ± 4.9 %/pH,而 50:50 样品的灵敏度则达到最低值。同样,30:70 样品的 EIS 和 ECS 线性度值分别为 92.7 % 和 99.8 %。我们能够将 PANI 封装在 PMMA 基质中,从而改善了离子扩散控制和分析物进入 PANI 上活性氧化还原醌环的情况。因此,聚合物的饱和效应得以降低。通过调整 PANI 和 PMMA 的相对含量,可以控制复合材料的结构和性能,从而直接影响传感器的参数。这些材料可用于食品、生物医学和环境监测等不同领域的传感器,并能调整其特性以获得最佳响应。
{"title":"Optimizing pH sensor performance with PANI/PMMA composite thin films: Impedimetric and capacitive transduction approaches","authors":"Beatriz Cotting Rossignatti , Marcelo Mulato , Hugo José Nogueira Pedroza Dias Mello","doi":"10.1016/j.synthmet.2024.117728","DOIUrl":"10.1016/j.synthmet.2024.117728","url":null,"abstract":"<div><p>The continuous search for novel materials to meet the requirements of modern technological applications has led to the widespread use of polyaniline (PANI) composites for sensing purposes. Although research has been carried out on both chemical sensors using PANI/polymer composites and chemical sensors with impedimetric/capacitive transduction using PANI composites, there is still a gap in the use of PANI/polymer composites in impedimetric and capacitive transduction platforms for pH sensing. In this study, the influence of composite thin films consisting of PANI and poly(methyl methacrylate) (PMMA) on the sensitivity and linearity of pH sensors based on electrochemical impedance and capacitance spectroscopy (EIS/ECS) was evaluated. The sensitivity and linearity of the devices showed a dependence on the polymer content. For PANI:PMMA equal to 30:70, the EIS and ECS sensitivity reached 12.6 ± 2.7 and 18.7 ± 4.9 %/pH, respectively, after reaching its minimum value for the 50:50 sample. Similarly, the linearity values for the 30:70 sample were 92.7 % and 99.8 % for EIS and ECS, respectively. We were able to encapsulate the PANI in the PMMA matrix, which improved the control of ion diffusion and analyte access to the active redox quinoid rings on the PANI. As a result, the saturation effect of the polymer was reduced. By adjusting the relative content of PANI and PMMA, the structure and properties of the composite can be controlled, directly affecting the sensor parameters. These materials have potential applications in sensors for various fields such as food, biomedical and environmental monitoring, with the ability to tailor their properties for optimal response.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117728"},"PeriodicalIF":4.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.synthmet.2024.117725
Yu Zhang , Haoling Luo , Haihui Li , Jiawen Wei , Wenjie Cao , Jia Jiang , Wei Lu , Xiong Zhang , Meifeng Liu , Bin Zhang
PEDOT:PSS flexible thermoelectric materials are promising for future wearable continuous power support, but it remains challenging due to low power factor. Herein, we propose a “one-stone-two-birds” strategy using L-ascorbic acid as the reductant in synthesis of tellurium nanorods and separating agent in in-situ removing PSS chains. L-ascorbic acid reduces Te4+ to Te, supplying inorganic thermoelectric materials with high Seebeck coefficient as fillers to significantly increase the Seebeck coefficient value of PEDOT:PSS. Meanwhile, L-ascorbic acid separates PSS chains from PEDOT chains, resulting in the increase of electrical conductivity at room temperature by ∼360 % due to structure transformation from benzoid structure to the quinoid structure in PEDOT. As a result, the power factor of optimal PEDOT:PSS with Te fillers and L-ascorbic acid treatment is improved significantly by ∼100 times as compared to that of pristine PEDOT:PSS. Finally, a prototype wearable thermoelectric generator was assembled by 18 legs of Te/PEDOT:PSS composites, which demonstrates a high power density of 2.3 μW·cm−2 with good mechanical stability, flexibility and durability. The present study offers a new strategy for rational design of high-performance flexible thermoelectric materials from PEDOT:PSS.
{"title":"A new strategy to simultaneously optimize Seebeck coefficient and electrical conductivity of PEDOT:PSS polymer via L-ascorbic acid","authors":"Yu Zhang , Haoling Luo , Haihui Li , Jiawen Wei , Wenjie Cao , Jia Jiang , Wei Lu , Xiong Zhang , Meifeng Liu , Bin Zhang","doi":"10.1016/j.synthmet.2024.117725","DOIUrl":"10.1016/j.synthmet.2024.117725","url":null,"abstract":"<div><p>PEDOT:PSS flexible thermoelectric materials are promising for future wearable continuous power support, but it remains challenging due to low power factor. Herein, we propose a “one-stone-two-birds” strategy using L-ascorbic acid as the reductant in synthesis of tellurium nanorods and separating agent in in-situ removing PSS chains. L-ascorbic acid reduces Te<sup>4+</sup> to Te, supplying inorganic thermoelectric materials with high Seebeck coefficient as fillers to significantly increase the Seebeck coefficient value of PEDOT:PSS. Meanwhile, L-ascorbic acid separates PSS chains from PEDOT chains, resulting in the increase of electrical conductivity at room temperature by ∼360 % due to structure transformation from benzoid structure to the quinoid structure in PEDOT. As a result, the power factor of optimal PEDOT:PSS with Te fillers and L-ascorbic acid treatment is improved significantly by ∼100 times as compared to that of pristine PEDOT:PSS. Finally, a prototype wearable thermoelectric generator was assembled by 18 legs of Te/PEDOT:PSS composites, which demonstrates a high power density of 2.3 μW·cm<sup>−2</sup> with good mechanical stability, flexibility and durability. The present study offers a new strategy for rational design of high-performance flexible thermoelectric materials from PEDOT:PSS.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117725"},"PeriodicalIF":4.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The discovery of transparent electrodes led to the development of optoelectronic devices such as touchscreens, infrared (IR) sensors, etc. Carbon nanotubes (CNTs) have been a potential replacement for ITO due to their exceptional properties, especially in the IR region. In this work, we present the development of a CNT-polymer composite thin film that exhibits outstanding transparency across visible and IR spectra prepared by layer-by-layer (LbL) technique. This approach ensures uniform integration and crosslinking of CNTs into lightweight matrices, and also represents a cost-effective method for producing transparent electrodes with remarkable properties. The produced films achieved a transparency above 80 % in the UV/VIS range and approximately 70 % in the mid-IR range. The sheet resistance of the fabricated thin films was measured at about 4 kΩ/sq, showing a tendency to decrease with the number of bilayers. In this work we have investigated electrical properties and transport mechanisms in more detail with computational analysis. Computational analysis was performed to better understand the electrical behavior of nanotube-polymer junctions in the interbundle structure. Based on all results, we propose that the transparent electrodes with 4 and 6 bilayers are the most optimal structures in terms of optical and electrical properties.
透明电极的发现促进了触摸屏、红外线(IR)传感器等光电设备的发展。碳纳米管(CNT)因其优异的性能,尤其是在红外区域的性能,已成为 ITO 的潜在替代品。在这项工作中,我们通过逐层(LbL)技术制备了一种碳纳米管-聚合物复合薄膜,该薄膜在可见光和红外光谱范围内都具有出色的透明度。这种方法确保了碳纳米管与轻质基质的均匀整合和交联,同时也是生产具有卓越性能的透明电极的一种经济有效的方法。生产出的薄膜在紫外/可见光范围内的透明度超过 80%,在中红外范围内的透明度约为 70%。所制薄膜的薄层电阻测量值约为 4 kΩ/sq,显示出随着双层膜数量的增加而减小的趋势。在这项工作中,我们通过计算分析更详细地研究了电学特性和传输机制。进行计算分析是为了更好地理解束间结构中纳米管-聚合物结的电学行为。基于所有结果,我们提出,就光学和电学特性而言,4 层和 6 层双层透明电极是最理想的结构。
{"title":"Optimizing transparent electrodes: Interplay of high purity SWCNTs network and a polymer","authors":"Sara Joksović , Jovana Stanojev , Nataša Samardžić , Branimir Bajac","doi":"10.1016/j.synthmet.2024.117717","DOIUrl":"10.1016/j.synthmet.2024.117717","url":null,"abstract":"<div><p>The discovery of transparent electrodes led to the development of optoelectronic devices such as touchscreens, infrared (IR) sensors, etc. Carbon nanotubes (CNTs) have been a potential replacement for ITO due to their exceptional properties, especially in the IR region. In this work, we present the development of a CNT-polymer composite thin film that exhibits outstanding transparency across visible and IR spectra prepared by layer-by-layer (LbL) technique. This approach ensures uniform integration and crosslinking of CNTs into lightweight matrices, and also represents a cost-effective method for producing transparent electrodes with remarkable properties. The produced films achieved a transparency above 80 % in the UV/VIS range and approximately 70 % in the mid-IR range. The sheet resistance of the fabricated thin films was measured at about 4 kΩ/sq, showing a tendency to decrease with the number of bilayers. In this work we have investigated electrical properties and transport mechanisms in more detail with computational analysis. Computational analysis was performed to better understand the electrical behavior of nanotube-polymer junctions in the interbundle structure. Based on all results, we propose that the transparent electrodes with 4 and 6 bilayers are the most optimal structures in terms of optical and electrical properties.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"307 ","pages":"Article 117717"},"PeriodicalIF":4.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-fused ring electron acceptors (NFREAs) have displayed promising candidates for practical application of organic solar cells (OSCs) owing to their short synthesis routes and cost effectiveness. The terminal groups halogenation have facilitated the optimization the physicochemical properties of NFREAs. In this work, we developed two NFREAs using a phenyl-substituted benzodithiophenedione unit as central core and electron-withdrawing groups 2-(3-oxo-2,3-dihydro-1 H-inden-1-ylidene) malononitrile (IC) or chlorinated IC (IC-2Cl) as the terminal groups. These NFREAs were designated as BDDPh-H and BDDPh-Cl, respectively. DFT calculations revealing that both NFREAs exhibited good backbone coplanarity due to S…O noncovalent interactions, and BDDPh-Cl exhibited red-shifted absorption compared with BDDPh-H owing to the stronger molecular stacking caused by chlorinated terminal groups. Moreover, BDDPh-Cl-based blended film demonstrated better nano-scale morphology, facilitating exciton dissociation and charge transport. Thus, PM6: BDDPh-Cl-based OSCs achieved a higher power conversion efficiency (PCE) of 12.69 %, outperforming BDDPh-H-based device (3.20 %) due to the enhanced short-circuit current and fill factor. Our findings indicate that combining phenyl-substituted benzodithiophenedione as central unit with chlorinated terminal groups showed great potential to construct highly efficient NFREAs.
{"title":"Non-fused ring electron acceptor based on phenyl-substituted benzodithiophenedione unit via chlorinated terminal groups for constructing efficient organic solar cells","authors":"Baitian He , WenZheng Zhang , Jinming Zhang , Manjun Xiao , Guiting Chen","doi":"10.1016/j.synthmet.2024.117716","DOIUrl":"10.1016/j.synthmet.2024.117716","url":null,"abstract":"<div><p>Non-fused ring electron acceptors (NFREAs) have displayed promising candidates for practical application of organic solar cells (OSCs) owing to their short synthesis routes and cost effectiveness. The terminal groups halogenation have facilitated the optimization the physicochemical properties of NFREAs. In this work, we developed two NFREAs using a phenyl-substituted benzodithiophenedione unit as central core and electron-withdrawing groups 2-(3-oxo-2,3-dihydro-1 H-inden-1-ylidene) malononitrile (IC) or chlorinated IC (IC-2Cl) as the terminal groups. These NFREAs were designated as BDDPh-H and BDDPh-Cl, respectively. DFT calculations revealing that both NFREAs exhibited good backbone coplanarity due to S…O noncovalent interactions, and BDDPh-Cl exhibited red-shifted absorption compared with BDDPh-H owing to the stronger molecular stacking caused by chlorinated terminal groups. Moreover, BDDPh-Cl-based blended film demonstrated better nano-scale morphology, facilitating exciton dissociation and charge transport. Thus, PM6: BDDPh-Cl-based OSCs achieved a higher power conversion efficiency (PCE) of 12.69 %, outperforming BDDPh-H-based device (3.20 %) due to the enhanced short-circuit current and fill factor. Our findings indicate that combining phenyl-substituted benzodithiophenedione as central unit with chlorinated terminal groups showed great potential to construct highly efficient NFREAs.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117716"},"PeriodicalIF":4.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.synthmet.2024.117714
Anjana Baby , Tejashwini V , Sreeja Puthenveetil Balakrishnan , Mohd Afzal , Jayesh Cherusseri
Bismuth ferrite (BF) serves a potential electrode-active material due to its peculiar characteristics such as wide voltage window and high specific capacitance, excellent stability, facile synthesis routes, etc. to name a few. Herein we report the strategic design and facile synthesis of multiwalled carbon nanotubes (MWCNT)/BF/polyaniline (PANI) nanocomposites, particularly for application in advanced supercapacitors. The MWCNT/BF/PANI nanocomposite architecture is a strategic design in which the maximum available surface area is utilized for the electrode nanostructure with increased porosity that allows easy movement of electrolyte-ions through it. The uniform arrangement of BF on MWCNTs helps in mitigating the possible agglomeration, further augmenting the surface area for an enhanced charge storage. The strategic layout of PANI on BF-decorated MWCNTs has given a coral-like structure for the nanocomposite electrode which significantly increased the surface area, reduced ion pathways and facilitating better access to electrolytic K+ ions. The MWCNT/BF/PANI nanocomposite electrode exhibits a specific capacitance of 3640 F g−1 at a current density of 5 A g−1. The innovative design as well as the synergy between the individual components of the nanocomposite electrode play a pivotal role in attaining the enhanced electrochemical performance.
铁氧体铋(BF)具有电压窗口宽、比电容高、稳定性好、合成路线简便等特点,是一种潜在的电活性材料。在此,我们报告了多壁碳纳米管(MWCNT)/BF/聚苯胺(PANI)纳米复合材料的战略设计和简易合成,尤其是在先进超级电容器中的应用。MWCNT/BF/PANI 纳米复合材料结构是一种战略性设计,其电极纳米结构利用了最大的可用表面积,并增加了孔隙率,使电解质离子易于通过。BF 在 MWCNTs 上的均匀排列有助于减少可能出现的团聚,进一步扩大表面积以增强电荷存储。PANI 在 BF 装饰的 MWCNT 上的战略布局为纳米复合电极提供了一种珊瑚状结构,从而显著增加了表面积,减少了离子通道,并有助于更好地获得电解 K+ 离子。当电流密度为 5 A g-1 时,MWCNT/BF/PANI 纳米复合电极的比电容为 3640 F g-1。纳米复合电极的创新设计以及各组分之间的协同作用在实现更高的电化学性能方面发挥了关键作用。
{"title":"Strategically designed multiwalled carbon nanotube/bismuth ferrite/polyaniline nanocomposites and unlocking their potential for advanced supercapacitors","authors":"Anjana Baby , Tejashwini V , Sreeja Puthenveetil Balakrishnan , Mohd Afzal , Jayesh Cherusseri","doi":"10.1016/j.synthmet.2024.117714","DOIUrl":"10.1016/j.synthmet.2024.117714","url":null,"abstract":"<div><p>Bismuth ferrite (BF) serves a potential electrode-active material due to its peculiar characteristics such as wide voltage window and high specific capacitance, excellent stability, facile synthesis routes, etc. to name a few. Herein we report the strategic design and facile synthesis of multiwalled carbon nanotubes (MWCNT)/BF/polyaniline (PANI) nanocomposites, particularly for application in advanced supercapacitors. The MWCNT/BF/PANI nanocomposite architecture is a strategic design in which the maximum available surface area is utilized for the electrode nanostructure with increased porosity that allows easy movement of electrolyte-ions through it. The uniform arrangement of BF on MWCNTs helps in mitigating the possible agglomeration, further augmenting the surface area for an enhanced charge storage. The strategic layout of PANI on BF-decorated MWCNTs has given a coral-like structure for the nanocomposite electrode which significantly increased the surface area, reduced ion pathways and facilitating better access to electrolytic K<sup>+</sup> ions. The MWCNT/BF/PANI nanocomposite electrode exhibits a specific capacitance of 3640 F g<sup>−1</sup> at a current density of 5 A g<sup>−1</sup>. The innovative design as well as the synergy between the individual components of the nanocomposite electrode play a pivotal role in attaining the enhanced electrochemical performance.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117714"},"PeriodicalIF":4.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.synthmet.2024.117715
Ta-Hung Cheng , Sheng-Chieh Lin , Zhong-En Shi , Yu-Sheng Hsiao , Chih-Ping Chen , Yung-Chung Chen
Considering the energy level cascade, introducing a hole transport layer (HTL) between the NiOx and perovskite layers has become a common and effective strategy to enhance the performance of inverted perovskite solar cells (PSCs). Herein, we designed and synthesized three hole-transporting interfacial layers (TPAD, TPAO, and TPAS) based on a dibenzofulvene-bridged triphenylamine (TPA) core to fabricate efficient and stable inverted NiOx-based PSCs. Dibenzofulvene, known for its sp²-hybridized structure, offers superior planarity and molecular stacking, and it easily bonds with triphenylamine derivatives, resulting in unique light-harvesting and charge mobility properties for optoelectronic applications. Specifically, diphenylamine, dimethoxy diphenylamine, and dimethylthio diphenylamine were used as end-capping units for TPAD, TPAO, and TPAS, respectively. The NiOx-based inverted PSC devices fabricated with TPAS as an interfacial layer effectively modified NiOx to improve energy level alignment, enhance film quality and crystallinity, and improve carrier transport, leading to a high-quality perovskite layer and superior interface contact behavior. Consequently, this device yielded a highly efficient cell performance of 20.30 %, surpassing those using TPAD (19.29 %) and TPAO (18.78 %) as interfacial layers, and significantly outperforming devices using only NiOx (17.69 %). Additionally, the champion cell exhibited negligible hysteresis and long-term stability. These findings demonstrate a facile approach to preparing multifunctional TPA-based hole transport materials and showcase the efficient performance of inverted cells based on a triphenylamine dibenzofulvene-based interfacial layer, contributing to the development of high-efficiency inverted PSCs.
{"title":"Interfacial layer with a dibenzofulvene-bridged triphenylamine core for efficient and stable inverted perovskite solar cells","authors":"Ta-Hung Cheng , Sheng-Chieh Lin , Zhong-En Shi , Yu-Sheng Hsiao , Chih-Ping Chen , Yung-Chung Chen","doi":"10.1016/j.synthmet.2024.117715","DOIUrl":"10.1016/j.synthmet.2024.117715","url":null,"abstract":"<div><p>Considering the energy level cascade, introducing a hole transport layer (HTL) between the NiOx and perovskite layers has become a common and effective strategy to enhance the performance of inverted perovskite solar cells (PSCs). Herein, we designed and synthesized three hole-transporting interfacial layers (<strong>TPAD</strong>, <strong>TPAO</strong>, and <strong>TPAS</strong>) based on a dibenzofulvene-bridged triphenylamine (TPA) core to fabricate efficient and stable inverted NiO<sub>x</sub>-based PSCs. Dibenzofulvene, known for its sp²-hybridized structure, offers superior planarity and molecular stacking, and it easily bonds with triphenylamine derivatives, resulting in unique light-harvesting and charge mobility properties for optoelectronic applications. Specifically, diphenylamine, dimethoxy diphenylamine, and dimethylthio diphenylamine were used as end-capping units for <strong>TPAD</strong>, <strong>TPAO</strong>, and <strong>TPAS</strong>, respectively. The NiO<sub>x</sub>-based inverted PSC devices fabricated with <strong>TPAS</strong> as an interfacial layer effectively modified NiO<sub>x</sub> to improve energy level alignment, enhance film quality and crystallinity, and improve carrier transport, leading to a high-quality perovskite layer and superior interface contact behavior. Consequently, this device yielded a highly efficient cell performance of 20.30 %, surpassing those using <strong>TPAD</strong> (19.29 %) and <strong>TPAO</strong> (18.78 %) as interfacial layers, and significantly outperforming devices using only NiO<sub>x</sub> (17.69 %). Additionally, the champion cell exhibited negligible hysteresis and long-term stability. These findings demonstrate a facile approach to preparing multifunctional TPA-based hole transport materials and showcase the efficient performance of inverted cells based on a triphenylamine dibenzofulvene-based interfacial layer, contributing to the development of high-efficiency inverted PSCs.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117715"},"PeriodicalIF":4.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}