Pub Date : 2024-11-05DOI: 10.1016/j.synthmet.2024.117777
Asit Hait , Varghese Maria Angela , Paliyottil Kesavan Bhagyanath , Predhanekar Mohamed Imran , Nattamai.S.P. Bhuvanesh , Samuthira Nagarajan
This study focused on designing small donor-acceptor (D-A) frameworks for resistive memory devices. We synthesized five new organic molecules using pyridine bridged to benzothiazole and various donor moieties (triphenylamine, naphthalene, benzothiophene, t-butyl phenyl, and mesityl group) via Suzuki cross-coupling to study their memory performance. The compounds with triphenylamine and naphthalene exhibited good semiconductor behavior, with a band gap of 3.11 eV and 3.44 eV, respectively. The benzothiazole moiety, employed as a shallow trap in the acceptor segment, demonstrated the SRAM characteristics of all devices. This study examined how varying the potency of electron-donating substituents impacts charge transfer and volatile memory behavior in a small D-A system. Memory devices with triphenylamine and naphthalene donors showed binary SRAM behavior with high ON/OFF ratios of 2.82 × 103 and 2.36 × 103, while t-butylphenyl and mesityl donors exhibited lower ratios of 1.43 × 101 and 4.08 × 101, respectively. All the compounds exhibited switching characteristics at a low threshold voltage of −1 to −1.3 V. The analysis of HOMO, LUMO energy levels, and ESP images of all compounds from the DFT study, collectively indicate charge transfer and trapping are the operative mechanisms in volatile SRAM devices.
{"title":"Design and synthesis of pyridine-bridged benzothiazole-based D-A system for SRAM memory devices","authors":"Asit Hait , Varghese Maria Angela , Paliyottil Kesavan Bhagyanath , Predhanekar Mohamed Imran , Nattamai.S.P. Bhuvanesh , Samuthira Nagarajan","doi":"10.1016/j.synthmet.2024.117777","DOIUrl":"10.1016/j.synthmet.2024.117777","url":null,"abstract":"<div><div>This study focused on designing small donor-acceptor (D-A) frameworks for resistive memory devices. We synthesized five new organic molecules using pyridine bridged to benzothiazole and various donor moieties (triphenylamine, naphthalene, benzothiophene, t-butyl phenyl, and mesityl group) via Suzuki cross-coupling to study their memory performance. The compounds with triphenylamine and naphthalene exhibited good semiconductor behavior, with a band gap of 3.11 eV and 3.44 eV, respectively. The benzothiazole moiety, employed as a shallow trap in the acceptor segment, demonstrated the SRAM characteristics of all devices. This study examined how varying the potency of electron-donating substituents impacts charge transfer and volatile memory behavior in a small D-A system. Memory devices with triphenylamine and naphthalene donors showed binary SRAM behavior with high ON/OFF ratios of 2.82 × 10<sup>3</sup> and 2.36 × 10<sup>3</sup>, while t-butylphenyl and mesityl donors exhibited lower ratios of 1.43 × 10<sup>1</sup> and 4.08 × 10<sup>1</sup>, respectively. All the compounds exhibited switching characteristics at a low threshold voltage of −1 to −1.3 V. The analysis of HOMO, LUMO energy levels, and ESP images of all compounds from the DFT study, collectively indicate charge transfer and trapping are the operative mechanisms in volatile SRAM devices.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117777"},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.synthmet.2024.117775
Muhammad Jamshaid Shabbir , Ruqyya Aqeel , Miqdad Hassan , Farhan Sadiq , Imran Sadiq , N. Bano , Abdul Moqeet Hai , Robert C. Pullar , Muhammad Raheel , Muhammad Talha Arif , Samreen Saeed , Saira Riaz , Shahzad Naseem
This research article describes the synthesis of composite materials by combining T-type hexagonal ferrite and reduced Graphene Oxide using the standard ceramic process. The Calcium-based T-type hexagonal ferrite was synthesized by using the sol-gel auto-combustion method while the reduced graphene oxide by adopting the Hummer method. The crystallite size varied in the range of 23.38 -39.16 nm as calculated from the X-ray diffraction (XRD) data. Consequently, the lattice parameters 'a' and 'c' decreased from 5.9 to 5.1 Å and from 29.92 to 28.32 Å, respectively. The use of atomic force microscopy (AFM) revealed a range of particle sizes at the surface, varying from 1.70 nm to 3.85 nm. Moreover, the saturation and remanence magnetization values demonstrated an increasing trend with T-type hexaferrites concentration whereas the coercivity decreased. The UV–vis near-infrared spectra exhibited substantial light absorption, characterized by a wide absorption range in the visible and near-infrared (NIR) region (700–1100 nm) which indicates its use in Photothermal therapy (PTT). The Calcium T- type hexaferrite exhibited clear peaks in the blue, green, violet, and yellow spectra in its photoluminescence (PL) properties. These peaks are believed to be caused by oxygen vacancies and defects. The synthesized samples displayed a lossy behavior in the polarization-electric field (P-E) loop, with saturation polarization levels exceeding remnant polarization, which is an amenable condition for lossy behavior. Most importantly, the synthesized materials had significant thermal responses when exposed to an alternation (AC) magnetic field, indicating their potential use in magnetic hyperthermia applications.
本文介绍了利用标准陶瓷工艺将 T 型六方铁氧体和还原型氧化石墨烯合成复合材料的过程。钙基 T 型六方铁氧体采用溶胶-凝胶自燃法合成,还原型氧化石墨烯采用悍马法合成。根据 X 射线衍射(XRD)数据计算得出的晶体尺寸变化范围为 23.38 -39.16 nm。因此,晶格参数 "a "和 "c "分别从 5.9 Å 降至 5.1 Å 和从 29.92 Å 降至 28.32 Å。原子力显微镜(AFM)显示了表面的颗粒尺寸范围,从 1.70 纳米到 3.85 纳米不等。此外,饱和磁化值和剩磁磁化值随着 T 型六氟化碳浓度的增加而呈上升趋势,而矫顽力则有所下降。紫外-可见光近红外光谱显示了大量的光吸收,其特点是在可见光和近红外(NIR)区域(700-1100 nm)有很宽的吸收范围,这表明它可用于光热疗法(PTT)。T 型六价钙铁的光致发光(PL)特性在蓝色、绿色、紫色和黄色光谱中表现出明显的峰值。这些峰值被认为是由氧空位和缺陷引起的。合成样品在极化-电场(P-E)环路中显示出有损行为,饱和极化水平超过了残余极化,这是有损行为的一个有利条件。最重要的是,合成材料在暴露于交变(交流)磁场时具有显著的热反应,这表明它们在磁性热疗应用中具有潜在的用途。
{"title":"Synergetic effect of hexaferrite and reduced graphene oxide (rGO) in photothermal therapy and hyperthermia applications","authors":"Muhammad Jamshaid Shabbir , Ruqyya Aqeel , Miqdad Hassan , Farhan Sadiq , Imran Sadiq , N. Bano , Abdul Moqeet Hai , Robert C. Pullar , Muhammad Raheel , Muhammad Talha Arif , Samreen Saeed , Saira Riaz , Shahzad Naseem","doi":"10.1016/j.synthmet.2024.117775","DOIUrl":"10.1016/j.synthmet.2024.117775","url":null,"abstract":"<div><div>This research article describes the synthesis of composite materials by combining T-type hexagonal ferrite and reduced Graphene Oxide using the standard ceramic process. The Calcium-based T-type hexagonal ferrite was synthesized by using the sol-gel auto-combustion method while the reduced graphene oxide by adopting the Hummer method. The crystallite size varied in the range of 23.38 -39.16 nm as calculated from the X-ray diffraction (XRD) data. Consequently, the lattice parameters 'a' and 'c' decreased from 5.9 to 5.1 Å and from 29.92 to 28.32 Å, respectively. The use of atomic force microscopy (AFM) revealed a range of particle sizes at the surface, varying from 1.70 nm to 3.85 nm. Moreover, the saturation and remanence magnetization values demonstrated an increasing trend with T-type hexaferrites concentration whereas the coercivity decreased. The UV–vis near-infrared spectra exhibited substantial light absorption, characterized by a wide absorption range in the visible and near-infrared (NIR) region (700–1100 nm) which indicates its use in Photothermal therapy (PTT). The Calcium T- type hexaferrite exhibited clear peaks in the blue, green, violet, and yellow spectra in its photoluminescence (PL) properties. These peaks are believed to be caused by oxygen vacancies and defects. The synthesized samples displayed a lossy behavior in the polarization-electric field (P-E) loop, with saturation polarization levels exceeding remnant polarization, which is an amenable condition for lossy behavior. Most importantly, the synthesized materials had significant thermal responses when exposed to an alternation (AC) magnetic field, indicating their potential use in magnetic hyperthermia applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117775"},"PeriodicalIF":4.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.synthmet.2024.117774
Hui-Ping Li , Cai-Yan Gao , Yongjie Chen , Xin-Heng Fan , Ying-Feng Li , Lian-Ming Yang
The past years have witnessed the rapid development of organic conjugated polymer thermoelectric (TE) materials profiting from new combinations of popular donor and acceptor units as well as the exploration for novel classes of donors and/or acceptors. Nevertheless, the relationship between the structures and properties of those TE materials remains far less known due probably to the complexity of variables involved in this regard. Factually, minimizing structural variables is more helpful to gain an in-depth insight into the structure–property relationship. In this work, two DA alternative copolymers were designed and synthesized by the Stille coupling reaction of the difluorinated benzotriazole acceptor unit with the N- or Si-substituted cyclopentadithiophene (CPD) donor unit, and systematically compared with the previously reported C-substituted analogue to reveal the influence of the heteroatom-tailored donor engineering on the molecular configuration and the physicochemical properties of the polymers. As a result, the FeCl3-doped N-substituted polymer harvested a largest Seebeck coefficient of approximately 162.4 µV K−1 as well as a highest electrical conductivity of about 12.8 S cm−1, profiting primarily from a higher carrier mobility resulting from the good ππ stacking and a shallower HOMO level. As anticipated, a best power factor was achieved to be around 11.6 µW m−1 K−2, which is around one order of magnitude higher than that of the Si-substituted one, even much higher than that of C-substituted P(CPD-BTA-2F). This research is expected to afford an important guidance for purposefully designing the high-performance TE polymers in the future.
过去几年来,有机共轭聚合物热电(TE)材料发展迅速,其中得益于常用供体和受体单元的新组合,以及对新型供体和/或受体的探索。然而,这些热电材料的结构与性能之间的关系仍然鲜为人知,这可能是由于这方面涉及的变量非常复杂。事实上,尽量减少结构变量更有助于深入了解结构与性能之间的关系。在这项工作中,通过二氟苯并三唑受体单元与 N 或 Si 取代的环戊二烯噻吩(CPD)供体单元的 Stille 偶联反应,设计并合成了两种 DA 替代共聚物,并与之前报道的 C 取代类似物进行了系统比较,以揭示杂原子定制供体工程对聚合物分子构型和理化性质的影响。结果,掺杂了 FeCl3 的 N 取代聚合物获得了最大的塞贝克系数(约 162.4 µV K-1)和最高的导电率(约 12.8 S cm-1),这主要得益于良好的 ππ 堆叠和较浅的 HOMO 水平带来的较高载流子迁移率。正如预期的那样,最佳功率因数达到了约 11.6 µW m-1 K-2,比硅取代的功率因数高出约一个数量级,甚至远高于 C 取代的 P(CPD-BTA-2F)。这项研究有望为今后有针对性地设计高性能 TE 聚合物提供重要指导。
{"title":"An investigation into effects of heteroatom-tailored donor engineering on thermoelectric performance of cyclopentadithiophene-based copolymers","authors":"Hui-Ping Li , Cai-Yan Gao , Yongjie Chen , Xin-Heng Fan , Ying-Feng Li , Lian-Ming Yang","doi":"10.1016/j.synthmet.2024.117774","DOIUrl":"10.1016/j.synthmet.2024.117774","url":null,"abstract":"<div><div>The past years have witnessed the rapid development of organic conjugated polymer thermoelectric (TE) materials profiting from new combinations of popular donor and acceptor units as well as the exploration for novel classes of donors and/or acceptors. Nevertheless, the relationship between the structures and properties of those TE materials remains far less known due probably to the complexity of variables involved in this regard. Factually, minimizing structural variables is more helpful to gain an in-depth insight into the structure–property relationship. In this work, two D<img>A alternative copolymers were designed and synthesized by the Stille coupling reaction of the difluorinated benzotriazole acceptor unit with the N- or Si-substituted cyclopentadithiophene (CPD) donor unit, and systematically compared with the previously reported C-substituted analogue to reveal the influence of the heteroatom-tailored donor engineering on the molecular configuration and the physicochemical properties of the polymers. As a result, the FeCl<sub>3</sub>-doped N-substituted polymer harvested a largest Seebeck coefficient of approximately 162.4 µV K<sup>−1</sup> as well as a highest electrical conductivity of about 12.8 S cm<sup>−1</sup>, profiting primarily from a higher carrier mobility resulting from the good π<img>π stacking and a shallower HOMO level. As anticipated, a best power factor was achieved to be around 11.6 µW m<sup>−1</sup> K<sup>−2</sup>, which is around one order of magnitude higher than that of the Si-substituted one, even much higher than that of C-substituted P(CPD-BTA-2F). This research is expected to afford an important guidance for purposefully designing the high-performance TE polymers in the future.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117774"},"PeriodicalIF":4.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MXene based ternary composite photonic device was fabricated and characterized for the detection of different illuminations. The single chain polymer-cobalt phthallocyanine (SCP-CoPc) carrying metallised pthalocyanine macro ring was used as a polymer for the preparation of ternary composite. The Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) were used to differentiate MXene/ZnO/SCP-CoPc composite prepared. The presence of Ti, C, O, Zn and Co elements in the structure of the composite was confirmed by EDX. The electrical properties of planar interdigital coated MXene/ZnO/SCP-CoPc (1:1:1 by wt) were investigated for photovoltaic application. The photo-generated carriers contribute to the current flow, and the linear photoconductivity behaviour in current measurements with different illuminations such as 20, 40, 60, 80 and 100 mW/cm2 indicates the possible photo device use of MXene/ZnO/SCP-CoPc nanocomposite. The photocurrent increased from 20 mA/cm2 to 100 mA/cm2 with the light intensity at 0.5 V was tuned from 28 to 280 μA. The forbidden energy gap (Eg) value of the MXene/ZnO/SCP-CoPc ternary composite from optical measurements was found to be 2.36 eV. Experimental results showed that the presence of SCP-CoPc and ZnO (zinc oxide) in the ternary nanocomposite increased the ε' and ε" values of MXene. The ε′ and ε″ of the ternary composite is 13.0, 26217 at 1 kHz and room temperature, respectively. The current-time results suggest that MXene based ternary composite photonic device is a self driven photodevice as the device can detect light without any external voltage bias.
{"title":"Photonic device application of a self-driven MXene based nanocomposite","authors":"Kadir Demirelli , Ayşegül Dere , Esra Barım , Hülya Tuncer , Fahrettin Yakuphanoğlu","doi":"10.1016/j.synthmet.2024.117770","DOIUrl":"10.1016/j.synthmet.2024.117770","url":null,"abstract":"<div><div>MXene based ternary composite photonic device was fabricated and characterized for the detection of different illuminations. The single chain polymer-cobalt phthallocyanine (SCP-CoPc) carrying metallised pthalocyanine macro ring was used as a polymer for the preparation of ternary composite. The Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) were used to differentiate MXene/ZnO/SCP-CoPc composite prepared. The presence of Ti, C, O, Zn and Co elements in the structure of the composite was confirmed by EDX. The electrical properties of planar interdigital coated MXene/ZnO/SCP-CoPc (1:1:1 by wt) were investigated for photovoltaic application. The photo-generated carriers contribute to the current flow, and the linear photoconductivity behaviour in current measurements with different illuminations such as 20, 40, 60, 80 and 100 mW/cm<sup>2</sup> indicates the possible photo device use of MXene/ZnO/SCP-CoPc nanocomposite. The photocurrent increased from 20 mA/cm<sup>2</sup> to 100 mA/cm<sup>2</sup> with the light intensity at 0.5 V was tuned from 28 to 280 μA. The forbidden energy gap (Eg) value of the MXene/ZnO/SCP-CoPc ternary composite from optical measurements was found to be 2.36 eV. Experimental results showed that the presence of SCP-CoPc and ZnO (zinc oxide) in the ternary nanocomposite increased the ε' and ε\" values of MXene. The ε′ and ε″ of the ternary composite is 13.0, 26217 at 1 kHz and room temperature, respectively. The current-time results suggest that MXene based ternary composite photonic device is a self driven photodevice as the device can detect light without any external voltage bias.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117770"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.synthmet.2024.117771
Khizar Hayat, Misbah Kiran, Muhammad Imran Yousaf
Metal and metal oxide materials are mostly used to tune the optical characteristics. The optical and systemic effects of pure Cobalt Oxide (Co3O4) are examined by knocking out the dissimilar assemblage of Manganese (Mn) ions using the co-precipitation method. Graphene oxide (GO) reduces the optical band gap and enhances the effects of ethical Co3O4 and MnCo3O4 by hydrothermal procedure. The percentage of Mn over pure Co3O4 was 0.09 wt%, 0.18 wt%, 0.27 wt%, and GO doped over MnCo3O4 was 1 wt%. Remarkably, spinel-type cobalt oxide has two participation band gaps at 494 nm and 772 nm of nanocomposites which then shifted from 494 nm to 510 nm and 772 nm to 779 nm with the doping of GO. The result describes that the band gap was minimized from 1.76 eV to 1.59 eV respectively to accommodate the density of states by doping of Mn ions and GO. Conductivity and optical absorbance were also increased by doping assemblage of Mn ions and GO. XRD peaks show the FCC crystalline structure of Co3O4, and the GO peak disappeared for @MnCo3O4, indicating that GO was completely reduced to rGO during the synthesis process.
金属和金属氧化物材料通常用于调节光学特性。通过共沉淀法去除锰(Mn)离子的异种组合,研究了纯氧化钴(Co3O4)的光学效应和系统效应。通过水热法,氧化石墨烯(GO)降低了光带隙,增强了伦理 Co3O4 和 MnCo3O4 的效果。锰在纯 Co3O4 中的比例分别为 0.09 wt%、0.18 wt%、0.27 wt%,而 GO 在 MnCo3O4 中的掺杂比例为 1 wt%。值得注意的是,尖晶石型氧化钴在纳米复合材料的 494 纳米和 772 纳米处有两个参与带隙,随着 GO 的掺入,带隙从 494 纳米转移到 510 纳米,从 772 纳米转移到 779 纳米。结果表明,通过掺杂锰离子和 GO,带隙分别从 1.76 eV 减小到 1.59 eV,以适应态密度。锰离子和 GO 的掺杂组合还提高了导电性和光吸收率。XRD 峰显示了 Co3O4 的 FCC 晶体结构,@MnCo3O4 的 GO 峰消失,表明在合成过程中 GO 已完全还原为 rGO。
{"title":"Tuning structural and optical properties of GO@Mn-doped Co3O4 hybrid nanocomposite by a facile synthesis","authors":"Khizar Hayat, Misbah Kiran, Muhammad Imran Yousaf","doi":"10.1016/j.synthmet.2024.117771","DOIUrl":"10.1016/j.synthmet.2024.117771","url":null,"abstract":"<div><div>Metal and metal oxide materials are mostly used to tune the optical characteristics. The optical and systemic effects of pure Cobalt Oxide (Co<sub>3</sub>O<sub>4</sub>) are examined by knocking out the dissimilar assemblage of Manganese (Mn) ions using the co-precipitation method. Graphene oxide (GO) reduces the optical band gap and enhances the effects of ethical Co<sub>3</sub>O<sub>4</sub> and MnCo<sub>3</sub>O<sub>4</sub> by hydrothermal procedure. The percentage of Mn over pure Co<sub>3</sub>O<sub>4</sub> was 0.09 wt%, 0.18 wt%, 0.27 wt%, and GO doped over MnCo<sub>3</sub>O<sub>4</sub> was 1 wt%. Remarkably, spinel-type cobalt oxide has two participation band gaps at 494 nm and 772 nm of nanocomposites which then shifted from 494 nm to 510 nm and 772 nm to 779 nm with the doping of GO. The result describes that the band gap was minimized from 1.76 eV to 1.59 eV respectively to accommodate the density of states by doping of Mn ions and GO. Conductivity and optical absorbance were also increased by doping assemblage of Mn ions and GO. XRD peaks show the FCC crystalline structure of Co<sub>3</sub>O<sub>4</sub>, and the GO peak disappeared for @MnCo<sub>3</sub>O<sub>4</sub>, indicating that GO was completely reduced to rGO during the synthesis process.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117771"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.synthmet.2024.117773
Xingjian Jiang, Ming Liu, Daizhe Wang, Yong Zhang
In this study, we designed and synthesized two polymers, PDFBT-Qx and PDTBT-Qx, using the quinoxaline unit containing a long alkyl side chain as an unit and DTBT with or without fluorine atom as the other unit, respectively. The optical and electrochemical properties of the above two polymer donors were studied, and the optical bandgaps of PDTBT-Qx and PDFBT-Qx were 1.59 eV and 1.69 eV, respectively. The optical and electrochemical properties of the above two polymer donors were studied, and the HOMO and LUMO energy levels of PDTBT-Qx and PDFBT-Qx were obtained, and the energy levels of L8-BO were compared to explore the feasibility of the study. Polymer solar cells (PSCs) were prepared by blending with the non-fullerene acceptor material L8-BO. Finally, it was found that the power conversion efficiency (PCE) based on PDFBT-Qx:L8-BO and PDTBT-Qx:L8-BO was 7.2 % and 3.5 %, respectively. The systematic analysis of the optical properties, electronic energy level, charge transport, photovoltaic performance, charge dissociation efficiency and surface morphology of the material shows that the F atom can not only reduce the HOMO energy level of the donor material to improve the VOC of the device due to its huge electronegativity. Furthermore, when the fluorine atom is introduced into the polymer skeleton, it can form weak intermolecular forces (F—S) with the sulfur atom in DTBT. This fluorination strategy can enhance the rigidity of the polymer and is known as “the molecular lock effect”. This phenomenon is conducive to adjusting the morphology of the active layer and ultimately improving the efficiency of the device.
{"title":"Quinoxaline based A-A type polymer donors for non-fullerene polymer solar cells","authors":"Xingjian Jiang, Ming Liu, Daizhe Wang, Yong Zhang","doi":"10.1016/j.synthmet.2024.117773","DOIUrl":"10.1016/j.synthmet.2024.117773","url":null,"abstract":"<div><div>In this study, we designed and synthesized two polymers, PDFBT-Qx and PDTBT-Qx, using the quinoxaline unit containing a long alkyl side chain as an unit and DTBT with or without fluorine atom as the other unit, respectively. The optical and electrochemical properties of the above two polymer donors were studied, and the optical bandgaps of PDTBT-Qx and PDFBT-Qx were 1.59 eV and 1.69 eV, respectively. The optical and electrochemical properties of the above two polymer donors were studied, and the HOMO and LUMO energy levels of PDTBT-Qx and PDFBT-Qx were obtained, and the energy levels of L8-BO were compared to explore the feasibility of the study. Polymer solar cells (PSCs) were prepared by blending with the non-fullerene acceptor material L8-BO. Finally, it was found that the power conversion efficiency (PCE) based on PDFBT-Qx:L8-BO and PDTBT-Qx:L8-BO was 7.2 % and 3.5 %, respectively. The systematic analysis of the optical properties, electronic energy level, charge transport, photovoltaic performance, charge dissociation efficiency and surface morphology of the material shows that the F atom can not only reduce the HOMO energy level of the donor material to improve the <em>V</em><sub><em>OC</em></sub> of the device due to its huge electronegativity. Furthermore, when the fluorine atom is introduced into the polymer skeleton, it can form weak intermolecular forces (F—S) with the sulfur atom in DTBT. This fluorination strategy can enhance the rigidity of the polymer and is known as “the molecular lock effect”. This phenomenon is conducive to adjusting the morphology of the active layer and ultimately improving the efficiency of the device.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117773"},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.synthmet.2024.117772
Hiroto Iwasaki , Yutaka Majima , Seiichiro Izawa
The low-voltage operation of blue organic light-emitting diodes (OLEDs) is critical for reducing power consumption and improving device lifetime. This review briefly summarizes the history and origin of low-voltage electroluminescence and its realization in recent reports. In particular, upconversion OLEDs, which use the charge transfer state as an intermediate state to facilitate blue emission via triplet–triplet annihilation, present a promising solution. Thus, continued efforts aimed at reducing the driving voltage, including the exploration of new materials and device structures, are expected to significantly contribute to expanding the applications of blue OLEDs.
{"title":"Low-voltage turn-on in blue organic light-emitting diodes","authors":"Hiroto Iwasaki , Yutaka Majima , Seiichiro Izawa","doi":"10.1016/j.synthmet.2024.117772","DOIUrl":"10.1016/j.synthmet.2024.117772","url":null,"abstract":"<div><div>The low-voltage operation of blue organic light-emitting diodes (OLEDs) is critical for reducing power consumption and improving device lifetime. This review briefly summarizes the history and origin of low-voltage electroluminescence and its realization in recent reports. In particular, upconversion OLEDs, which use the charge transfer state as an intermediate state to facilitate blue emission via triplet–triplet annihilation, present a promising solution. Thus, continued efforts aimed at reducing the driving voltage, including the exploration of new materials and device structures, are expected to significantly contribute to expanding the applications of blue OLEDs.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117772"},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-13DOI: 10.1016/j.synthmet.2024.117769
Yuqing Cao , Ling Zhu , Shuai Chen , Jie Fang , Lishan Liang , Youliang Shen
Metal based products are widely used, but they are susceptible to corrosion from environmental media, thereby affecting their performances and lifespan. Conducting polymers (CPs), as a series of important materials in organic electronics, have shown extensive corrosion prevention applications in fields such as ships and marine facilities, grounding system equipment, and military facilities, etc. Their development provides great safety, economic and social values, and has been one focus of academic and industrial circles. This is due to the unique reversible redox properties and tunability of CPs, which not only enable the rapid formation of passivation layer on the metal surface to prevent further corrosion from occurring. But at the same time, the coatings can be optimized according to different application requirements. This paper emphasizes the promising working mechanisms of CPs in anticorrosion field, introduces the commonly used methods for effectiveness evaluation, and also significantly discusses the aspects of their material system modulation and practical application. The existing challenges are also highlighted and future developments are prospected in detail. It is hoped to enlighten and drive scholars and technicians working in various cross-cutting areas covering anticorrosion, coatings, polymers, composites, and organic electronics, etc.
{"title":"Conducting polymers based composite materials towards anticorrosion applications","authors":"Yuqing Cao , Ling Zhu , Shuai Chen , Jie Fang , Lishan Liang , Youliang Shen","doi":"10.1016/j.synthmet.2024.117769","DOIUrl":"10.1016/j.synthmet.2024.117769","url":null,"abstract":"<div><div>Metal based products are widely used, but they are susceptible to corrosion from environmental media, thereby affecting their performances and lifespan. Conducting polymers (CPs), as a series of important materials in organic electronics, have shown extensive corrosion prevention applications in fields such as ships and marine facilities, grounding system equipment, and military facilities, etc. Their development provides great safety, economic and social values, and has been one focus of academic and industrial circles. This is due to the unique reversible redox properties and tunability of CPs, which not only enable the rapid formation of passivation layer on the metal surface to prevent further corrosion from occurring. But at the same time, the coatings can be optimized according to different application requirements. This paper emphasizes the promising working mechanisms of CPs in anticorrosion field, introduces the commonly used methods for effectiveness evaluation, and also significantly discusses the aspects of their material system modulation and practical application. The existing challenges are also highlighted and future developments are prospected in detail. It is hoped to enlighten and drive scholars and technicians working in various cross-cutting areas covering anticorrosion, coatings, polymers, composites, and organic electronics, etc.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117769"},"PeriodicalIF":4.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.synthmet.2024.117768
Xiaoming Zhou, Yang Liu
One of the important objectives for the development of enhanced lithium-ion batteries is developing high-performance silicon-based anodes with durable operational capability. Herein, a three-dimensional graphene-decorated core-shell Si/C composite is fabricated by the in-situ polymerization of organic pyrrole molecule and pyrolysis process, in which the melamine formaldehyde resin is subtly used as three-dimensional porous framework to offer abundant loading area for the uniform dispersion of active silicon nanoparticles. Meanwhile, the core-shell structure deriving from polypyrrole in the composite can effectively buffer the volume change of silicon ingredient and avoid the direct contact with the electrolyte during the cycling process, leading to the improved structural stability and electrochemical performance. The outermost layer of graphene nanosheets is designed to enhance the electrical conductivity of the electrode. As a result, the synthesized Si/C/graphene composite exhibits a high capacity and excellent cycling performance. This work reveals that combining a three-dimensional carbon substrate with a core-shell structure might be a promising solution for anode materials with obvious volume transformation.
{"title":"Preparation of core-shell Si/C/graphene composite for high-performance lithium-ion battery anodes","authors":"Xiaoming Zhou, Yang Liu","doi":"10.1016/j.synthmet.2024.117768","DOIUrl":"10.1016/j.synthmet.2024.117768","url":null,"abstract":"<div><div>One of the important objectives for the development of enhanced lithium-ion batteries is developing high-performance silicon-based anodes with durable operational capability. Herein, a three-dimensional graphene-decorated core-shell Si/C composite is fabricated by the in-situ polymerization of organic pyrrole molecule and pyrolysis process, in which the melamine formaldehyde resin is subtly used as three-dimensional porous framework to offer abundant loading area for the uniform dispersion of active silicon nanoparticles. Meanwhile, the core-shell structure deriving from polypyrrole in the composite can effectively buffer the volume change of silicon ingredient and avoid the direct contact with the electrolyte during the cycling process, leading to the improved structural stability and electrochemical performance. The outermost layer of graphene nanosheets is designed to enhance the electrical conductivity of the electrode. As a result, the synthesized Si/C/graphene composite exhibits a high capacity and excellent cycling performance. This work reveals that combining a three-dimensional carbon substrate with a core-shell structure might be a promising solution for anode materials with obvious volume transformation.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117768"},"PeriodicalIF":4.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.synthmet.2024.117766
Arindam Das, Indrani Chakraborti, Udayan Basak, Dhruba P. Chatterjee
Polyaniline (PANI) has received significant attention as conductive polymer owing to its simple and cost effective method of synthesis, light weight, environmentally benign nature etc. Furthermore, it offers many attractive features such as high conductivity, availability in different oxidation states, doping-dedoping using simple acid/base chemistry etc. Nanostructured PANI has been found to be even more impactful as single material or as component in composites. The mechanism behind oxidative polymerization of aniline is well researched and it has been found that supramolecular organization of the oligoanilines produced during aniline polymerization, dictates the fate of the final PANI chains. Thus, by judicious control over the structure as well as number of the oligomers, via manipulation of the polymerization parameters or by externally added oligomers, a significant degree of control over the PANI chain lengths, helicity or their morphology may be exercised. Besides generating potential polymeric chains of various utility, the oligomers themselves have been reported to be pretty effective in various similar applications. There are numerous reports and many reviews which explore the synthesis and applications of PANI chains and the role of oligoanilines. The present report revisits the recent progress in the field and further highlight the key role of the oligoanilines in design, synthesis and applications of PANI either as bulk material or composite component.
聚苯胺(PANI)因其合成方法简单、成本效益高、重量轻、对环境无害等特点,已成为备受关注的导电聚合物。此外,聚苯胺还具有许多吸引人的特性,如高导电性、不同氧化态的可用性、使用简单的酸碱化学进行掺杂等。人们发现,纳米结构的 PANI 作为单一材料或复合材料的成分,具有更大的影响力。人们对苯胺氧化聚合的机理进行了深入研究,发现苯胺聚合过程中产生的低聚苯胺的超分子组织决定了最终 PANI 链的命运。因此,通过操纵聚合参数或外部添加低聚物来明智地控制低聚物的结构和数量,可以在很大程度上控制 PANI 链的长度、螺旋度或其形态。据报道,低聚物本身除了可以生成各种用途的潜在聚合物链外,在各种类似应用中也相当有效。许多报告和评论都探讨了 PANI 链的合成和应用以及低聚苯胺的作用。本报告回顾了该领域的最新进展,并进一步强调了低聚苯胺在 PANI 的设计、合成和应用中的关键作用,无论是作为块状材料还是复合成分。
{"title":"Pivotal role of oligoanilines as regulator of polyaniline chain growth, helicity and overall morphology","authors":"Arindam Das, Indrani Chakraborti, Udayan Basak, Dhruba P. Chatterjee","doi":"10.1016/j.synthmet.2024.117766","DOIUrl":"10.1016/j.synthmet.2024.117766","url":null,"abstract":"<div><div>Polyaniline (PANI) has received significant attention as conductive polymer owing to its simple and cost effective method of synthesis, light weight, environmentally benign nature etc. Furthermore, it offers many attractive features such as high conductivity, availability in different oxidation states, doping-dedoping using simple acid/base chemistry etc. Nanostructured PANI has been found to be even more impactful as single material or as component in composites. The mechanism behind oxidative polymerization of aniline is well researched and it has been found that supramolecular organization of the oligoanilines produced during aniline polymerization, dictates the fate of the final PANI chains. Thus, by judicious control over the structure as well as number of the oligomers, via manipulation of the polymerization parameters or by externally added oligomers, a significant degree of control over the PANI chain lengths, helicity or their morphology may be exercised. Besides generating potential polymeric chains of various utility, the oligomers themselves have been reported to be pretty effective in various similar applications. There are numerous reports and many reviews which explore the synthesis and applications of PANI chains and the role of oligoanilines. The present report revisits the recent progress in the field and further highlight the key role of the oligoanilines in design, synthesis and applications of PANI either as bulk material or composite component.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117766"},"PeriodicalIF":4.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}