首页 > 最新文献

Plant, Cell & Environment最新文献

英文 中文
Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. 同型半胱氨酸 S-甲基转移酶 3 积极调节玉米的耐镉性
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-11-01 DOI: 10.1111/pce.15244
Kaina Lin, Kewen Xu, Yiqing Chen, Yifan Lu, Meixue Zhou, Fangbin Cao

The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.

农业土壤中的镉(Cd)污染日益严重,对人类健康和全球粮食安全构成了重大威胁。植物启动了一系列机制来降低镉的毒性。然而,人们对玉米对镉毒性的反应仍然知之甚少。在这项研究中,我们发现编码高半胱氨酸 S-甲基转移酶家族蛋白的 ZmHMT3 是玉米耐镉性的调控因子。亚细胞定位和原位 PCR 显示,ZmHMT3 定位于细胞质中,主要在韧皮部表达。ZmHMT3 的过表达增强了镉耐受性,并降低了芽和根中的镉浓度。与此相反,ZmHMT3 突变体削弱了镉耐受性,但并不改变芽中的镉浓度。在水稻中异源过表达 ZmHMT3 可增强镉耐受性并降低谷粒的镉浓度。转录组分析表明,ZmHMT3 能上调胁迫响应基因的表达,特别是谷胱甘肽 S-转移酶(GSTs)和转录因子(包括 MYBs、NACs 和 WRKYs),并能调节不同 ATP 结合盒(ABC)转运体的表达,从而增强镉耐受性。总之,这些研究结果凸显了 ZmHMT3 在镉耐受性中的关键作用,是提高玉米优良品种镉耐受性的候选基因。
{"title":"Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize.","authors":"Kaina Lin, Kewen Xu, Yiqing Chen, Yifan Lu, Meixue Zhou, Fangbin Cao","doi":"10.1111/pce.15244","DOIUrl":"10.1111/pce.15244","url":null,"abstract":"<p><p>The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1705-1716"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root Circumnutation Reduces Mechanical Resistance to Soil Penetration. 根系环绕可降低土壤渗透的机械阻力。
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-27 DOI: 10.1111/pce.15219
Frederic Leuther, Daniel Iseskog, Thomas Keller, Mats Larsbo, Bipin K Pandey, Tino Colombi

Root circumnutation, the helical movement of growing root tips, is a widely observed behaviour of plants. However, our mechanistic understanding of the impacts of root circumnutation on root growth and soil exploration is limited. Here, we deployed a unique combination of penetrometer measurements, X-ray computed tomography and time-lapse imaging, and cavity expansion modelling to unveil the effects of root circumnutation on the mechanical resistance to soil penetration. To simulate differences in circumnutation amplitude and frequency occurring among plant species, genotypes and environmental conditions, we inserted cone penetrometers with varying bending stiffness into soil samples that were subjected to orbital movement at different velocities. We show that greater circumnutation intensity, determined by a greater circumnutation frequency in conjunction with a larger circumnutation amplitude, decreased the mechanical resistance to soil penetration. Cavity expansion theory and X-ray computed tomography provided evidence that increased circumnutation intensity reduces friction at the cone-soil interface, indicating a link between root circumnutation and the ability of plants to overcome mechanical constraints to root growth. We conclude that circumnutation is a key component of root foraging behaviour and propose that genotypic differences in circumnutation intensity can be leveraged to adapt crops to soils with greater mechanical resistance.

根环行是生长根尖的螺旋运动,是一种广泛观察到的植物行为。然而,我们对根系环行对根系生长和土壤勘探的影响的机理了解还很有限。在这里,我们将穿透计测量、X 射线计算机断层扫描和延时成像以及空腔扩展建模独特地结合在一起,以揭示根环绕对土壤穿透的机械阻力的影响。为了模拟不同植物物种、基因型和环境条件下出现的环行振幅和频率差异,我们将具有不同弯曲刚度的锥形透度计插入土壤样本中,并以不同的速度进行轨道运动。我们发现,圆周运动强度越大,圆周运动频率越高,圆周运动振幅越大,土壤穿透的机械阻力就越小。空腔扩张理论和 X 射线计算机断层扫描提供的证据表明,环行强度的增加会降低锥体-土壤界面的摩擦力,这表明根环行与植物克服根系生长的机械限制的能力之间存在联系。我们的结论是,圆周运动是根系觅食行为的一个关键组成部分,并提出可以利用圆周运动强度的基因型差异,使作物适应具有更大机械阻力的土壤。
{"title":"Root Circumnutation Reduces Mechanical Resistance to Soil Penetration.","authors":"Frederic Leuther, Daniel Iseskog, Thomas Keller, Mats Larsbo, Bipin K Pandey, Tino Colombi","doi":"10.1111/pce.15219","DOIUrl":"10.1111/pce.15219","url":null,"abstract":"<p><p>Root circumnutation, the helical movement of growing root tips, is a widely observed behaviour of plants. However, our mechanistic understanding of the impacts of root circumnutation on root growth and soil exploration is limited. Here, we deployed a unique combination of penetrometer measurements, X-ray computed tomography and time-lapse imaging, and cavity expansion modelling to unveil the effects of root circumnutation on the mechanical resistance to soil penetration. To simulate differences in circumnutation amplitude and frequency occurring among plant species, genotypes and environmental conditions, we inserted cone penetrometers with varying bending stiffness into soil samples that were subjected to orbital movement at different velocities. We show that greater circumnutation intensity, determined by a greater circumnutation frequency in conjunction with a larger circumnutation amplitude, decreased the mechanical resistance to soil penetration. Cavity expansion theory and X-ray computed tomography provided evidence that increased circumnutation intensity reduces friction at the cone-soil interface, indicating a link between root circumnutation and the ability of plants to overcome mechanical constraints to root growth. We conclude that circumnutation is a key component of root foraging behaviour and propose that genotypic differences in circumnutation intensity can be leveraged to adapt crops to soils with greater mechanical resistance.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1608-1620"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Arabidopsis PIP1;1 Aquaporin Represses Lateral Root Development and Nitrate Uptake Under Low Nitrate Availability. 拟南芥 PIP1;1 水蒸气蛋白抑制低硝酸盐供应下的侧根发育和硝酸盐吸收
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-27 DOI: 10.1111/pce.15222
Thayssa Rabelo Schley, Ting Zhu, Birgit Geist, Amandine Crabos, Daniela Dietrich, Regina A Alandes, Malcolm Bennett, Philippe Nacry, Anton R Schäffner

Nitrate (NO3 -) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO3 - deficiency to systematically approach the impact of PIPs under these conditions. NO3 - deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO3 - is scarce. Indeed, PIP1;1 compromises root and shoot NO3 - accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO3 - deficiency. Thus, LR plasticity and NO3 - uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO3 --deficient conditions.

硝酸盐(NO3-)缺乏会降低根系的吸水能力和根系的水力传导。这种适应性反应与质膜固有蛋白(PIP)水蒸发蛋白的丰度和活性降低有关。因此,我们筛选了一整套在 NO3 缺乏条件下生长的拟南芥哌啶功能缺失突变体的根系结构变化,以系统地研究 PIPs 在这些条件下的影响。与野生型植株强烈改变的 LR 参数相比,NO3 缺乏导致特定 pip 单一突变体的反应减弱。特别是,pip1;1 的 LR 长度和 LR 密度相对减少较少,这表明当 NO3 缺乏时,PIP1;1 会抑制 LR 的发育。事实上,PIP1;1 在早期发育阶段会影响根和芽的 NO3 - 积累。荧光 VENUS-PIP1;1 融合显示,当 NO3 缺乏时,PIP1;1 在周皮、内皮和新生 LR 的侧面受到特异性抑制。因此,在 NO3 缺乏的条件下,幼苗发育过程中 LR 的可塑性和 NO3 吸收受到涉及水汽素(PIP1;1)和硝酸盐积累的相互作用机制的影响。
{"title":"The Arabidopsis PIP1;1 Aquaporin Represses Lateral Root Development and Nitrate Uptake Under Low Nitrate Availability.","authors":"Thayssa Rabelo Schley, Ting Zhu, Birgit Geist, Amandine Crabos, Daniela Dietrich, Regina A Alandes, Malcolm Bennett, Philippe Nacry, Anton R Schäffner","doi":"10.1111/pce.15222","DOIUrl":"10.1111/pce.15222","url":null,"abstract":"<p><p>Nitrate (NO<sub>3</sub> <sup>-</sup>) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO<sub>3</sub> <sup>-</sup> deficiency to systematically approach the impact of PIPs under these conditions. NO<sub>3</sub> <sup>-</sup> deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO<sub>3</sub> <sup>-</sup> is scarce. Indeed, PIP1;1 compromises root and shoot NO<sub>3</sub> <sup>-</sup> accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO<sub>3</sub> <sup>-</sup> deficiency. Thus, LR plasticity and NO<sub>3</sub> <sup>-</sup> uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO<sub>3</sub> <sup>-</sup>-deficient conditions.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1500-1513"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize DLR1/NHX7 Is Required for Root Development Under Potassium Deficiency. 缺钾条件下玉米根系发育需要 DLR1/NHX7
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-23 DOI: 10.1111/pce.15246
Kang Guo, Daojun Li, Yan Li, Xiaoqing Wang, Chunfei Wang, Yanbin Zhu, Chengyun Wu, Zhubing Hu

Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K+)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K+ deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na+/H+ antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.

根系结构(RSA)是植物的一个重要性状,它决定了植物吸收水分和养分的能力。在这项研究中,我们描述了一种根系发育存在营养依赖性缺陷的突变体,它同时影响主根和侧根(LRs)。这种突变体是通过筛选 LR 发育缺陷而发现的,被命名为 dlr1-1。dlr1-1 突变体表现出 LR 出现障碍,而不是 LR 初级体(LRP)形成缺陷,尤其是在钾(K+)剥夺条件下。这种缺陷可能源于 dlr1-1 突变导致的细胞增殖抑制。钾(K+)剥夺会导致水杨酸(SA)在 dlr1-1 突变体中积累,这与 SA 生物合成基因的上调是一致的。此外,向野生型植株(B73)施用外源 SA 能模拟 dlr1-1 的表型。相反,用 2- 氨基茚满-2-膦酸(一种 SA 生物合成抑制剂)处理 dlr1-1 突变体,可部分恢复 LR 的萌发,这表明 SA 水平的升高可能是造成突变体发育缺陷的原因。MutMap 分析和等位基因测试证实,dlr1-1 突变体的表型是由于 Na+/H+ 反转运体 ZmNHX7 的缺失造成的。此外,施加 NaCl 会加剧 dlr1-1 突变体的表型,这表明 dlr1-1 突变体的根缺陷取决于离子平衡。总之,我们的研究结果表明,玉米 DLR1/NHX7 在钾匮乏条件下对根的发育至关重要。
{"title":"Maize DLR1/NHX7 Is Required for Root Development Under Potassium Deficiency.","authors":"Kang Guo, Daojun Li, Yan Li, Xiaoqing Wang, Chunfei Wang, Yanbin Zhu, Chengyun Wu, Zhubing Hu","doi":"10.1111/pce.15246","DOIUrl":"10.1111/pce.15246","url":null,"abstract":"<p><p>Root System Architecture (RSA) is a crucial plant trait that governs a plant's ability to absorb water and nutrients. In this study, we describe a mutant with nutrient-dependent defects in root development, affecting both the primary root and lateral roots (LRs). This mutant, identified through a screen for defects in LR development, has been designated dlr1-1. The dlr1-1 mutant exhibits impaired LR emergence rather than defects in the LR primordium (LRP) formation, particularly under potassium (K<sup>+</sup>)-deprivation conditions. This impairment likely stems from inhibited cell proliferation caused by the dlr1-1 mutation. K<sup>+</sup> deprivation specifically leads to the accumulation of salicylic acid (SA) in the dlr1-1 mutant, consistent with the upregulation of SA biosynthesis genes. Moreover, exogenous application of SA to wild-type plants (B73) mimics the dlr1-1 phenotype. Conversely, treatment of the dlr1-1 mutant with 2-aminoindane-2-phosphonic acid, an SA biosynthesis inhibitor, partially restores LR emergence, indicating that elevated SA levels may be responsible for the mutant's developmental defects. MutMap analysis and allelism tests confirmed that the phenotypes of the dlr1-1 mutant results from the loss of the Na<sup>+</sup>/H<sup>+</sup> antiporter, ZmNHX7. Additionally, the application of NaCl exacerbates the dlr1-1 mutant phenotype, suggesting that the root defects in dlr1-1 mutant depend on ion homoeostasis. In conclusion, our findings demonstrate that maize DLR1/NHX7 is essential for root development under potassium deprivation.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1329-1343"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusive Phyllosphere Microbiome Potentially Regulates Harm and Defence Interactions Between Stephanitis nashi and Its Crabapple Host. 扩散性叶球微生物组可能调控山梗菜和蟹爪兰寄主之间的危害和防御相互作用。
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-23 DOI: 10.1111/pce.15235
Tong-Pu Li, Jia-Chu Xie, Chen-Hao Wang, Lv-Quan Zhao, De-Jun Hao

Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.

梨花边蝽(Stephanitis nashi)是一种重要的食草害虫,其所携带的多种微生物组对蟹爪兰(Malus sp.)宿主的适应性至关重要。然而,梨花蕾蝽和植物相关微生物组对植物对害虫危害反应的相互影响仍不清楚。本研究发现,S. nashi 的损害显著改变了细菌群落结构,并降低了蟹爪兰叶球中细菌的均匀度。值得注意的是,沙蚕体内的细菌多样性明显低于环境中的细菌多样性,这可能受到昆虫发育阶段、细菌扩散阶段以及内共生菌种类数量和丰度的影响。在刺芹和邻近植物环境之间观察到广泛的细菌相关性和扩散效应,表现为细菌多样性逐渐减少,从土壤到刺芹叶球的细菌获得率增加。相应地,S. nashi 对蟹爪兰叶片的代谢反应产生了重大影响,改变了维生素、氨基酸和脂质代谢等途径。此外,关联分析将这些代谢变化与叶球细菌的变化联系起来,强调了扩散性叶球微生物群在调节 S. nashi 与蟹爪兰相互作用中的重要作用。这项研究强调了细菌在昆虫和植物之间的扩散效应及其在调节昆虫适应性和植物防御反应中的潜在作用,为植物-昆虫-微生物组之间的相互作用提供了新的见解。
{"title":"Diffusive Phyllosphere Microbiome Potentially Regulates Harm and Defence Interactions Between Stephanitis nashi and Its Crabapple Host.","authors":"Tong-Pu Li, Jia-Chu Xie, Chen-Hao Wang, Lv-Quan Zhao, De-Jun Hao","doi":"10.1111/pce.15235","DOIUrl":"10.1111/pce.15235","url":null,"abstract":"<p><p>Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":"1311-1328"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferritin From Striped Stem Borer (Chilo suppressalis) Oral Secretion Acts as an Effector Helping to Maintain Iron Homoeostasis and Impair Defenses in Rice.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-15 DOI: 10.1111/pce.15386
Shan Yu, Shuai Li, Jing Li, Chen-Yang Wang, Lei Yang, Jing Li, Yue Meng, Xin-Yang Tan, Mao-Feng Jing, Guang-Hua Luo, Ji-Chao Fang, Rui Ji

The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood. In this study, hallmarks of ferroptosis-like plant defense response, such as the reprogramming of ferroptosis-related genes, reduced glutathione levels, accumulation of ferric ion, and enhanced lipid peroxidation by reactive oxygen species (ROS), were detected in rice subjected to SSB infestation and SSB OSs treatment. Furthermore, we identified and characterized a protein from SSB OSs, the ferritin CsFer1, which plays a critical role in the regulation of plant iron homoeostasis. CsFer1 was shown to possess Fe2+ binding capacity and ferroxidase activity. Through recombinant CsFer1 protein treatment, overexpression of CsFer1 in rice and SSB larvae with silencing CsFer1 feeding in rice, we found that CsFer1 helped maintain iron homoeostasis under SSB infestation, suppressing H2O2 and JA accumulation, ultimately compromising rice resistance to herbivorous pests. Moreover, such a phenomenon about the regulation of iron homoeostasis and suppression of insect resistance was observed in the CsFer1 overexpressed tobacco. Collectively, these findings suggest that CsFer1 functions as an effector involved in the regulation of iron homoeostasis- and lipid peroxidation-related plant defense during plant-insect interaction.

{"title":"Ferritin From Striped Stem Borer (Chilo suppressalis) Oral Secretion Acts as an Effector Helping to Maintain Iron Homoeostasis and Impair Defenses in Rice.","authors":"Shan Yu, Shuai Li, Jing Li, Chen-Yang Wang, Lei Yang, Jing Li, Yue Meng, Xin-Yang Tan, Mao-Feng Jing, Guang-Hua Luo, Ji-Chao Fang, Rui Ji","doi":"10.1111/pce.15386","DOIUrl":"https://doi.org/10.1111/pce.15386","url":null,"abstract":"<p><p>The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood. In this study, hallmarks of ferroptosis-like plant defense response, such as the reprogramming of ferroptosis-related genes, reduced glutathione levels, accumulation of ferric ion, and enhanced lipid peroxidation by reactive oxygen species (ROS), were detected in rice subjected to SSB infestation and SSB OSs treatment. Furthermore, we identified and characterized a protein from SSB OSs, the ferritin CsFer1, which plays a critical role in the regulation of plant iron homoeostasis. CsFer1 was shown to possess Fe<sup>2+</sup> binding capacity and ferroxidase activity. Through recombinant CsFer1 protein treatment, overexpression of CsFer1 in rice and SSB larvae with silencing CsFer1 feeding in rice, we found that CsFer1 helped maintain iron homoeostasis under SSB infestation, suppressing H<sub>2</sub>O<sub>2</sub> and JA accumulation, ultimately compromising rice resistance to herbivorous pests. Moreover, such a phenomenon about the regulation of iron homoeostasis and suppression of insect resistance was observed in the CsFer1 overexpressed tobacco. Collectively, these findings suggest that CsFer1 functions as an effector involved in the regulation of iron homoeostasis- and lipid peroxidation-related plant defense during plant-insect interaction.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-15 DOI: 10.1111/pce.15357
Radek Bezvoda, Yazmín Mónica Landeo-Ríos, Zdeňka Kubátová, Eva Kollárová, Ivan Kulich, Wolfgang Busch, Viktor Žárský, Fatima Cvrčková

To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.

{"title":"A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis.","authors":"Radek Bezvoda, Yazmín Mónica Landeo-Ríos, Zdeňka Kubátová, Eva Kollárová, Ivan Kulich, Wolfgang Busch, Viktor Žárský, Fatima Cvrčková","doi":"10.1111/pce.15357","DOIUrl":"https://doi.org/10.1111/pce.15357","url":null,"abstract":"<p><p>To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-14 DOI: 10.1111/pce.15349
Jean V Wilkening, Todd E Dawson, Sally E Thompson

Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.

{"title":"Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery.","authors":"Jean V Wilkening, Todd E Dawson, Sally E Thompson","doi":"10.1111/pce.15349","DOIUrl":"https://doi.org/10.1111/pce.15349","url":null,"abstract":"<p><p>Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZjMAPKK4 Interacted With ZjNAC78 Regulates Cold Tolerance Response in Jujube.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-14 DOI: 10.1111/pce.15381
Qingfang Wang, Chaofeng Qi, Linxia Wang, Min Li, Yahong Niu, Noor Muhammad, Mengjun Liu, Zhiguo Liu, Lixin Wang

Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated. Thus, in the current study, it was found that ZjMAPKK4 was significantly upregulated compared with other ZjMAPK cascade genes after cold treatment. Heterologous transformation of ZjMAPKK4 in Arabidopsis, VIGS-induced ZjMAPKK4 transiently silencing and overexpression of ZjMAPKK4 in jujube callus assays demonstrated that ZjMAPKK4 positively regulated the cold resistance of jujube. Furthermore, to elucidate the molecular regulation mechanism behind ZjMAPKK4 under cold stress, 25 key DEGs were screened out by transcriptome analysis. Yeast screening cDNA library, yeast two-hybrid, LCA and Co-IP analysis showed ZjMAPKK4 interacted with ZjNAC78 and VIGS-induced ZjNAC78 silenced sour jujube plants showed cold sensitivity and the expression level of cold response genes were downregulated after cold stress. All the results demonstrated that ZjMAPKK4 could interact with ZjNAC78 to regulate the downstream ZjICE-ZjCBF genes to regulate the cold tolerance of jujube.

{"title":"ZjMAPKK4 Interacted With ZjNAC78 Regulates Cold Tolerance Response in Jujube.","authors":"Qingfang Wang, Chaofeng Qi, Linxia Wang, Min Li, Yahong Niu, Noor Muhammad, Mengjun Liu, Zhiguo Liu, Lixin Wang","doi":"10.1111/pce.15381","DOIUrl":"https://doi.org/10.1111/pce.15381","url":null,"abstract":"<p><p>Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated. Thus, in the current study, it was found that ZjMAPKK4 was significantly upregulated compared with other ZjMAPK cascade genes after cold treatment. Heterologous transformation of ZjMAPKK4 in Arabidopsis, VIGS-induced ZjMAPKK4 transiently silencing and overexpression of ZjMAPKK4 in jujube callus assays demonstrated that ZjMAPKK4 positively regulated the cold resistance of jujube. Furthermore, to elucidate the molecular regulation mechanism behind ZjMAPKK4 under cold stress, 25 key DEGs were screened out by transcriptome analysis. Yeast screening cDNA library, yeast two-hybrid, LCA and Co-IP analysis showed ZjMAPKK4 interacted with ZjNAC78 and VIGS-induced ZjNAC78 silenced sour jujube plants showed cold sensitivity and the expression level of cold response genes were downregulated after cold stress. All the results demonstrated that ZjMAPKK4 could interact with ZjNAC78 to regulate the downstream ZjICE-ZjCBF genes to regulate the cold tolerance of jujube.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stand Diversity Does Not Mitigate Increased Herbivory on Climate-Matched Oaks in an Assisted Migration Experiment.
IF 6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-13 DOI: 10.1111/pce.15383
Juri A Felix, Philip C Stevenson, Nadia Barsoum, Julia Koricheva

Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored. Using the Climate Match Experiment which manipulates both tree climatic provenance and stand diversity, we compared growth, insect herbivory and leaf traits of pedunculate oaks (Quercus robur) of local and Italian provenances in monocultures, provenance mixtures or species mixtures. Additionally, we investigated whether tree apparency and light availability cause variation in leaf traits and herbivory and tested whether these factors were influenced by stand diversity. We found that Italian oaks were subject to greater herbivore damage than those of local English provenance regardless of stand diversity and that insect herbivory in Italian oaks was higher on more apparent trees. Italian oaks also had lower concentrations of hydrolysable tannins than English oaks, but tannin concentrations were poor predictors of herbivory. Additionally, we show that leaf trait variation is strongly associated with differences in light availability.

{"title":"Stand Diversity Does Not Mitigate Increased Herbivory on Climate-Matched Oaks in an Assisted Migration Experiment.","authors":"Juri A Felix, Philip C Stevenson, Nadia Barsoum, Julia Koricheva","doi":"10.1111/pce.15383","DOIUrl":"https://doi.org/10.1111/pce.15383","url":null,"abstract":"<p><p>Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored. Using the Climate Match Experiment which manipulates both tree climatic provenance and stand diversity, we compared growth, insect herbivory and leaf traits of pedunculate oaks (Quercus robur) of local and Italian provenances in monocultures, provenance mixtures or species mixtures. Additionally, we investigated whether tree apparency and light availability cause variation in leaf traits and herbivory and tested whether these factors were influenced by stand diversity. We found that Italian oaks were subject to greater herbivore damage than those of local English provenance regardless of stand diversity and that insect herbivory in Italian oaks was higher on more apparent trees. Italian oaks also had lower concentrations of hydrolysable tannins than English oaks, but tannin concentrations were poor predictors of herbivory. Additionally, we show that leaf trait variation is strongly associated with differences in light availability.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant, Cell & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1