Pub Date : 2022-02-26DOI: 10.14502/tekstilec.65.2021018
Mong Hien Thi Nguyen, Tuong Quan Vo, Mai Huong Bui, Van Anh Pham
This study presents an algorithm to automatically extract the size and body shape of a 3D scanned model. The methods used in this research include factor analysis, linear regression equation, cluster analysis, and discriminant analysis. These are used to analyze the body’s shape and choose the best primary dimensions for establishing the sizing system table. Authors use fuzzy logic to establish the mathematical model. In this model, the input variables are the inseam height and the neck girth measurements, and the output variables are the numbers of the human size coding and body shape. In addition, the rotation matrix and the optimal function are used to write an algorithm to estimate the neck girth and inseam measurements. Furthermore, a simple approach based on vertices and surface normal vector data, together with optimal searching, is adapted to estimate the primary dimensions. This estimation algorithm, combined with the fuzzy logic model, makes the automated process of extracting the size and body shape possible. The findings of the study suggest a new research method for quickly informing people about their body shape. This supports purchasing clothes and designing tailored clothing. The automatic algorithm will be very useful for buying clothes face-to-face or online.
{"title":"The Algorithm to Automatically Extract Body Sizes and Shapes","authors":"Mong Hien Thi Nguyen, Tuong Quan Vo, Mai Huong Bui, Van Anh Pham","doi":"10.14502/tekstilec.65.2021018","DOIUrl":"https://doi.org/10.14502/tekstilec.65.2021018","url":null,"abstract":"This study presents an algorithm to automatically extract the size and body shape of a 3D scanned model. The methods used in this research include factor analysis, linear regression equation, cluster analysis, and discriminant analysis. These are used to analyze the body’s shape and choose the best primary dimensions for establishing the sizing system table. Authors use fuzzy logic to establish the mathematical model. In this model, the input variables are the inseam height and the neck girth measurements, and the output variables are the numbers of the human size coding and body shape. In addition, the rotation matrix and the optimal function are used to write an algorithm to estimate the neck girth and inseam measurements. Furthermore, a simple approach based on vertices and surface normal vector data, together with optimal searching, is adapted to estimate the primary dimensions. This estimation algorithm, combined with the fuzzy logic model, makes the automated process of extracting the size and body shape possible. The findings of the study suggest a new research method for quickly informing people about their body shape. This supports purchasing clothes and designing tailored clothing. The automatic algorithm will be very useful for buying clothes face-to-face or online.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48930418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-26DOI: 10.14502/tekstilec.65.2021048
Dibyendu Bikash Datta, Partha Seal, Sanjana Mariam George, Senjuti Roy
One reason driving lingerie sales in India is growing e-commerce and a rising demand for premium brands. With improved technologies, many lingerie producers are using delicate fabrics and intricate lace trimmings for lingerie of different styles to enhance lingerie demand in the country. Rising demand for lingerie sets, a growing middle-class population, and an increasing number of financially independent women are all driving this development. Many professional opportunities for women, and their access to round-the-clock internet services, have enabled them to gain trust, feel inspired, and be praised for their ability to decide. Their familiarity with technological advances like internet access via smart phones has enabled the Indian lingerie industry to shift their focus from an earlier marketing strategy of “touch and feel,” being available only in retail stores, to going online and taking the additional risk of advertising their product line on e-commerce platforms. This study found factors that influence women’s buying decisions while shopping online for lingerie products. Questionnaires were distributed to Indian women consumers to gauge their online buying intentions and multiple linear regressions were used as a statistical method to evaluate the formed hypotheses. The study revealed that convenience of shopping, variety of brands, quality of products, online discounts, delivery services and secure online payment have a positive impact on the buying decisions of Indian women regarding lingerie products. The research findings will serve as a baseline for understanding the major aspects that influence retailers’ online lingerie buying decisions.
{"title":"Factors Influencing Women’s Buying Decisions while Shopping for Lingerie Products Online","authors":"Dibyendu Bikash Datta, Partha Seal, Sanjana Mariam George, Senjuti Roy","doi":"10.14502/tekstilec.65.2021048","DOIUrl":"https://doi.org/10.14502/tekstilec.65.2021048","url":null,"abstract":"One reason driving lingerie sales in India is growing e-commerce and a rising demand for premium brands. With improved technologies, many lingerie producers are using delicate fabrics and intricate lace trimmings for lingerie of different styles to enhance lingerie demand in the country. Rising demand for lingerie sets, a growing middle-class population, and an increasing number of financially independent women are all driving this development. Many professional opportunities for women, and their access to round-the-clock internet services, have enabled them to gain trust, feel inspired, and be praised for their ability to decide. Their familiarity with technological advances like internet access via smart phones has enabled the Indian lingerie industry to shift their focus from an earlier marketing strategy of “touch and feel,” being available only in retail stores, to going online and taking the additional risk of advertising their product line on e-commerce platforms. This study found factors that influence women’s buying decisions while shopping online for lingerie products. Questionnaires were distributed to Indian women consumers to gauge their online buying intentions and multiple linear regressions were used as a statistical method to evaluate the formed hypotheses. The study revealed that convenience of shopping, variety of brands, quality of products, online discounts, delivery services and secure online payment have a positive impact on the buying decisions of Indian women regarding lingerie products. The research findings will serve as a baseline for understanding the major aspects that influence retailers’ online lingerie buying decisions.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45605353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-26DOI: 10.14502/tekstilec.65.2021027
Kura Alemayehu Beyene, Chirato Godana Korra
Nowadays, modeling is used for evaluating and controlling the weft crimp percentage before and after manufacturing plain woven fabrics. Also, modeling assists in estimating and evaluating crimp percentage without complex and time-consuming experimental procedures. The purpose of this study is to develop a linear regression model that can be employed for the prediction and evaluation of the weft crimp percentage of plain woven fabric. For this study, nine plain woven fabrics of 100% cotton were produced with three different wefts thread densities and weft yarn linear densities. From the findings, the effects of weft count and weft density on the weft crimp percentage of the fabrics were found to be statistically significant with a confidence interval of 95%. The weft crimp percentage showed a positive correlation with weft count and weft density. The weft count and weft density have multicollinearity in the model because the variance inflation factors (VIFs) values are greater than one, which are 1.70 & 1.20, respectively. The model was tested by correlating measured crimp percentage values obtained with a crimp tester instrument to the crimp percentage values calculated by a developed linear model equation. The result disclosed that the model was strongly correlated, with a confidence interval of 95% (R² of 0.9518). Furthermore, the significance value of the t-test is not significant for both the measured weft crimp percentage values and the calculated weft crimp percentage values, which means that they do not differ significantly. Crimp percentage is impacted by fiber, yarn, fabric structural parameters and machine setting parameters. This makes the crimp percentage difficult to control and study, but this developed model can be easily used by manufacturers or researchers for controlling and studying purposes. Thus, the model can be used to produce a fabric with a pre-controlled weft crimp percentage. It can also be used to evaluate and predict the weft crimp percentage before and after fabric production.
{"title":"Modeling for the Prediction and Evaluation of the Crimp Percentage of Plain Woven Fabric Based on Yarn Count and Thread Density","authors":"Kura Alemayehu Beyene, Chirato Godana Korra","doi":"10.14502/tekstilec.65.2021027","DOIUrl":"https://doi.org/10.14502/tekstilec.65.2021027","url":null,"abstract":"Nowadays, modeling is used for evaluating and controlling the weft crimp percentage before and after manufacturing plain woven fabrics. Also, modeling assists in estimating and evaluating crimp percentage without complex and time-consuming experimental procedures. The purpose of this study is to develop a linear regression model that can be employed for the prediction and evaluation of the weft crimp percentage of plain woven fabric. For this study, nine plain woven fabrics of 100% cotton were produced with three different wefts thread densities and weft yarn linear densities. From the findings, the effects of weft count and weft density on the weft crimp percentage of the fabrics were found to be statistically significant with a confidence interval of 95%. The weft crimp percentage showed a positive correlation with weft count and weft density. The weft count and weft density have multicollinearity in the model because the variance inflation factors (VIFs) values are greater than one, which are 1.70 & 1.20, respectively. The model was tested by correlating measured crimp percentage values obtained with a crimp tester instrument to the crimp percentage values calculated by a developed linear model equation. The result disclosed that the model was strongly correlated, with a confidence interval of 95% (R² of 0.9518). Furthermore, the significance value of the t-test is not significant for both the measured weft crimp percentage values and the calculated weft crimp percentage values, which means that they do not differ significantly. Crimp percentage is impacted by fiber, yarn, fabric structural parameters and machine setting parameters. This makes the crimp percentage difficult to control and study, but this developed model can be easily used by manufacturers or researchers for controlling and studying purposes. Thus, the model can be used to produce a fabric with a pre-controlled weft crimp percentage. It can also be used to evaluate and predict the weft crimp percentage before and after fabric production.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45498027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-26DOI: 10.14502/tekstilec.65.2021050
M. Riabchykov, A. Alexandrov, R. Trishch, A. Nikulina, N. Korolyova
The article studies the properties of textile materials filled with magnetite nanoparticles. These materials have great prospects for creating smart clothes. They have both magnetic and hygienic properties. Chemical transformations in the production of magnetic nanopowder are described. The end product of the process is a mixture of oxides of divalent and ferric iron. The resulting mixture has magnetic properties. Conducted micro and macro experiments showed sufficient adhesion retention strength of magnetite nanoparticles in a textile material. Microscopic studies of the attachment of magnetic particles to the fibers of a textile material have been conducted. The data obtained in express mode allow us to determine the average mass of a magnetic particle in a textile material, the total number of nanoparticles, and, accordingly, to predict the magnetic force that a textile material saturated with magnetite can possess. The existence of the magnetic properties of a textile material filled with magnetite nanoparticles has been proven. A mathematical model of the dependence of the magnetic attraction force of a textile material on the distance and the number of abrasion cycles has been developed. The directions of the use of magnetic textile materials for the creation of smart clothes are proposed. Potential uses for such materials include sportswear and textiles for the disabled. The developed methods can predict the magnetic strength of the obtained textile materials and evaluate their resistance, which is necessary in the development of smart clothing elements based on these materials.
{"title":"Prospects for the Development of Smart Clothing with the Use of Textile Materials with Magnetic Properties","authors":"M. Riabchykov, A. Alexandrov, R. Trishch, A. Nikulina, N. Korolyova","doi":"10.14502/tekstilec.65.2021050","DOIUrl":"https://doi.org/10.14502/tekstilec.65.2021050","url":null,"abstract":"The article studies the properties of textile materials filled with magnetite nanoparticles. These materials have great prospects for creating smart clothes. They have both magnetic and hygienic properties. Chemical transformations in the production of magnetic nanopowder are described. The end product of the process is a mixture of oxides of divalent and ferric iron. The resulting mixture has magnetic properties. Conducted micro and macro experiments showed sufficient adhesion retention strength of magnetite nanoparticles in a textile material. Microscopic studies of the attachment of magnetic particles to the fibers of a textile material have been conducted. The data obtained in express mode allow us to determine the average mass of a magnetic particle in a textile material, the total number of nanoparticles, and, accordingly, to predict the magnetic force that a textile material saturated with magnetite can possess. The existence of the magnetic properties of a textile material filled with magnetite nanoparticles has been proven. A mathematical model of the dependence of the magnetic attraction force of a textile material on the distance and the number of abrasion cycles has been developed. The directions of the use of magnetic textile materials for the creation of smart clothes are proposed. Potential uses for such materials include sportswear and textiles for the disabled. The developed methods can predict the magnetic strength of the obtained textile materials and evaluate their resistance, which is necessary in the development of smart clothing elements based on these materials.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42472501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-26DOI: 10.14502/tekstilec.65.2021026
D. Kopitar, Ž. Pavlović, Z. Skenderi, Z. Vrljičak
The development of new spinning technologies has produced cheaper yarns and with it, research into the production and application of woven and knitted fabrics from unconventional yarns. The tensile properties of knitted fabrics made of regenerated cellulose fibres (viscose, Tencel™ and modal) of the same count (20 tex) using ring, rotor and air-jet spun yarn were studied. The force/elongation diagram was analysed in order to detect elastic and plastic areas as well as the area of elastoplastic deformations responsible for the behaviour of knitted fabrics. The yarn raw material affects the elastic area of knitted fabrics made from different yarn structures in the course direction whereby the highest elastic area was obtained in the case of ring spun yarns followed by air-jet and finally rotor spun yarns. Regardless of the raw material, the elastoplastic area of the knitted fabric in the wale direction is the lowest for ring spun yarns. There is no visible trend of knitted fabric elastoplastic areas in the wale direction regarding the yarn type and raw material.
{"title":"Comparison of Double Jersey Knitted Fabrics Made of Regenerated Cellulose Conventional and Unconventional Yarns","authors":"D. Kopitar, Ž. Pavlović, Z. Skenderi, Z. Vrljičak","doi":"10.14502/tekstilec.65.2021026","DOIUrl":"https://doi.org/10.14502/tekstilec.65.2021026","url":null,"abstract":"The development of new spinning technologies has produced cheaper yarns and with it, research into the production and application of woven and knitted fabrics from unconventional yarns. The tensile properties of knitted fabrics made of regenerated cellulose fibres (viscose, Tencel™ and modal) of the same count (20 tex) using ring, rotor and air-jet spun yarn were studied. The force/elongation diagram was analysed in order to detect elastic and plastic areas as well as the area of elastoplastic deformations responsible for the behaviour of knitted fabrics. The yarn raw material affects the elastic area of knitted fabrics made from different yarn structures in the course direction whereby the highest elastic area was obtained in the case of ring spun yarns followed by air-jet and finally rotor spun yarns. Regardless of the raw material, the elastoplastic area of the knitted fabric in the wale direction is the lowest for ring spun yarns. There is no visible trend of knitted fabric elastoplastic areas in the wale direction regarding the yarn type and raw material.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47567609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.14502/tekstilec2021.64.298-304
I. Kazani, M. Hylli, P. Berberi
Leather is a material that has been used in different applications for centuries. Today, living in the era of high-tech¬nology, we are surrounded by smart products. For this reason, traditional products must be changed or im¬proved in order to support and make us more comfortable while using them. For instance, the touch screen display in electronics products is a smart phone’s or a tablet computer’s primary input device. Still, traditional leather will not function properly in a cold climate or other specific conditions. To make it conductive in such conditions, the double in-situ polymerization of the pyrrole coating method was used. The aim of this study was to observe the electrical properties of conductive leather. At the same time, it stands up to a wide range of different air temperatures, and relative and absolute humidity. These properties are essential because de¬signers and textile engineers should be familiar with them when they decide to use materials in different smart products. Electricity conductivity tests were carried out in year-round temperatures from 7.5 °C to 28.1 °C, with a relative humidity from 18% to 77% and a vapor air concentration from 2.77 g/kg to 12.46 g/kg. The so-called “multiple-step method” was used to test leather’s electrical resistivity for the first time. The method considers a material’s compressional properties and provides an indicator inherent for a material’s electrical properties, regardless of the mass and shape of samples. The results showed a strong dependence between water vapor air concentration and electrical resistivity, described using the formula ρ = 1.3103 H−1.04 Ωm, with a correlation coefficient of 0.87. There was no relation between relative humidity and electrical resistivity, and resistivity and air temperature. Also, the results confirmed again that changes in the shape of the sample used during tests did not influence the measurement’s results, but supported the appropriateness of the measuring method.
{"title":"Electrical Resistivity of Conductive Leather and Influence of Air Temperature and Humidity","authors":"I. Kazani, M. Hylli, P. Berberi","doi":"10.14502/tekstilec2021.64.298-304","DOIUrl":"https://doi.org/10.14502/tekstilec2021.64.298-304","url":null,"abstract":"Leather is a material that has been used in different applications for centuries. Today, living in the era of high-tech¬nology, we are surrounded by smart products. For this reason, traditional products must be changed or im¬proved in order to support and make us more comfortable while using them. For instance, the touch screen display in electronics products is a smart phone’s or a tablet computer’s primary input device. Still, traditional leather will not function properly in a cold climate or other specific conditions. To make it conductive in such conditions, the double in-situ polymerization of the pyrrole coating method was used. The aim of this study was to observe the electrical properties of conductive leather. At the same time, it stands up to a wide range of different air temperatures, and relative and absolute humidity. These properties are essential because de¬signers and textile engineers should be familiar with them when they decide to use materials in different smart products. Electricity conductivity tests were carried out in year-round temperatures from 7.5 °C to 28.1 °C, with a relative humidity from 18% to 77% and a vapor air concentration from 2.77 g/kg to 12.46 g/kg. The so-called “multiple-step method” was used to test leather’s electrical resistivity for the first time. The method considers a material’s compressional properties and provides an indicator inherent for a material’s electrical properties, regardless of the mass and shape of samples. The results showed a strong dependence between water vapor air concentration and electrical resistivity, described using the formula ρ = 1.3103 H−1.04 Ωm, with a correlation coefficient of 0.87. There was no relation between relative humidity and electrical resistivity, and resistivity and air temperature. Also, the results confirmed again that changes in the shape of the sample used during tests did not influence the measurement’s results, but supported the appropriateness of the measuring method.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43015540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.14502/tekstilec2021.64.317-324
T. Ielina, L. Halavska, N. Ausheva
The aim of the research was to improve the process of knitted products design. The use of modern software helps us predict the physical and mechanical behaviour of materials, using their three-dimensional models. A macro-model of rib-knitted tubular parts was developed in the study. This model allows its implementation into algorithms, describing the peculiarities of the stretching process. Recent findings in the field of 3D modelling and simulation of knitwear behaviour aim at working with models of different scales of structural hierarchy. The use of macro-models provides the opportunity to simplify the geometry and significantly reduce the time required for simulation. Rib stitch structures are among the most popular weft-knitted ones. When using threads of usual stretchability (with breaking elongation that does not exceed 10–12%), the stretchability of some rib stitch structures in the course-wise direction can reach up to 350% and even more. When stretched in the course direction, rib-knitted stitches undergo a number of stages. The stretching process includes: decreasing the width-wise curling; mutual shifting of knit and purl stitches; reducing the curvature of the loop feet and loop heads; pulling the yarn from the loop legs to the loop feet; stretching of the yarn. The assumption was made that such parts of knitted garments as cuffs and borders on sweaters, cuffs on socks, where rib stitch patterns are used, can be described as thin-walled elastic shells. A part of a human body surface, covered with a rib-knitted garment part, can be approximated by a truncated cone. The mid-surface of the shell can be represented as a ruled surface created upon a set of Bezier curves, located along the circumference of the upper and lower bases of the truncated cone. The mathematical description, elaborated in the course of the research, was used for the computer program LastikTube, which was developed to create 3D macro-models of ribbed tubular garments.
{"title":"Macro-Modelling of Rib-Knitted Tubular Parts","authors":"T. Ielina, L. Halavska, N. Ausheva","doi":"10.14502/tekstilec2021.64.317-324","DOIUrl":"https://doi.org/10.14502/tekstilec2021.64.317-324","url":null,"abstract":"The aim of the research was to improve the process of knitted products design. The use of modern software helps us predict the physical and mechanical behaviour of materials, using their three-dimensional models. A macro-model of rib-knitted tubular parts was developed in the study. This model allows its implementation into algorithms, describing the peculiarities of the stretching process. Recent findings in the field of 3D modelling and simulation of knitwear behaviour aim at working with models of different scales of structural hierarchy. The use of macro-models provides the opportunity to simplify the geometry and significantly reduce the time required for simulation. Rib stitch structures are among the most popular weft-knitted ones. When using threads of usual stretchability (with breaking elongation that does not exceed 10–12%), the stretchability of some rib stitch structures in the course-wise direction can reach up to 350% and even more. When stretched in the course direction, rib-knitted stitches undergo a number of stages. The stretching process includes: decreasing the width-wise curling; mutual shifting of knit and purl stitches; reducing the curvature of the loop feet and loop heads; pulling the yarn from the loop legs to the loop feet; stretching of the yarn. The assumption was made that such parts of knitted garments as cuffs and borders on sweaters, cuffs on socks, where rib stitch patterns are used, can be described as thin-walled elastic shells. A part of a human body surface, covered with a rib-knitted garment part, can be approximated by a truncated cone. The mid-surface of the shell can be represented as a ruled surface created upon a set of Bezier curves, located along the circumference of the upper and lower bases of the truncated cone. The mathematical description, elaborated in the course of the research, was used for the computer program LastikTube, which was developed to create 3D macro-models of ribbed tubular garments.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41526812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.14502/tekstilec2021.64.276-285
E. Diestelhorst, J. L. Storck, Bennet Brockhagen, T. Grothe, Inken Blanca Post, Thorsten Bache, Rumen Korchev, A. Rattenholl, F. Gudermann, A. Ehrmann
A growing population needs an expansion of agriculture to ensure a reliable supply of nutritious food. As a variable concept, vertical farming, becoming increasingly popular, can allow plant growth for local food produc¬tion in the vertical sense on, e.g. facades in addition to the classical layered structure in buildings. As substrates, textile fabrics can be used as a sustainable approach in terms of reusability. In our experiment, we investigated which properties a textile should possess in order to be suitable for an application in vertical farming by the example of cress seeds. To determine the best-fitted fabric, four different textiles were mounted vertically, and were provided with controlled irrigation and illumination. Our results showed that a hairy textile surface as provided by weft-knitted plush is advantageous. There, the rooting of cress plants used in this experiment is easier and less complicated than along tightly meshed, flat surfaces, as for woven linen fabrics.
{"title":"Necessary Parameters of Vertically Mounted Textile Substrates for Successful Cultivation of Cress for Low-Budget Vertical Farming","authors":"E. Diestelhorst, J. L. Storck, Bennet Brockhagen, T. Grothe, Inken Blanca Post, Thorsten Bache, Rumen Korchev, A. Rattenholl, F. Gudermann, A. Ehrmann","doi":"10.14502/tekstilec2021.64.276-285","DOIUrl":"https://doi.org/10.14502/tekstilec2021.64.276-285","url":null,"abstract":"A growing population needs an expansion of agriculture to ensure a reliable supply of nutritious food. As a variable concept, vertical farming, becoming increasingly popular, can allow plant growth for local food produc¬tion in the vertical sense on, e.g. facades in addition to the classical layered structure in buildings. As substrates, textile fabrics can be used as a sustainable approach in terms of reusability. In our experiment, we investigated which properties a textile should possess in order to be suitable for an application in vertical farming by the example of cress seeds. To determine the best-fitted fabric, four different textiles were mounted vertically, and were provided with controlled irrigation and illumination. Our results showed that a hairy textile surface as provided by weft-knitted plush is advantageous. There, the rooting of cress plants used in this experiment is easier and less complicated than along tightly meshed, flat surfaces, as for woven linen fabrics.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43956203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.14502/tekstilec2021.64.305-316
M. Alshukur
This study aims to show the impact of both the width of the base of the spinning triangle and the production speeds of hollow-spindle spinning machines on the structure of ultimate multiple-thread-structure bouclé yarns and similar fancy yarns. A hollow-spindle spinning machine was used and bouclé yarns were made of a core thread, an effect thread and a (multifilament) binder. Initially, five bouclé yarns were made by setting the widths of the base of the spinning triangle at five levels, i.e. 4.5 mm, 7.5 mm, 10 mm, 13 mm and 16 mm. A further six bouclé yarns were made to show the changes that occur to the spinning triangle at various production speeds. The resulting fancy bouclé yarns were assessed by measuring the size, number and circularity ratio of bouclé profiles. It was found that at low production speeds, i.e. at start-up, that the spinning triangle was unstable, which adversely affected the structure of the final bouclé yarns. However, at production speeds higher than 17 m/min, the spinning triangle became stable, though such a stable spinning triangle had no impact on the structure of the resulting fancy bouclé yarns. The results of this study may help fancy yarn manufacturers to avoid making defective fancy yarns.
{"title":"Effect of Spinning Triangle and Production Speed of Hollow-Spindle System on the Bouclé Yarn Structure","authors":"M. Alshukur","doi":"10.14502/tekstilec2021.64.305-316","DOIUrl":"https://doi.org/10.14502/tekstilec2021.64.305-316","url":null,"abstract":"This study aims to show the impact of both the width of the base of the spinning triangle and the production speeds of hollow-spindle spinning machines on the structure of ultimate multiple-thread-structure bouclé yarns and similar fancy yarns. A hollow-spindle spinning machine was used and bouclé yarns were made of a core thread, an effect thread and a (multifilament) binder. Initially, five bouclé yarns were made by setting the widths of the base of the spinning triangle at five levels, i.e. 4.5 mm, 7.5 mm, 10 mm, 13 mm and 16 mm. A further six bouclé yarns were made to show the changes that occur to the spinning triangle at various production speeds. The resulting fancy bouclé yarns were assessed by measuring the size, number and circularity ratio of bouclé profiles. It was found that at low production speeds, i.e. at start-up, that the spinning triangle was unstable, which adversely affected the structure of the final bouclé yarns. However, at production speeds higher than 17 m/min, the spinning triangle became stable, though such a stable spinning triangle had no impact on the structure of the resulting fancy bouclé yarns. The results of this study may help fancy yarn manufacturers to avoid making defective fancy yarns.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48469223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-02DOI: 10.14502/tekstilec2021.64.325-337
Sibel Kaplan, Betül Akgünoğlu
Sports socks fabrics produced from polyester, polypropylene, their modified forms Thermocool®, Polycolon®, in three different structures (single jersey, piquet, terry) were investigated for their skin-fabric friction, permeability (air and water vapour), liquid absorption and transfer (absorbency, immersion, absorption capacity, wetback and drying) properties. According to the results, the effect of structure is dominant for frictional characteristics but focusing on the material, polypropylene created a bulkier and lighter structure with lower friction coeffi¬cients, an advantage for sports socks. The effect of structure is greater than the material also for some thermal comfort parameters, e.g. air permeability and absorbency. Focusing on materials, besides their better liquid transfer characteristics, modified forms of both fibres had worse performances for air permeability and absor¬bency compared to their standard forms. Absorption capacity, wetback and drying performances were related to fabric density besides the polyester’s higher regain capacity. While Polycolon® had superiority for wetback performance against standard polypropylene, this was not the case for Thermocool®; however, both modified materials showed apparent superiority for drying periods. Piquet structures were advantageous for absorption capacity and wetback performances for polypropylene. For sports socks parts, specific needs can be met by changing the fabric structure. Considering the materials, polypropylene and Polycolon® can be recommended for both thermal and tactile aspects.
{"title":"Transfer and Friction Characteristics of Sports Socks Fabrics Made of Synthetic Fibres in Different Structures","authors":"Sibel Kaplan, Betül Akgünoğlu","doi":"10.14502/tekstilec2021.64.325-337","DOIUrl":"https://doi.org/10.14502/tekstilec2021.64.325-337","url":null,"abstract":"Sports socks fabrics produced from polyester, polypropylene, their modified forms Thermocool®, Polycolon®, in three different structures (single jersey, piquet, terry) were investigated for their skin-fabric friction, permeability (air and water vapour), liquid absorption and transfer (absorbency, immersion, absorption capacity, wetback and drying) properties. According to the results, the effect of structure is dominant for frictional characteristics but focusing on the material, polypropylene created a bulkier and lighter structure with lower friction coeffi¬cients, an advantage for sports socks. The effect of structure is greater than the material also for some thermal comfort parameters, e.g. air permeability and absorbency. Focusing on materials, besides their better liquid transfer characteristics, modified forms of both fibres had worse performances for air permeability and absor¬bency compared to their standard forms. Absorption capacity, wetback and drying performances were related to fabric density besides the polyester’s higher regain capacity. While Polycolon® had superiority for wetback performance against standard polypropylene, this was not the case for Thermocool®; however, both modified materials showed apparent superiority for drying periods. Piquet structures were advantageous for absorption capacity and wetback performances for polypropylene. For sports socks parts, specific needs can be met by changing the fabric structure. Considering the materials, polypropylene and Polycolon® can be recommended for both thermal and tactile aspects.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45896530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}