The treatment of fungal infections is challenging with high death rates reported among immunocompromised patients. The currently available antifungals suffer from poor bioavailability and solubility, pharmacokinetics, and drug resistance, with limited cellular uptake. The clinical pipeline of new antifungals is dry. The incorporation of antifungal drugs into polymer-based nanocarriers to form nanotherapeutics is a promising approach to enhance the therapeutic outcomes of the available antifungal drugs. This review summarizes different polymer-based nanotherapeutics strategies that have been explored for the delivery of antifungals, resulting in enhanced therapeutic outcomes, such as improved pharmacokinetics, targeted/sustained delivery, prolonged drug circulation, retention of the drugs at the localized site of action, and overcoming drug resistance when compared with the free antifungal drugs.
{"title":"Nanotherapeutics for the delivery of antifungal drugs.","authors":"Blessing Atim Aderibigbe","doi":"10.4155/tde-2023-0090","DOIUrl":"https://doi.org/10.4155/tde-2023-0090","url":null,"abstract":"<p><p>The treatment of fungal infections is challenging with high death rates reported among immunocompromised patients. The currently available antifungals suffer from poor bioavailability and solubility, pharmacokinetics, and drug resistance, with limited cellular uptake. The clinical pipeline of new antifungals is dry. The incorporation of antifungal drugs into polymer-based nanocarriers to form nanotherapeutics is a promising approach to enhance the therapeutic outcomes of the available antifungal drugs. This review summarizes different polymer-based nanotherapeutics strategies that have been explored for the delivery of antifungals, resulting in enhanced therapeutic outcomes, such as improved pharmacokinetics, targeted/sustained delivery, prolonged drug circulation, retention of the drugs at the localized site of action, and overcoming drug resistance when compared with the free antifungal drugs.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-29DOI: 10.1080/20415990.2024.2377065
Fatima Ramzan Ali, Muhammad Harris Shoaib, Syed Abid Ali, Rabia Ismail Yousuf, Farrukh Rafiq Ahmed, Fahad Siddiqui, Sana Sarfaraz, Rameez Raja
Aim: Insulin therapy require self-administration of subcutaneous injection leading to painful and inconvenient drug therapy. The aim is to fabricate nanoemulsion (NE) based insulin loaded microneedles with improved bioavailability and patient compliance.Materials & methods: Different ratios of polyvinyl alcohol and polyvinylpyrrolidone as polymers were prepared through micro-molding technique for microneedles. Characterization of were performed using scanning electron microscope, differential scanning calorimetry, Fourier-transform infrared spectroscopy and circular dichroism. Mechanical strength, hygroscopicity and pain perception of these microneedles were also evaluated. In vitro release, permeation and in vivo PK/PD study of NE-based microneedles were conducted.Results: NE-based microneedles of insulin have improved bioavailability and quick response.Conclusion: Microneedles loaded with insulin can be effectively delivered insulin transdermally to treat diabetes with increased convenience and patient compliance.
目的:胰岛素治疗需要自行皮下注射,这导致了药物治疗的痛苦和不便。本研究旨在制造基于纳米乳液(NE)的胰岛素微针,以提高生物利用度和患者的依从性。材料与方法:通过微成型技术制备了不同比例的聚乙烯醇和聚乙烯吡咯烷酮聚合物微针。使用扫描电子显微镜、差示扫描量热仪、傅立叶变换红外光谱仪和圆二色性分析仪进行表征。此外,还对这些微针的机械强度、吸湿性和痛感进行了评估。还对 NE 微针进行了体外释放、渗透和体内 PK/PD 研究。研究结果基于 NE 的胰岛素微针具有更好的生物利用度和快速反应能力。结论装载胰岛素的微针可有效地经皮输送胰岛素以治疗糖尿病,并提高了便利性和患者的依从性。
{"title":"Fabrication and evaluation of nanoemulsion based insulin loaded microneedles for transdermal drug delivery.","authors":"Fatima Ramzan Ali, Muhammad Harris Shoaib, Syed Abid Ali, Rabia Ismail Yousuf, Farrukh Rafiq Ahmed, Fahad Siddiqui, Sana Sarfaraz, Rameez Raja","doi":"10.1080/20415990.2024.2377065","DOIUrl":"10.1080/20415990.2024.2377065","url":null,"abstract":"<p><p><b>Aim:</b> Insulin therapy require self-administration of subcutaneous injection leading to painful and inconvenient drug therapy. The aim is to fabricate nanoemulsion (NE) based insulin loaded microneedles with improved bioavailability and patient compliance.<b>Materials & methods:</b> Different ratios of polyvinyl alcohol and polyvinylpyrrolidone as polymers were prepared through micro-molding technique for microneedles. Characterization of were performed using scanning electron microscope, differential scanning calorimetry, Fourier-transform infrared spectroscopy and circular dichroism. Mechanical strength, hygroscopicity and pain perception of these microneedles were also evaluated. <i>In vitro</i> release, permeation and <i>in vivo</i> PK/PD study of NE-based microneedles were conducted.<b>Results:</b> NE-based microneedles of insulin have improved bioavailability and quick response.<b>Conclusion:</b> Microneedles loaded with insulin can be effectively delivered insulin transdermally to treat diabetes with increased convenience and patient compliance.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"605-617"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-10-16DOI: 10.1080/20415990.2024.2412511
Cintia Alejandra Briones Nieva, Juan Pablo Real, Santiago Nicolás Campos, Analía Irma Romero, Mercedes Villegas, Elio Emilio Gonzo, José María Bermúdez, Santiago Daniel Palma, Alicia Graciela Cid
Aim: This study focused on evaluating the influence of geometric dimensions on the drug release kinetics of 3D-printed tablets.Materials & methods: An ink based on Gelucire 50/13 was prepared to print ivermectin-loaded tablets. The ink was characterized physicochemically and tablet dissolution tests were carried out.Results: The results confirmed the suitability of the ink for 3D printing at a temperature >46°C. Changes in the crystallinity of ivermectin were observed without chemical interactions with the polymer. 3D printed tablets with varied proportional sizes showed dual behavior in their release profiles, while tablets with only thickness reduction exhibited zero-order kinetics.Conclusion: These findings highlight the versatility of 3D printing to create systems with specific and customized release profiles.
{"title":"Modeling and evaluation of ivermectin release kinetics from 3D-printed tablets.","authors":"Cintia Alejandra Briones Nieva, Juan Pablo Real, Santiago Nicolás Campos, Analía Irma Romero, Mercedes Villegas, Elio Emilio Gonzo, José María Bermúdez, Santiago Daniel Palma, Alicia Graciela Cid","doi":"10.1080/20415990.2024.2412511","DOIUrl":"10.1080/20415990.2024.2412511","url":null,"abstract":"<p><p><b>Aim:</b> This study focused on evaluating the influence of geometric dimensions on the drug release kinetics of 3D-printed tablets.<b>Materials & methods:</b> An ink based on Gelucire 50/13 was prepared to print ivermectin-loaded tablets. The ink was characterized physicochemically and tablet dissolution tests were carried out.<b>Results:</b> The results confirmed the suitability of the ink for 3D printing at a temperature >46°C. Changes in the crystallinity of ivermectin were observed without chemical interactions with the polymer. 3D printed tablets with varied proportional sizes showed dual behavior in their release profiles, while tablets with only thickness reduction exhibited zero-order kinetics.<b>Conclusion:</b> These findings highlight the versatility of 3D printing to create systems with specific and customized release profiles.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":"15 11","pages":"845-858"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-05DOI: 10.1080/20415990.2024.2379756
Mercy Macwan, Himanshu Paliwal, Bhupendra G Prajapati
Aim: This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration.Method: Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake.Results: The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation.Conclusion: The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.
{"title":"A novel liposomal formulation for ocular delivery of caspofungin: an experimental study by quality by design-based approach.","authors":"Mercy Macwan, Himanshu Paliwal, Bhupendra G Prajapati","doi":"10.1080/20415990.2024.2379756","DOIUrl":"10.1080/20415990.2024.2379756","url":null,"abstract":"<p><p><b>Aim:</b> This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration.<b>Method:</b> Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake.<b>Results:</b> The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation.<b>Conclusion:</b> The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"667-683"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Development and evaluation of aqueous core nanocapsules (ACNs) of BCS-II-class drug like resveratrol (RSV) and pterostilbene (PTE) for prostate cancer.Materials & methods: Identify synergistic effects of molar ratios of RSV and PTE against PC-3 cell. Selected ratio of drugs was added to ACNs by double-emulsification-method using Box-Behnken design. Further, assessed for physicochemical characterization, release kinetics, compatibility, in vitro cytotoxicity, in vivo pharmacokinetic and biodistribution studies.Results: Selected 1:1 ratio of RSV and PTE had greatest synergy potential have smaller particle-size (128.1 ± 3.21 nm), zeta-potential (-22.12 ± 0.2 mV), 0.53 PDI, improved encapsulation (87% for RSV, 72% for PTE), stable, no systemic toxicity, high biodistributed/accumulated in prostate cells.Conclusion: ACNs exhibited high t1/2 (12.42 ± 1.92 hs) and 8.20 ± 8.21 hs Mean Residence Time and lower clearance, proving the high effectiveness for prostate cancer.
{"title":"Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.","authors":"Alok Nath Sharma, Prabhat Kumar Upadhyay, Hitesh Kumar Dewangan","doi":"10.1080/20415990.2024.2380239","DOIUrl":"10.1080/20415990.2024.2380239","url":null,"abstract":"<p><p><b>Aim:</b> Development and evaluation of aqueous core nanocapsules (ACNs) of BCS-II-class drug like resveratrol (RSV) and pterostilbene (PTE) for prostate cancer.<b>Materials & methods:</b> Identify synergistic effects of molar ratios of RSV and PTE against PC-3 cell. Selected ratio of drugs was added to ACNs by double-emulsification-method using Box-Behnken design. Further, assessed for physicochemical characterization, release kinetics, compatibility, <i>in vitro</i> cytotoxicity, <i>in vivo</i> pharmacokinetic and biodistribution studies.<b>Results:</b> Selected 1:1 ratio of RSV and PTE had greatest synergy potential have smaller particle-size (128.1 ± 3.21 nm), zeta-potential (-22.12 ± 0.2 mV), 0.53 PDI, improved encapsulation (87% for RSV, 72% for PTE), stable, no systemic toxicity, high biodistributed/accumulated in prostate cells.<b>Conclusion:</b> ACNs exhibited high t<sub>1/2</sub> (12.42 ± 1.92 hs) and 8.20 ± 8.21 hs Mean Residence Time and lower clearance, proving the high effectiveness for prostate cancer.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"685-698"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Laboratory scale-up of artemisinin-loaded emulgel (ART-emulgel) was carried out and characterized for therapeutic performance in osteoarthritis (OA).Materials & methods: The solubility of ART in various oils, surfactants and co-surfactants were screened for construction of pseudo ternary phase diagram (TPD), followed by scale-up of artemisinin loaded nanoemulsion (ART-NE). ART-NE was amalgamated with Carbopol Ultrez 10-NF to prepare ART-emulgel that was later characterized in vitro and in vivo to analyze therapeutic efficacy in monosodium-iodoacetate (MIA) induced knee OA.Results: The droplet diameter of ART-NE was estimated to be 104.3 ± 2.593 nm with a polydispersity index of 0.245 ± 0.019 in addition to ζ-potential of 0.434 ± 0.028 mV. Steady-state flux and permeability coefficient for ART-emulgel were estimated to be 0.651 ± 0.031 µg.cm2/h and 0.245 ± 0.011 cm/h, respectively. ART-emulgel demonstrated 43.18% reduction in COX-2 level; 52.28% drop in IL-1β, and 88.78% alleviation of Tumor Necrosis Factor-α (TNF-α) level when compared with monosodium-iodoacetate induced OA rats. ART-emulgel and injectable ART (intra-articular; I.A) portrayed minor synovial erosion compared with blank and diclofenac emulgel. Histopathological evidences indicated restoration of cartilage integrity followed by reduction of OARSI scores in ART-emulgel when compared with disease control animals.Conclusion: ART-emulgel is a potential dosage form for translating into a clinically viable product for the management of OA.
{"title":"Artemisinin emulgel ameliorates cartilage degradation in knee osteoarthritis: <i>in vitro</i> and <i>in vivo</i> studies.","authors":"Samiksha Thote, Atul Mourya, Shristi Arya, Hoshiyar Singh, Prashanth Kumar, Santosh Kumar Guru, Jitender Madan","doi":"10.1080/20415990.2024.2418281","DOIUrl":"10.1080/20415990.2024.2418281","url":null,"abstract":"<p><p><b>Aim:</b> Laboratory scale-up of artemisinin-loaded emulgel (ART-emulgel) was carried out and characterized for therapeutic performance in osteoarthritis (OA).<b>Materials & methods:</b> The solubility of ART in various oils, surfactants and co-surfactants were screened for construction of pseudo ternary phase diagram (TPD), followed by scale-up of artemisinin loaded nanoemulsion (ART-NE). ART-NE was amalgamated with Carbopol Ultrez 10-NF to prepare ART-emulgel that was later characterized <i>in vitro</i> and <i>in vivo</i> to analyze therapeutic efficacy in monosodium-iodoacetate (MIA) induced knee OA.<b>Results:</b> The droplet diameter of ART-NE was estimated to be 104.3 ± 2.593 nm with a polydispersity index of 0.245 ± 0.019 in addition to ζ-potential of 0.434 ± 0.028 mV. Steady-state flux and permeability coefficient for ART-emulgel were estimated to be 0.651 ± 0.031 µg.cm<sup>2</sup>/h and 0.245 ± 0.011 cm/h, respectively. ART-emulgel demonstrated 43.18% reduction in COX-2 level; 52.28% drop in IL-1β, and 88.78% alleviation of Tumor Necrosis Factor-α (TNF-α) level when compared with monosodium-iodoacetate induced OA rats. ART-emulgel and injectable ART (intra-articular; I.A) portrayed minor synovial erosion compared with blank and diclofenac emulgel. Histopathological evidences indicated restoration of cartilage integrity followed by reduction of OARSI scores in ART-emulgel when compared with disease control animals.<b>Conclusion:</b> ART-emulgel is a potential dosage form for translating into a clinically viable product for the management of OA.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"939-955"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-11-12DOI: 10.1080/20415990.2024.2418800
Sindi P Ndlovu, Shirley C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle M Ngema, Thierry Youmbi Fonkui, Derek Tantoh Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe
Aim: Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.Materials & methods: Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of Capparis sepiaria. The formulations were characterized using appropriate techniques.Results: The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and in vitro whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.Conclusion: The gels' distinct features reveal their potential application as wound dressings for burn wounds.
{"title":"Sodium alginate/carboxymethylcellulose gel formulations containing <i>Capparis sepieria</i> plant extract for wound healing.","authors":"Sindi P Ndlovu, Shirley C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle M Ngema, Thierry Youmbi Fonkui, Derek Tantoh Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe","doi":"10.1080/20415990.2024.2418800","DOIUrl":"10.1080/20415990.2024.2418800","url":null,"abstract":"<p><p><b>Aim:</b> Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.<b>Materials & methods:</b> Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of <i>Capparis sepiaria</i>. The formulations were characterized using appropriate techniques.<b>Results:</b> The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and <i>in vitro</i> whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.<b>Conclusion:</b> The gels' distinct features reveal their potential application as wound dressings for burn wounds.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"921-937"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-18DOI: 10.1080/20415990.2024.2371778
James M Lai, Justin Chen, Juan Carlos Navia, Heather Durkee, Alex Gonzalez, Cornelis Rowaan, Timothy Arcari, Mariela C Aguilar, Katrina Llanes, Noel Ziebarth, Jaime D Martinez, Darlene Miller, Harry W Flynn, Guillermo Amescua, Jean-Marie Parel
Aim: Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in ex vivo human corneas.Methods: Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy.Results: Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 μm vs. 100 ± 5.7 μm, p < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 μm vs. 407 ± 69 μm, p = 0.432).Conclusion: Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.
{"title":"Enhancing Rose Bengal penetration in <i>ex vivo</i> human corneas using iontophoresis.","authors":"James M Lai, Justin Chen, Juan Carlos Navia, Heather Durkee, Alex Gonzalez, Cornelis Rowaan, Timothy Arcari, Mariela C Aguilar, Katrina Llanes, Noel Ziebarth, Jaime D Martinez, Darlene Miller, Harry W Flynn, Guillermo Amescua, Jean-Marie Parel","doi":"10.1080/20415990.2024.2371778","DOIUrl":"10.1080/20415990.2024.2371778","url":null,"abstract":"<p><p><b>Aim:</b> Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in <i>ex vivo</i> human corneas.<b>Methods:</b> Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy.<b>Results:</b> Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 μm vs. 100 ± 5.7 μm, <i>p</i> < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 μm vs. 407 ± 69 μm, <i>p</i> = 0.432).<b>Conclusion:</b> Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"567-575"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}