Aim: In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach.Methods: A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a p-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques.Results:In vitro release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. In vivo studies further validated increase of 51.8% oral bioavailability. Ex vivo studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether.Conclusion: These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.
{"title":"Enhanced bioavailability and efficacy in antimalarial treatment through QbD approach enteric encased inclusion delivery.","authors":"Neha Bajwa, Preet Amol Singh, Sumant Kumar, Girish Chandra Arya, Ashish Baldi","doi":"10.1080/20415990.2024.2377948","DOIUrl":"10.1080/20415990.2024.2377948","url":null,"abstract":"<p><p><b>Aim:</b> In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach.<b>Methods:</b> A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a <i>p</i>-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques.<b>Results:</b> <i>In vitro</i> release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. <i>In vivo</i> studies further validated increase of 51.8% oral bioavailability. <i>Ex vivo</i> studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether.<b>Conclusion:</b> These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-07-29DOI: 10.1080/20415990.2024.2376520
Peter Timmins
{"title":"Industry update: the latest developments in the field of therapeutic delivery, April 2024.","authors":"Peter Timmins","doi":"10.1080/20415990.2024.2376520","DOIUrl":"10.1080/20415990.2024.2376520","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-11DOI: 10.1080/20415990.2024.2386928
Girish Kumar, Pushpika Jain, Tarun Virmani, Ashwani Sharma, Md Sayeed Akhtar, Saad A Aldosari, Mohd Faiyaz Khan, Sofia O D Duarte, Pedro Fonte
Apigenin, a potent natural flavonoid, has emerged as a key therapeutic agent due to its multifaceted medicinal properties in combating various diseases. However, apigenin's clinical utility is greatly limited by its poor water solubility, low bioavailability and stability issues. To address these challenges, this review paper explores the innovative field of nanotechnology-based delivery systems, which have shown significant promise in improving the delivery and effectiveness of apigenin. This paper also explores the synergistic potential of co-delivering apigenin with conventional therapeutic agents. Despite the advantageous properties of these nanoformulations, critical challenges such as scalable production, regulatory approvals and comprehensive long-term safety assessments remain key hurdles in their clinical adoption which must be addressed for commercialization of apigenin-based formulations.
{"title":"Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin.","authors":"Girish Kumar, Pushpika Jain, Tarun Virmani, Ashwani Sharma, Md Sayeed Akhtar, Saad A Aldosari, Mohd Faiyaz Khan, Sofia O D Duarte, Pedro Fonte","doi":"10.1080/20415990.2024.2386928","DOIUrl":"https://doi.org/10.1080/20415990.2024.2386928","url":null,"abstract":"<p><p>Apigenin, a potent natural flavonoid, has emerged as a key therapeutic agent due to its multifaceted medicinal properties in combating various diseases. However, apigenin's clinical utility is greatly limited by its poor water solubility, low bioavailability and stability issues. To address these challenges, this review paper explores the innovative field of nanotechnology-based delivery systems, which have shown significant promise in improving the delivery and effectiveness of apigenin. This paper also explores the synergistic potential of co-delivering apigenin with conventional therapeutic agents. Despite the advantageous properties of these nanoformulations, critical challenges such as scalable production, regulatory approvals and comprehensive long-term safety assessments remain key hurdles in their clinical adoption which must be addressed for commercialization of apigenin-based formulations.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-10-11DOI: 10.1080/20415990.2024.2408214
Mengistie Diress, Armin Mooranian, Hani Al-Salami
{"title":"Industry updates in the field of therapeutic delivery in June 2024.","authors":"Mengistie Diress, Armin Mooranian, Hani Al-Salami","doi":"10.1080/20415990.2024.2408214","DOIUrl":"https://doi.org/10.1080/20415990.2024.2408214","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-10-03DOI: 10.1080/20415990.2024.2406216
Mahshid Samadi, Mitra Jelvehgari, Sara Salatin
Aim: The main aim of this study was to formulate and optimize sustained release mini-tablets of guaifenesin.Materials & methods: Guaifenesin granules were successfully prepared using different blend ratios of carnauba wax to drug by melt granulation method. The properties of granules were further modified by combining them with ethyl cellulose. The obtained granules were then mixed and compressed into mini-tablets using a tablet press machine. The resulting mini-tablets were characterized in terms of weight, thickness, hardness, drug content and in vitro drug release.Results: Mini-tablets with 1:6 carnauba wax to drug ratio showed superior physicochemical characteristics, releasing about 100.03% of guaifenesin over 8 h. Ethyl cellulose offers a great potential to accurately control drug release from mini-tablets.Conclusion: The prepared mini-tablets seem to be a very promising alternative to guaifenesin conventional formulations and can be used in adults and elderly people.
{"title":"Development and optimization of guaifenesin sustained release mini-tablets for adult and geriatric patients.","authors":"Mahshid Samadi, Mitra Jelvehgari, Sara Salatin","doi":"10.1080/20415990.2024.2406216","DOIUrl":"10.1080/20415990.2024.2406216","url":null,"abstract":"<p><p><b>Aim:</b> The main aim of this study was to formulate and optimize sustained release mini-tablets of guaifenesin.<b>Materials & methods:</b> Guaifenesin granules were successfully prepared using different blend ratios of carnauba wax to drug by melt granulation method. The properties of granules were further modified by combining them with ethyl cellulose. The obtained granules were then mixed and compressed into mini-tablets using a tablet press machine. The resulting mini-tablets were characterized in terms of weight, thickness, hardness, drug content and <i>in vitro</i> drug release.<b>Results:</b> Mini-tablets with 1:6 carnauba wax to drug ratio showed superior physicochemical characteristics, releasing about 100.03% of guaifenesin over 8 h. Ethyl cellulose offers a great potential to accurately control drug release from mini-tablets.<b>Conclusion:</b> The prepared mini-tablets seem to be a very promising alternative to guaifenesin conventional formulations and can be used in adults and elderly people.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-30DOI: 10.4155/tde-2023-0107
Mohammad Soroosh Hajizade, Mohammad Javad Raee, Seyed Nooreddin Faraji, Fakhrossadat Farvadi, Maryam Kabiri, Sedigheh Eskandari, Ali Mohammad Tamaddon
Aim: Streptokinase has poor selectivity and provokes the immune response. In this study, we used in silico studies to design a fusion protein to achieve targeted delivery to the thrombus. Materials & methods: Streptokinase was analyzed computationally for mapping. The fusion protein modeling and quality assessment were carried out on several servers. The enzymatic activity and the stability of the fusion protein and its complex with plasminogen were assessed through molecular docking analysis and molecular dynamics simulation respectively. Results: Physicochemical properties analysis, protein quality assessments, protein-protein docking and molecular dynamics simulations predicted that the designed fusion protein is functionally active. Conclusion: Our results showed that this fusion protein might be a prospective candidate as a novel thrombolytic agent with better selectivity.
{"title":"Targeted drug delivery to the thrombus by fusing streptokinase with a fibrin-binding peptide (CREKA): an <i>in silico</i> study.","authors":"Mohammad Soroosh Hajizade, Mohammad Javad Raee, Seyed Nooreddin Faraji, Fakhrossadat Farvadi, Maryam Kabiri, Sedigheh Eskandari, Ali Mohammad Tamaddon","doi":"10.4155/tde-2023-0107","DOIUrl":"10.4155/tde-2023-0107","url":null,"abstract":"<p><p><b>Aim:</b> Streptokinase has poor selectivity and provokes the immune response. In this study, we used <i>in silico</i> studies to design a fusion protein to achieve targeted delivery to the thrombus. <b>Materials & methods:</b> Streptokinase was analyzed computationally for mapping. The fusion protein modeling and quality assessment were carried out on several servers. The enzymatic activity and the stability of the fusion protein and its complex with plasminogen were assessed through molecular docking analysis and molecular dynamics simulation respectively. <b>Results:</b> Physicochemical properties analysis, protein quality assessments, protein-protein docking and molecular dynamics simulations predicted that the designed fusion protein is functionally active. <b>Conclusion:</b> Our results showed that this fusion protein might be a prospective candidate as a novel thrombolytic agent with better selectivity.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: The present study aimed to prepare and evaluate fexofenadine self-microemulsifying drug-delivery systems (SMEDDS) formulation and to determine and compare its intestinal permeability using in situ single-pass intestinal perfusion (SPIP) technique.Methods: Fexofenadine-loaded SMEDDS were prepared and optimized. Droplet size, polydispersity index, zeta potential, drug release and intestinal permeability were evaluated.Results: Optimized formulation consisted of 15% oil, 80% surfactant and 5% cosolvent. Droplet size and drug loading of optimized formulation was 13.77 nm and 60 mg/g and it has released 90% of its drug content. Intestinal permeability of fexofenadine was threefold enhanced in SMEDDS compared with free fexofenadine.Conclusion: The results of our study revealed that SMEDDS could be a promising tool for oral delivery of fexofenadine with enhanced dissolution rate and intestinal permeability.
{"title":"Development of fexofenadine self-microemulsifying delivery systems: an efficient way to improve intestinal permeability.","authors":"Ziba Islambulchilar, Ashkan Barfar, Shahla Mirzaeei","doi":"10.1080/20415990.2024.2363635","DOIUrl":"10.1080/20415990.2024.2363635","url":null,"abstract":"<p><p><b>Aim:</b> The present study aimed to prepare and evaluate fexofenadine self-microemulsifying drug-delivery systems (SMEDDS) formulation and to determine and compare its intestinal permeability using <i>in situ</i> single-pass intestinal perfusion (SPIP) technique.<b>Methods:</b> Fexofenadine-loaded SMEDDS were prepared and optimized. Droplet size, polydispersity index, zeta potential, drug release and intestinal permeability were evaluated.<b>Results:</b> Optimized formulation consisted of 15% oil, 80% surfactant and 5% cosolvent. Droplet size and drug loading of optimized formulation was 13.77 nm and 60 mg/g and it has released 90% of its drug content. Intestinal permeability of fexofenadine was threefold enhanced in SMEDDS compared with free fexofenadine.<b>Conclusion:</b> The results of our study revealed that SMEDDS could be a promising tool for oral delivery of fexofenadine with enhanced dissolution rate and intestinal permeability.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.
{"title":"Nanotechnology-assisted combination drug delivery: a progressive approach for the treatment of acute myeloid leukemia.","authors":"Neelam Poonia, Nikita Vijay Jadhav, Davuluri Mamatha, Manoj Garg, Atul Kabra, Amit Bhatia, Shreesh Ojha, Viney Lather, Deepti Pandita","doi":"10.1080/20415990.2024.2394012","DOIUrl":"10.1080/20415990.2024.2394012","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}