首页 > 最新文献

Therapeutic delivery最新文献

英文 中文
November 2023 industry update. 2023 年 11 月行业更新。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2024-02-06 DOI: 10.4155/tde-2024-0012
Elaine Harris
{"title":"November 2023 industry update.","authors":"Elaine Harris","doi":"10.4155/tde-2024-0012","DOIUrl":"10.4155/tde-2024-0012","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"157-163"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and evaluation of itraconazole-loaded nanoemulgel for efficient topical delivery to treat fungal infections. 用于治疗真菌感染的高效局部给药伊曲康唑纳米凝胶的制备与评估。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2024-01-29 DOI: 10.4155/tde-2023-0062
Archana S Patil, Samradni S Chougale, Umashri Kokatanr, Sujay Hulyalkar, Ravindra D Hiremath, Veerkumar Japti, Rajashree Masareddy

Aim: The clinical application of conventional oral dosage form of itraconazole is limited due to its poor bioavailability. The aim of the study was to develop nanoemulgel of Itraconazole for topical delivery. Method: Nanoemulsions were prepared, optimized and further incorporated into a gel and evaluated for homogeneity, pH, viscosity, spreadability, in vitro drug release and skin irritation studies. Results: Cumulative drug release from nanoemulsions was within the range of 37.24 to 47.63% at 10 h. Drug release % for all the nanoemulgel formulations at10 h was 32.39, 39.75 and 45.9% respectively. Nanoemulgel was non-irritant as demonstrated by skin irritation studies in animals. Conclusion: Itraconazole nanoemulgels were proved to be potential for effective topical delivery of drug with enhanced bioavailability.

目的:由于伊曲康唑的生物利用度较低,其传统口服剂型的临床应用受到限制。本研究旨在开发用于局部给药的伊曲康唑纳米凝胶。方法:制备、优化纳米乳剂,并进一步将其加入凝胶中,评估其均匀性、pH 值、粘度、铺展性、体外药物释放和皮肤刺激性研究。结果:所有纳米凝胶配方在 10 小时内的药物释放率分别为 32.39%、39.75% 和 45.9%。动物皮肤刺激性研究表明,纳米凝胶无刺激性。结论事实证明,伊曲康唑纳米凝胶具有局部有效给药和提高生物利用率的潜力。
{"title":"Formulation and evaluation of itraconazole-loaded nanoemulgel for efficient topical delivery to treat fungal infections.","authors":"Archana S Patil, Samradni S Chougale, Umashri Kokatanr, Sujay Hulyalkar, Ravindra D Hiremath, Veerkumar Japti, Rajashree Masareddy","doi":"10.4155/tde-2023-0062","DOIUrl":"10.4155/tde-2023-0062","url":null,"abstract":"<p><p><b>Aim:</b> The clinical application of conventional oral dosage form of itraconazole is limited due to its poor bioavailability. The aim of the study was to develop nanoemulgel of Itraconazole for topical delivery. <b>Method:</b> Nanoemulsions were prepared, optimized and further incorporated into a gel and evaluated for homogeneity, pH, viscosity, spreadability, <i>in vitro</i> drug release and skin irritation studies. <b>Results:</b> Cumulative drug release from nanoemulsions was within the range of 37.24 to 47.63% at 10 h. Drug release % for all the nanoemulgel formulations at10 h was 32.39, 39.75 and 45.9% respectively. Nanoemulgel was non-irritant as demonstrated by skin irritation studies in animals. <b>Conclusion:</b> Itraconazole nanoemulgels were proved to be potential for effective topical delivery of drug with enhanced bioavailability.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"165-179"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel therapeutic approaches for the management of hepatitis infections. 治疗肝炎感染的新疗法。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2024-02-27 DOI: 10.4155/tde-2023-0074
Aswin Damodaran, Subin Mary Zachariah, Sreeja Chandrasekharan Nair

Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.

乙型肝炎病毒(HBV)和丙型肝炎病毒(HCV)感染是全球发病和死亡的主要原因。慢性乙型肝炎(CHB)感染会增加肝硬化、肝功能失代偿和肝细胞癌(HCC)的风险。传统疗法确实面临着一些挑战,例如耐受性差和活性耐药性的增长。因此,必须采用新型治疗方法,才能使患者产生强大而稳定的抗病毒免疫反应。本综述探讨了目前基于纳米技术的载体,用于治疗 HBV 和 HCV 的药物和疫苗递送。
{"title":"Novel therapeutic approaches for the management of hepatitis infections.","authors":"Aswin Damodaran, Subin Mary Zachariah, Sreeja Chandrasekharan Nair","doi":"10.4155/tde-2023-0074","DOIUrl":"10.4155/tde-2023-0074","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"211-232"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquasomes nanoformulation for controlled release of drug and improved effectiveness against bacterial infections. 用于控制药物释放和提高抗细菌感染效力的水瘤纳米制剂。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-02-01 Epub Date: 2024-01-04 DOI: 10.4155/tde-2023-0096
Bhuvaneshwari Shanmugam, Umashankar Marakanam Srinivasan

Aim: The study aimed to develop and evaluate an aquasome drug-delivery system for controlled drug delivery of cefprozil monohydrate. Materials & methods: Aquasomes were prepared by the spinal method with a calcium phosphate core, sugar-coated using cellobiose and drug-loaded by adsorption. The formulations were characterized for size, morphology and drug release. An antibacterial study was conducted for Gram-positive and -negative bacteria. Results: It showed particle size of 2791.9 nm, zeta potential of -0.3 mV with good stability, and 99.08% of drug loading and drug release were controlled and prolonged, achieving 56% within 8 h and possessing potential for 100% release beyond 12 h. Conclusion: An aquasome drug-delivery system was developed for novel controlled drug delivery for pharmaceutical antibiotic therapeutics.

目的:本研究旨在开发和评估用于控制头孢丙烯一水合物给药的水体给药系统。材料与方法:采用脊柱法制备了以磷酸钙为核心的水瘤,使用纤维生物糖进行糖包衣,并通过吸附载药。对制剂的尺寸、形态和药物释放进行了表征。对革兰氏阳性菌和阴性菌进行了抗菌研究。结果显示结果表明,该制剂的粒径为 2791.9 nm,zeta 电位为-0.3 mV,具有良好的稳定性,药物负载率为 99.08%,药物释放可控且持续时间长,8 小时内药物释放率达到 56%,12 小时后药物释放率可达 100%:该研究开发了一种水体给药系统,用于药物抗生素治疗的新型可控给药。
{"title":"Aquasomes nanoformulation for controlled release of drug and improved effectiveness against bacterial infections.","authors":"Bhuvaneshwari Shanmugam, Umashankar Marakanam Srinivasan","doi":"10.4155/tde-2023-0096","DOIUrl":"10.4155/tde-2023-0096","url":null,"abstract":"<p><p><b>Aim:</b> The study aimed to develop and evaluate an aquasome drug-delivery system for controlled drug delivery of cefprozil monohydrate. <b>Materials & methods:</b> Aquasomes were prepared by the spinal method with a calcium phosphate core, sugar-coated using cellobiose and drug-loaded by adsorption. The formulations were characterized for size, morphology and drug release. An antibacterial study was conducted for Gram-positive and -negative bacteria. <b>Results:</b> It showed particle size of 2791.9 nm, zeta potential of -0.3 mV with good stability, and 99.08% of drug loading and drug release were controlled and prolonged, achieving 56% within 8 h and possessing potential for 100% release beyond 12 h. <b>Conclusion:</b> An aquasome drug-delivery system was developed for novel controlled drug delivery for pharmaceutical antibiotic therapeutics.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"95-107"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paclitaxel-loaded niosomes in combination with metformin: development, characterization and anticancer potentials. 与二甲双胍联用的紫杉醇载药新体:开发、表征和抗癌潜力。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-02-01 Epub Date: 2024-01-12 DOI: 10.4155/tde-2023-0089
Taqwa Al-Kofahi, Bahaa Altrad, Haneen Amawi, Alaa A Aljabali, Yousef M Abul-Haija, Mohammad A Obeid

Aim: This study aims to assess the efficacy of free and niosomes-loaded paclitaxel combined with the anti-diabetic drug metformin. Methods: Paclitaxel was successfully encapsulated in all niosome formulations, using microfluidic mixing, with a maximum encapsulation efficiency of 11.9%. Results: The half maximal inhibitory concentration (IC50) for free paclitaxel in T47D cells was significantly reduced from 0.2 to 0.048 mg/ml when combined with metformin 40 mg. The IC50 of paclitaxel was significantly reduced when loaded in niosomes to less than 0.06 mg/ml alone or with metformin. Conclusion: Paclitaxel combination (free or loaded into niosomes) with metformin significantly improved the anticancer efficacy of paclitaxel, which can serve as a method to reduce the paclitaxel dose and its associated side effects.

目的:本研究旨在评估游离和载药紫杉醇与抗糖尿病药物二甲双胍联用的疗效。研究方法利用微流体混合技术成功地将紫杉醇封装在所有的niosome配方中,最高封装效率为11.9%。结果紫杉醇与二甲双胍 40 毫克合用时,游离紫杉醇在 T47D 细胞中的半数最大抑制浓度(IC50)从 0.2 毫克/毫升显著降至 0.048 毫克/毫升。紫杉醇载入niosomes后,单独或与二甲双胍合用时的IC50明显降低到0.06毫克/毫升以下。结论紫杉醇与二甲双胍(游离或载入niosomes)的联合用药能显著提高紫杉醇的抗癌疗效,可作为一种减少紫杉醇剂量及其相关副作用的方法。
{"title":"Paclitaxel-loaded niosomes in combination with metformin: development, characterization and anticancer potentials.","authors":"Taqwa Al-Kofahi, Bahaa Altrad, Haneen Amawi, Alaa A Aljabali, Yousef M Abul-Haija, Mohammad A Obeid","doi":"10.4155/tde-2023-0089","DOIUrl":"10.4155/tde-2023-0089","url":null,"abstract":"<p><p><b>Aim:</b> This study aims to assess the efficacy of free and niosomes-loaded paclitaxel combined with the anti-diabetic drug metformin. <b>Methods:</b> Paclitaxel was successfully encapsulated in all niosome formulations, using microfluidic mixing, with a maximum encapsulation efficiency of 11.9%. <b>Results:</b> The half maximal inhibitory concentration (IC<sub>50</sub>) for free paclitaxel in T47D cells was significantly reduced from 0.2 to 0.048 mg/ml when combined with metformin 40 mg. The IC<sub>50</sub> of paclitaxel was significantly reduced when loaded in niosomes to less than 0.06 mg/ml alone or with metformin. <b>Conclusion:</b> Paclitaxel combination (free or loaded into niosomes) with metformin significantly improved the anticancer efficacy of paclitaxel, which can serve as a method to reduce the paclitaxel dose and its associated side effects.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"109-118"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review. 基于脂质的纳米载体用于增强植物生物活性分子的递送:全面综述。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-02-01 Epub Date: 2024-01-12 DOI: 10.4155/tde-2023-0116
Pavithra Kothapalli, Manimaran Vasanthan

Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.

从植物中提取的生物活性化合物已被研究用于治疗各种病症。然而,利用这些化合物面临着不稳定、低溶解度和生物利用率等挑战。为了克服这些挑战,将生物活性分子封装在新型纳米载体系统中以实现有效递送和临床转化已变得至关重要。脂质纳米载体为封装和递送生物活性化合物提供了多功能平台,并克服了这些挑战。这些新型载体可以提高植物提取的生物活性化合物的溶解度、稳定性、药物保留率和疗效。本综述评估了植物生物活性物质在递送过程中面临的挑战,并重点介绍了各种脂质纳米载体在提高疗效方面的潜力。
{"title":"Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review.","authors":"Pavithra Kothapalli, Manimaran Vasanthan","doi":"10.4155/tde-2023-0116","DOIUrl":"10.4155/tde-2023-0116","url":null,"abstract":"<p><p>Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"135-155"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industry update: the latest developments in the field of therapeutic delivery, October 2023. 行业更新:2023 年 10 月治疗传递领域的最新发展。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-02-01 Epub Date: 2024-01-10 DOI: 10.4155/tde-2023-0139
Peter Timmins
{"title":"Industry update: the latest developments in the field of therapeutic delivery, October 2023.","authors":"Peter Timmins","doi":"10.4155/tde-2023-0139","DOIUrl":"10.4155/tde-2023-0139","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"77-94"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel polysaccharides-bile acid-cyclodextrin gel systems and effects on cellular viability and bioenergetic parameters. 新型多糖-胆汁酸-环糊精凝胶系统及其对细胞活力和生物能参数的影响。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-02-01 Epub Date: 2024-01-05 DOI: 10.4155/tde-2023-0063
Bozica Kovacevic, Corina Mihaela Ionescu, Melissa Jones, Susbin Raj Wagle, Thomas Foster, Michael Lewkowicz, Elaine Ym Wong, Maja Ðanić, Momir Mikov, Armin Mooranian, Hani Al-Salami

Aim: The novel hydrogel systems made from sodium alginate, pectin, beta-cyclodextrin and deoxycholic acid (DCA) were proposed as potential drug-delivery matrices. Materials & methods: To ensure biocompatibility, rheological parameters were examined and hydrogels' effects on bioenergetic parameters and cellular viability on murine hepatic, and muscle and pancreatic beta cells. Results & conclusion: All hydrogels show non-Newtonian, shear thinning behavior. Cells displayed various oxygen-dependent viability patterns, with the bile acid overall adversely affecting their biological activities. All cells performed best under normoxia, with pancreatic beta cells displaying the most profound oxygen-dependent viability behavior. The cells tolerated the addition of a moderate concentration of beta-cyclodextrin to the polymer matrix.

目的:提出将海藻酸钠、果胶、β-环糊精和脱氧胆酸(DCA)制成的新型水凝胶系统作为潜在的给药基质。材料与方法:为确保生物相容性,研究了流变学参数以及水凝胶对小鼠肝细胞、肌肉细胞和胰腺β细胞的生物能参数和细胞活力的影响。结果与结论:所有水凝胶都表现出非牛顿剪切稀化行为。细胞显示出各种依赖氧气的存活模式,胆汁酸总体上会对其生物活性产生不利影响。在常氧条件下,所有细胞都表现最佳,其中胰腺β细胞显示出最明显的氧依赖性存活行为。细胞可以耐受在聚合物基质中添加中等浓度的β-环糊精。
{"title":"Novel polysaccharides-bile acid-cyclodextrin gel systems and effects on cellular viability and bioenergetic parameters.","authors":"Bozica Kovacevic, Corina Mihaela Ionescu, Melissa Jones, Susbin Raj Wagle, Thomas Foster, Michael Lewkowicz, Elaine Ym Wong, Maja Ðanić, Momir Mikov, Armin Mooranian, Hani Al-Salami","doi":"10.4155/tde-2023-0063","DOIUrl":"10.4155/tde-2023-0063","url":null,"abstract":"<p><p><b>Aim:</b> The novel hydrogel systems made from sodium alginate, pectin, beta-cyclodextrin and deoxycholic acid (DCA) were proposed as potential drug-delivery matrices. <b>Materials & methods:</b> To ensure biocompatibility, rheological parameters were examined and hydrogels' effects on bioenergetic parameters and cellular viability on murine hepatic, and muscle and pancreatic beta cells. <b>Results & conclusion:</b> All hydrogels show non-Newtonian, shear thinning behavior. Cells displayed various oxygen-dependent viability patterns, with the bile acid overall adversely affecting their biological activities. All cells performed best under normoxia, with pancreatic beta cells displaying the most profound oxygen-dependent viability behavior. The cells tolerated the addition of a moderate concentration of beta-cyclodextrin to the polymer matrix.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"119-134"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cationic microemulsion of voriconazole for the treatment of fungal keratitis: in vitro and in vivo evaluation. 用于治疗真菌性角膜炎的伏立康唑阳离子微乳剂:体外和体内评估。
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-05 DOI: 10.4155/tde-2023-0069
Parasuraman Mohan, Jothimani Rajeswari, Karthikeyan Kesavan

Aim: This investigation aimed to develop a voriconazole-loaded chitosan-coated cationic microemulsion (CVME) to treat fungal keratitis. Methods: Microemulsions were prepared using water titration, and the optimized microemulsion was coated with chitosan to prepare CVME. The physicochemical parameters, ocular irritation potential, in vitro antifungal efficacy and in vitro release studies were performed. The in vivo antifungal efficacy study was conducted in a fungal infection-induced rabbit eye model. Results: The developed CVME displayed acceptable physicochemical properties and excellent mucoadhesive behavior and showed a sustained release profile. Ex vivo and in vivo studies concluded that higher permeability and improved antifungal efficacy were observed for CVME than drug suspension (DS). Conclusion: The prepared CVME7 is a viable alternative to treating fungal keratitis with existing approaches.

目的:本研究旨在开发一种载入伏立康唑的壳聚糖包被阳离子微乳剂(CVME),用于治疗真菌性角膜炎。制备方法采用水滴定法制备微乳剂,将优化后的微乳剂包覆壳聚糖制备CVME。进行了理化参数、眼刺激潜能、体外抗真菌药效和体外释放研究。在真菌感染诱导的兔眼模型中进行了体内抗真菌药效研究。结果显示所开发的 CVME 具有可接受的理化特性和优异的粘附性,并显示出持续释放特性。体内外研究结果表明,与药物混悬液(DS)相比,CVME 的渗透性更高,抗真菌效果更好。结论制备的 CVME7 是现有方法治疗真菌性角膜炎的可行替代品。
{"title":"Cationic microemulsion of voriconazole for the treatment of fungal keratitis: <i>in vitro</i> and <i>in vivo</i> evaluation.","authors":"Parasuraman Mohan, Jothimani Rajeswari, Karthikeyan Kesavan","doi":"10.4155/tde-2023-0069","DOIUrl":"https://doi.org/10.4155/tde-2023-0069","url":null,"abstract":"<p><p><b>Aim:</b> This investigation aimed to develop a voriconazole-loaded chitosan-coated cationic microemulsion (CVME) to treat fungal keratitis. <b>Methods:</b> Microemulsions were prepared using water titration, and the optimized microemulsion was coated with chitosan to prepare CVME. The physicochemical parameters, ocular irritation potential, <i>in vitro</i> antifungal efficacy and <i>in vitro</i> release studies were performed. The <i>in vivo</i> antifungal efficacy study was conducted in a fungal infection-induced rabbit eye model. <b>Results:</b> The developed CVME displayed acceptable physicochemical properties and excellent mucoadhesive behavior and showed a sustained release profile. <i>Ex vivo</i> and <i>in vivo</i> studies concluded that higher permeability and improved antifungal efficacy were observed for CVME than drug suspension (DS). <b>Conclusion:</b> The prepared CVME7 is a viable alternative to treating fungal keratitis with existing approaches.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic beta cells. 脱氧胆酸水凝胶对肝脏、肌肉和胰腺β细胞的影响
IF 4.2 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-05 DOI: 10.4155/tde-2023-0054
Bozica Kovacevic, Melissa Jones, Susbin Raj Wagle, Corina Mihaela Ionescu, Thomas Foster, Maja Đanić, Momir Mikov, Armin Mooranian, Hani Al-Salami

Aim: The aim of this study is to test the biocompatibility of hydrogels with polysaccharides and bile acids on three murine cell lines. Materials & methods: Novel hydrogels containing poloxamer 407, polysaccharides (starch, pectin, acacia, carboxymethyl and methyl 2-hydroxyethyl cellulose) and deoxycholic acid were prepared using cold method, sterilized and used in biological assays to determine effects on hepatic, muscle, and pancreatic beta cells. Results and conclusion: Hydrogels with deoxycholic acid had tissue-depending effects on cellular survival and bioenergetics, resulting in the best cellular viability and bioenergetics within pancreatic beta cells. Further research is needed as proposed hydrogels may be beneficial for cell delivery systems of pancreatic beta cells.

目的:本研究旨在测试含有多糖和胆汁酸的水凝胶对三种小鼠细胞系的生物相容性。材料与方法:采用冷冻法制备含有聚氧乙烯酰胺 407、多糖(淀粉、果胶、金合欢、羧甲基和甲基 2-羟乙基纤维素)和脱氧胆酸的新型水凝胶,灭菌后用于生物检测,以确定对肝细胞、肌肉细胞和胰腺β细胞的影响。结果和结论含脱氧胆酸的水凝胶对细胞存活和生物能的影响取决于组织,在胰腺β细胞中细胞存活率和生物能最好。由于所提出的水凝胶可能有益于胰腺β细胞的细胞输送系统,因此还需要进一步研究。
{"title":"The effect of deoxycholic acid-based hydrogels on hepatic, muscle and pancreatic beta cells.","authors":"Bozica Kovacevic, Melissa Jones, Susbin Raj Wagle, Corina Mihaela Ionescu, Thomas Foster, Maja Đanić, Momir Mikov, Armin Mooranian, Hani Al-Salami","doi":"10.4155/tde-2023-0054","DOIUrl":"https://doi.org/10.4155/tde-2023-0054","url":null,"abstract":"<p><p><b>Aim:</b> The aim of this study is to test the biocompatibility of hydrogels with polysaccharides and bile acids on three murine cell lines. <b>Materials & methods:</b> Novel hydrogels containing poloxamer 407, polysaccharides (starch, pectin, acacia, carboxymethyl and methyl 2-hydroxyethyl cellulose) and deoxycholic acid were prepared using cold method, sterilized and used in biological assays to determine effects on hepatic, muscle, and pancreatic beta cells. <b>Results and conclusion:</b> Hydrogels with deoxycholic acid had tissue-depending effects on cellular survival and bioenergetics, resulting in the best cellular viability and bioenergetics within pancreatic beta cells. Further research is needed as proposed hydrogels may be beneficial for cell delivery systems of pancreatic beta cells.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Therapeutic delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1