Solar interfacial evaporation offers a sustainable method to extract fresh water from seawater, but is often constrained by salt accumulation. A 3D-printed hemispherical solar evaporator with integrated open capillary grooves on its surface is introduced to enhance water transport and evaporation. This design creates a vertically nonuniform liquid film, initiating Marangoni flow to facilitate continuous desalination. The evaporator achieves high evaporation rates of 2.768 kg m−2 h−1 for pure water and 2.646 kg m−2 h−1 for 25 wt% saline water upon one-sun solar irradiation. This high performance is attributed to the microporous structure of the capillaries, which supports cluster-based water evaporation and benefits from the lower evaporation enthalpy of seawater. After 15 h of operation, the hemispherical capillary design promotes localized salt crystallization at low concentrations and forms a thin salt film at higher concentrations, surprisingly increasing the evaporation rate. Moreover, the structure effectively removes pollutants, including heavy metals and organic contaminants from wastewater and seawater. This new evaporator could significantly impact wastewater treatment, desalination, and other evaporative applications.
{"title":"3D-Printed Hemispherical Capillaries for Solar Water Evaporation","authors":"Xinzhe Liu, Qingyuan Liu, Zheng Liu, Guohua Liu","doi":"10.1002/solr.202400776","DOIUrl":"https://doi.org/10.1002/solr.202400776","url":null,"abstract":"<p>Solar interfacial evaporation offers a sustainable method to extract fresh water from seawater, but is often constrained by salt accumulation. A 3D-printed hemispherical solar evaporator with integrated open capillary grooves on its surface is introduced to enhance water transport and evaporation. This design creates a vertically nonuniform liquid film, initiating Marangoni flow to facilitate continuous desalination. The evaporator achieves high evaporation rates of 2.768 kg m<sup>−2</sup> h<sup>−1</sup> for pure water and 2.646 kg m<sup>−2</sup> h<sup>−1</sup> for 25 wt% saline water upon one-sun solar irradiation. This high performance is attributed to the microporous structure of the capillaries, which supports cluster-based water evaporation and benefits from the lower evaporation enthalpy of seawater. After 15 h of operation, the hemispherical capillary design promotes localized salt crystallization at low concentrations and forms a thin salt film at higher concentrations, surprisingly increasing the evaporation rate. Moreover, the structure effectively removes pollutants, including heavy metals and organic contaminants from wastewater and seawater. This new evaporator could significantly impact wastewater treatment, desalination, and other evaporative applications.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 3","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chathuranganie A. M. Senevirathne, Jun Tae Song, Dai Semba, Takato Saito, Kentaro Imaoka, Yuki Fujita, Telugu Bhim Raju, Pangpang Wang, Sunao Yamada, Toshinori Matsushima
Thermal stress significantly impacts the durability of perovskite solar cells (PSCs), as evidenced by severe degradation observed at 85 °C in this study. This degradation is attributed to gold migration through the soft 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (spiro-MeOTAD) hole transport layer (HTL) into the perovskite layer, driven by gold's low formation energy and diffusion barrier. To mitigate this issue, several vacuum-evaporable hard transition metal oxides as charge extraction interlayers between the gold electrode and the HTL to suppress gold migration are investigated. PSCs incorporating MoO3, V2O5, MoO2, and ReO3 interlayers achieve a power conversion efficiency of ≈20%, comparable to PSCs without interlayers. Notably, these interlayer-equipped PSCs exhibit enhanced thermal durability at 85 °C by effectively suppressing gold migration into the perovskite layer under elevated temperatures, with the MoO2 interlayer also improving durability at 25 °C. These findings offer a promising strategy for fabricating thermally durable PSCs, contributing to the future commercialization of photovoltaic technology.
{"title":"Role of Metal Oxide Interlayers in Preventing Gold Migration in Perovskite Solar Cells","authors":"Chathuranganie A. M. Senevirathne, Jun Tae Song, Dai Semba, Takato Saito, Kentaro Imaoka, Yuki Fujita, Telugu Bhim Raju, Pangpang Wang, Sunao Yamada, Toshinori Matsushima","doi":"10.1002/solr.202400705","DOIUrl":"https://doi.org/10.1002/solr.202400705","url":null,"abstract":"<p>Thermal stress significantly impacts the durability of perovskite solar cells (PSCs), as evidenced by severe degradation observed at 85 °C in this study. This degradation is attributed to gold migration through the soft 2,2′,7,7′-tetrakis(<i>N</i>,<i>N</i>-di-4-methoxyphenylamino)-9,9′-spirobifluorene (spiro-MeOTAD) hole transport layer (HTL) into the perovskite layer, driven by gold's low formation energy and diffusion barrier. To mitigate this issue, several vacuum-evaporable hard transition metal oxides as charge extraction interlayers between the gold electrode and the HTL to suppress gold migration are investigated. PSCs incorporating MoO<sub>3</sub>, V<sub>2</sub>O<sub>5</sub>, MoO<sub>2</sub>, and ReO<sub>3</sub> interlayers achieve a power conversion efficiency of ≈20%, comparable to PSCs without interlayers. Notably, these interlayer-equipped PSCs exhibit enhanced thermal durability at 85 °C by effectively suppressing gold migration into the perovskite layer under elevated temperatures, with the MoO<sub>2</sub> interlayer also improving durability at 25 °C. These findings offer a promising strategy for fabricating thermally durable PSCs, contributing to the future commercialization of photovoltaic technology.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 3","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kseniia Zagorovskaia, Oleg Trepalin, Ivan Krasionov, Sergey Luchkin, Dmitry V. Krasnikov, Albert G. Nasibulin, Aleksandra G. Boldyreva
Herein, unsubstituted poly-para-xylylene (parylene-N) film as an encapsulation material for MAPbI3 perovskite solar cells (PSCs) is assessed. Unlike more commonly used parylene-C, parylene-N is cheaper and does not contain Cl which makes it a promising encapsulant for perovskite materials. Being deposited by room temperature chemical vapor deposition in a vacuum, 2 mm-thick parylene film stabilizes MAPbI3-based solar cells and inhibits the degradation even under stress test conditions (85 °C in the air). Moreover, the solar cells, encapsulated with the parylene-N film and cover glass, show stable characteristics for over 3800 h in a dark ambient atmosphere, retaining 92% of their initial power conversion efficiency. Such results demonstrate the potential of unsubstituted parylene for PSC stabilization, paving the way for novel and highly stable PSCs.
{"title":"Improved Operational Lifetime of MAPbI3 Solar Cells Encapsulated with Parylene-N","authors":"Kseniia Zagorovskaia, Oleg Trepalin, Ivan Krasionov, Sergey Luchkin, Dmitry V. Krasnikov, Albert G. Nasibulin, Aleksandra G. Boldyreva","doi":"10.1002/solr.202400833","DOIUrl":"https://doi.org/10.1002/solr.202400833","url":null,"abstract":"<p>Herein, unsubstituted poly-para-xylylene (parylene-N) film as an encapsulation material for MAPbI<sub>3</sub> perovskite solar cells (PSCs) is assessed. Unlike more commonly used parylene-C, parylene-N is cheaper and does not contain Cl which makes it a promising encapsulant for perovskite materials. Being deposited by room temperature chemical vapor deposition in a vacuum, 2 mm-thick parylene film stabilizes MAPbI<sub>3</sub>-based solar cells and inhibits the degradation even under stress test conditions (85 °C in the air). Moreover, the solar cells, encapsulated with the parylene-N film and cover glass, show stable characteristics for over 3800 h in a dark ambient atmosphere, retaining 92% of their initial power conversion efficiency. Such results demonstrate the potential of unsubstituted parylene for PSC stabilization, paving the way for novel and highly stable PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 3","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}