Yunqi Li, Qing Li, Yu Qiu, Haixiang Feng, Renzhong Deng
Solar-driven interfacial evaporation is a potential strategy to address freshwater scarcity. However, simultaneously achieving high evaporation performance and effective salt resistance remains a significant challenge. Herein, a triple-layered aerogel-based solar evaporator with low-tortuosity pore structures (Tri-ASEL) is constructed. Benefiting from the unique pore structures of Tri-ASEL, it not only exhibits excellent water transport capacity, which is significantly increased by 237.5% compared to that of the aerogel-based solar evaporator with uniform pore structures, but also effectively reduces the downward heat transfer owing to the low thermal conductivity of the top layer. Meanwhile, compared with the aerogel-based solar evaporator with triple-layered pore structures (Tri-ASE), Tri-ASEL can reduce the resistance of ion diffusion and shorten the diffusion pathways through the low-tortuosity pore structures. Because of the effective coordination of the contradiction among the water transport, ion diffusion, and thermal insulation, Tri-ASEL achieves a high evaporation rate of 2.803 kg m−2 h−1 and exhibits a remarkable evaporation efficiency of 97.95% under 1 sun. More importantly, it demonstrates excellent salt resistance and can operate stably in ultra-high salinity brine (25 wt%) for more than 8 h without salt crystallization. This study provides a new approach for optimizing the structure design of evaporators.
{"title":"A Novel Aerogel-Based Solar Evaporator with Triple-Layered Low-Tortuosity Pore Structures for Ultra-High Salt Resistance","authors":"Yunqi Li, Qing Li, Yu Qiu, Haixiang Feng, Renzhong Deng","doi":"10.1002/solr.202400418","DOIUrl":"10.1002/solr.202400418","url":null,"abstract":"<p>Solar-driven interfacial evaporation is a potential strategy to address freshwater scarcity. However, simultaneously achieving high evaporation performance and effective salt resistance remains a significant challenge. Herein, a triple-layered aerogel-based solar evaporator with low-tortuosity pore structures (Tri-ASEL) is constructed. Benefiting from the unique pore structures of Tri-ASEL, it not only exhibits excellent water transport capacity, which is significantly increased by 237.5% compared to that of the aerogel-based solar evaporator with uniform pore structures, but also effectively reduces the downward heat transfer owing to the low thermal conductivity of the top layer. Meanwhile, compared with the aerogel-based solar evaporator with triple-layered pore structures (Tri-ASE), Tri-ASEL can reduce the resistance of ion diffusion and shorten the diffusion pathways through the low-tortuosity pore structures. Because of the effective coordination of the contradiction among the water transport, ion diffusion, and thermal insulation, Tri-ASEL achieves a high evaporation rate of 2.803 kg m<sup>−2</sup> h<sup>−1</sup> and exhibits a remarkable evaporation efficiency of 97.95% under 1 sun. More importantly, it demonstrates excellent salt resistance and can operate stably in ultra-high salinity brine (25 wt%) for more than 8 h without salt crystallization. This study provides a new approach for optimizing the structure design of evaporators.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perovskite solar cells (PSCs) have attracted much attention in the field of photovoltaics, due to their high power conversion efficiency (PCE) and low cost. In recent years, inverted PSCs have achieved significant advancements in PCE and operational stability. Among the strategies for optimizing PCE and lifespan of inverted PSCs, dimensional engineering plays a critical role and garners increasing attention due to its versatile functions of passivating defects, releasing residual tensile stress, strengthening structural stability, ameliorating carrier transport and extraction, and so on. Considering the importance of dimensional engineering, a comprehensive and deep understanding of 2D perovskites and 2D/3D heterojunction is definitely necessary. In this review, first, the progress of low-dimensional perovskite light-harvesting materials in inverted PSCs is summarized. Subsequently, the advances in constructing 2D/3D perovskite heterojunctions, including 2D/3D bulk heterojunction within perovskite materials, 2D/3D interfacial heterojunction at the interface between perovskite film and carrier transport layer, and bottom-up 2D/3D perovskite heterojunction are discussed. The simultaneous construction of 2D/3D heterojunction at dual interfaces is highlighted. Finally, the legitimate outlook on the further development of dimensional engineering is proposed to advance the commercialization of inverted photovoltaic technology.
{"title":"Dimensional Engineering in Efficient and Stable Inverted Perovskite Solar Cells","authors":"Qing Zhu, Yue Yu, Xinxing Liu, Dongmei He, Xuxia Shai, Jing Feng, Jianhong Yi, Jiangzhao Chen","doi":"10.1002/solr.202400476","DOIUrl":"10.1002/solr.202400476","url":null,"abstract":"<p>Perovskite solar cells (PSCs) have attracted much attention in the field of photovoltaics, due to their high power conversion efficiency (PCE) and low cost. In recent years, inverted PSCs have achieved significant advancements in PCE and operational stability. Among the strategies for optimizing PCE and lifespan of inverted PSCs, dimensional engineering plays a critical role and garners increasing attention due to its versatile functions of passivating defects, releasing residual tensile stress, strengthening structural stability, ameliorating carrier transport and extraction, and so on. Considering the importance of dimensional engineering, a comprehensive and deep understanding of 2D perovskites and 2D/3D heterojunction is definitely necessary. In this review, first, the progress of low-dimensional perovskite light-harvesting materials in inverted PSCs is summarized. Subsequently, the advances in constructing 2D/3D perovskite heterojunctions, including 2D/3D bulk heterojunction within perovskite materials, 2D/3D interfacial heterojunction at the interface between perovskite film and carrier transport layer, and bottom-up 2D/3D perovskite heterojunction are discussed. The simultaneous construction of 2D/3D heterojunction at dual interfaces is highlighted. Finally, the legitimate outlook on the further development of dimensional engineering is proposed to advance the commercialization of inverted photovoltaic technology.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 17","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}