首页 > 最新文献

Solar RRL最新文献

英文 中文
Perspectives on Solar Salt-Based Nanofluids Used in Concentrated Solar Power Plants 聚光太阳能发电厂使用的太阳能盐基纳米流体透视图
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-09 DOI: 10.1002/solr.202400110
Fabiola Pineda, Andreas Rosenkranz, Francisco Javier Pérez

Concentrated solar power (CWP) technology has matured sufficiently for large-scale implementation. In a typical plant, the solar energy is captured by mirrors and directed onto heat-transfer fluid (HTF), typically a molten salt that is further conveyed to the thermal energy-storage system before being channeled to power turbines, generating electricity. A major concern about this technology is the need to reduce the levelized cost of electricity, necessitating heightened efficiency to enhance cost competitiveness and foster greater market penetration. One approach to achieve this involves replacing the current nitrate-based molten salt mixture with nanofluids. They combine nitrate-based molten salt and small amounts of nanomaterials of different dimensionality. These promising HTFs present a superior performance concerning their physical, thermal, and chemical properties. However, there is a lack of studies related to understanding the effects of nanomaterials and the underlying enhancement theories. Therefore, in this article, a detailed revision of the state of the art in experimental and theoretical studies of nanomaterials in a binary commercial nitrate-based molten salt (solar salt) as HTF for CWP plants is presented, highlighting the challenges related to their application and future research directions.

聚光太阳能发电(CWP)技术已经足够成熟,可以大规模实施。在一个典型的发电厂中,太阳能被反射镜捕获并导入传热流体(HTF),通常是一种熔盐,然后进一步输送到热能存储系统,再输送到涡轮机发电。该技术的一个主要问题是需要降低电力的平准化成本,这就需要提高效率,以增强成本竞争力和市场渗透力。实现这一目标的方法之一是用纳米流体取代目前的硝基熔盐混合物。它们结合了硝酸盐基熔盐和少量不同尺寸的纳米材料。这些前景广阔的高温热交换流体在物理、热和化学特性方面表现出卓越的性能。然而,在了解纳米材料的影响和基本增强理论方面还缺乏相关研究。因此,本文详细介绍了在二元商业硝酸盐基熔盐(太阳盐)中使用纳米材料作为化武生产厂热固性液体的实验和理论研究的最新进展,并强调了与纳米材料应用和未来研究方向相关的挑战。
{"title":"Perspectives on Solar Salt-Based Nanofluids Used in Concentrated Solar Power Plants","authors":"Fabiola Pineda,&nbsp;Andreas Rosenkranz,&nbsp;Francisco Javier Pérez","doi":"10.1002/solr.202400110","DOIUrl":"10.1002/solr.202400110","url":null,"abstract":"<p>Concentrated solar power (CWP) technology has matured sufficiently for large-scale implementation. In a typical plant, the solar energy is captured by mirrors and directed onto heat-transfer fluid (HTF), typically a molten salt that is further conveyed to the thermal energy-storage system before being channeled to power turbines, generating electricity. A major concern about this technology is the need to reduce the levelized cost of electricity, necessitating heightened efficiency to enhance cost competitiveness and foster greater market penetration. One approach to achieve this involves replacing the current nitrate-based molten salt mixture with nanofluids. They combine nitrate-based molten salt and small amounts of nanomaterials of different dimensionality. These promising HTFs present a superior performance concerning their physical, thermal, and chemical properties. However, there is a lack of studies related to understanding the effects of nanomaterials and the underlying enhancement theories. Therefore, in this article, a detailed revision of the state of the art in experimental and theoretical studies of nanomaterials in a binary commercial nitrate-based molten salt (solar salt) as HTF for CWP plants is presented, highlighting the challenges related to their application and future research directions.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141367643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Characterization of a 53.5% Efficient Gallium Indium Phosphide-Based Optical Photovoltaic Converter under 637 nm Laser Irradiation at 10 W cm−2 在 10 Wcm-2 的 637 nm 激光辐照条件下设计和鉴定效率为 53.5% 的基于 GaInP 的光电转换器
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-08 DOI: 10.1002/solr.202400278
Pablo Sanmartín, Eduardo F. Fernández, Antonio García-Loureiro, Jesús Montes-Romero, Aitana Cano, Pablo Martín, Ignacio Rey-Stolle, Iván García, Florencia Almonacid

High-power optical transmission (HPOT) technology has emerged as a promising alternative among far-field wireless power transmission approaches, enabling the transfer of kilowatts of power over kilometer-scale distances. Its exceptional adaptability allows operation in challenging scenarios where traditional electrical wiring is impractical or unfeasible, thereby opening up a vast array of potential applications previously considered utopian. An important pending assignment in enhancing the performance of laser-based HPOT systems is achieving efficient photovoltaic conversion of high power densities (≥10 W cm−2). In this sense, there is a pressing need for the advancement of optical photovoltaic converters (OPCs) capable of enduring intense monochromatic irradiances. This work presents the design optimization, manufacturing, and characterization processes of a gallium indium phosphide (GaInP)-based OPC under varying 637 nm laser power at room temperature. In addition, methods to evaluate the impact of temperature on performance are provided. The findings reveal a maximum efficiency of 53.5% at 10 W cm−2, surpassing literature results for GaInP converters by over 9%abs at those light intensities. Remarkably, this device withstands unmatched irradiances within GaInP OPCs up to 60 W cm−2, maintaining 42.3% efficiency. This study aims to push forward the development of wide-bandgap power converters with recordbreaking efficiencies paving the way for new applications.

高功率光传输(HPOT)技术已成为远距离无线输电方法中一种前景广阔的替代技术,可在千米距离内传输千瓦功率。高功率光传输技术具有卓越的适应性,可在传统电气布线不切实际或不可行的挑战性场景中运行,从而开辟了大量以前被认为是乌托邦式的潜在应用。提高激光 HPOT 系统性能的一项重要任务是实现高功率密度(≥10 Wcm-2)的高效光电转换。从这个意义上讲,迫切需要改进能够承受高强度单色辐照的光学光电转换器(OPC)。本研究介绍了在室温条件下,基于氮化镓(GaInP)的 OPC 在不同 637 纳米激光功率下的设计优化、制造和表征过程。此外,还提供了评估温度对性能影响的方法。研究结果表明,在 10 Wcm-2 时的最大效率为 53.5%,超过文献中 GaInP 转换器在这些光强下的结果 9%abs 以上。值得注意的是,在高达 60 Wcm-2 的 GaInP OPC 中,我们的设备能够承受无与伦比的辐照度,并保持 42.3% 的效率。这项研究旨在推动具有破纪录效率的宽带隙功率转换器的发展,为新应用铺平道路。本文受版权保护。
{"title":"Design and Characterization of a 53.5% Efficient Gallium Indium Phosphide-Based Optical Photovoltaic Converter under 637 nm Laser Irradiation at 10 W cm−2","authors":"Pablo Sanmartín,&nbsp;Eduardo F. Fernández,&nbsp;Antonio García-Loureiro,&nbsp;Jesús Montes-Romero,&nbsp;Aitana Cano,&nbsp;Pablo Martín,&nbsp;Ignacio Rey-Stolle,&nbsp;Iván García,&nbsp;Florencia Almonacid","doi":"10.1002/solr.202400278","DOIUrl":"10.1002/solr.202400278","url":null,"abstract":"<p>High-power optical transmission (HPOT) technology has emerged as a promising alternative among far-field wireless power transmission approaches, enabling the transfer of kilowatts of power over kilometer-scale distances. Its exceptional adaptability allows operation in challenging scenarios where traditional electrical wiring is impractical or unfeasible, thereby opening up a vast array of potential applications previously considered utopian. An important pending assignment in enhancing the performance of laser-based HPOT systems is achieving efficient photovoltaic conversion of high power densities (≥10 W cm<sup>−2</sup>). In this sense, there is a pressing need for the advancement of optical photovoltaic converters (OPCs) capable of enduring intense monochromatic irradiances. This work presents the design optimization, manufacturing, and characterization processes of a gallium indium phosphide (GaInP)-based OPC under varying 637 nm laser power at room temperature. In addition, methods to evaluate the impact of temperature on performance are provided. The findings reveal a maximum efficiency of 53.5% at 10 W cm<sup>−2</sup>, surpassing literature results for GaInP converters by over 9%<sub>abs</sub> at those light intensities. Remarkably, this device withstands unmatched irradiances within GaInP OPCs up to 60 W cm<sup>−2</sup>, maintaining 42.3% efficiency. This study aims to push forward the development of wide-bandgap power converters with recordbreaking efficiencies paving the way for new applications.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large and Small Polarons in Highly Efficient and Stable Organic-Inorganic Lead Halide Perovskite Solar Cells: A Review 高效稳定的有机-无机卤化铅过氧化物太阳能电池中的大极子和小极子:综述
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-08 DOI: 10.1002/solr.202400364
Pronoy Nandi, Sooun Shin, Hyoungmin Park, Yongjae In, Urasawadee Amornkitbamrung, Hyeon Jun Jeong, Seok Joon Kwon, Hyunjung Shin

Polarons, which arise from the intricate interplay between excess electrons and/or holes and lattice vibrations (phonons), represent quasiparticles pivotal to the electronic behavior of materials. This review reaffirms the established classification of small and large polarons, emphasizing its relevance in the context of recent advances in understanding lead halide perovskites' behavior. The distinct characteristics of large and small polarons stem from the electron–phonon interaction range, which exerts a profound influence on materials’ characteristics and functionalities. Concurrently, lead halides have emerged with exceptional opto-electronic properties, featuring prolonged carrier lifetimes, low recombination rates, high defect tolerance, and moderate charge carrier mobilities; these characteristics make them a compelling contender for integration of optoelectronic devices. In this review, the formation of both small and large polarons within the lattice of lead halide perovskites, elucidating their role in protecting photogenerated charge carriers from recombination processes, is discussed. As optoelectronic devices continue to advance, this review underscores the importance of unraveling polaron dynamics to pave the way for innovative strategies for enhancing the performance of next-generation photovoltaic technologies. Future research should explore novel polaronic effects using advanced computational and experimental techniques, enhancing our understanding and unlocking new applications in materials science and device engineering.

极子产生于过剩电子和/或空穴与晶格振动(声子)之间错综复杂的相互作用,是对材料电子行为至关重要的准粒子。这篇综述重申了对大小极子的既定分类,并强调了在了解卤化铅包晶石中极子行为的最新进展方面的相关性。大极子和小极子的不同特性源于电子与声子的相互作用范围,这对材料的特性和功能有着深远的影响。同时,卤化铅还具有优异的光电特性,如载流子寿命长、重组率低、缺陷容忍度高和电荷载流子迁移率适中等,这些特性使其成为集成光电器件的有力竞争者。本综述讨论了卤化铅包晶石晶格内大小极子的形成,阐明了它们在保护光生电荷载流子免于重组过程中的作用。随着光电设备的不断进步,这篇综述强调了揭示极子动力学的重要性,为提高下一代光伏技术性能的创新战略铺平了道路。未来的研究应利用先进的计算和实验技术探索新的极子效应,从而加深我们对材料科学和器件工程的理解并开启新的应用。本文受版权保护。
{"title":"Large and Small Polarons in Highly Efficient and Stable Organic-Inorganic Lead Halide Perovskite Solar Cells: A Review","authors":"Pronoy Nandi,&nbsp;Sooun Shin,&nbsp;Hyoungmin Park,&nbsp;Yongjae In,&nbsp;Urasawadee Amornkitbamrung,&nbsp;Hyeon Jun Jeong,&nbsp;Seok Joon Kwon,&nbsp;Hyunjung Shin","doi":"10.1002/solr.202400364","DOIUrl":"10.1002/solr.202400364","url":null,"abstract":"<p>Polarons, which arise from the intricate interplay between excess electrons and/or holes and lattice vibrations (phonons), represent quasiparticles pivotal to the electronic behavior of materials. This review reaffirms the established classification of small and large polarons, emphasizing its relevance in the context of recent advances in understanding lead halide perovskites' behavior. The distinct characteristics of large and small polarons stem from the electron–phonon interaction range, which exerts a profound influence on materials’ characteristics and functionalities. Concurrently, lead halides have emerged with exceptional opto-electronic properties, featuring prolonged carrier lifetimes, low recombination rates, high defect tolerance, and moderate charge carrier mobilities; these characteristics make them a compelling contender for integration of optoelectronic devices. In this review, the formation of both small and large polarons within the lattice of lead halide perovskites, elucidating their role in protecting photogenerated charge carriers from recombination processes, is discussed. As optoelectronic devices continue to advance, this review underscores the importance of unraveling polaron dynamics to pave the way for innovative strategies for enhancing the performance of next-generation photovoltaic technologies. Future research should explore novel polaronic effects using advanced computational and experimental techniques, enhancing our understanding and unlocking new applications in materials science and device engineering.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400364","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141369496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Surface Dipole for CsPbI3 Perovskite Solar Cells with Poly(3-hexylthiophene) 利用 P3HT 的表面偶极实现 CsPbI3 包晶太阳能电池
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-08 DOI: 10.1002/solr.202400329
Zafar Iqbal, Thomas W. Gries, Artem Musiienko, Antonio Abate

The efficient functioning of perovskite solar cells largely depends on the interaction between perovskite halide materials and the hole-transport layer poly(3-hexylthiophene) (P3HT). However, a high rate of nonradiative recombination often hampers this interaction, leading to poor performance of the solar cells. We have developed a technique to modify the interface using a long-chain alkyl halide molecule called n-hexyl trimethylammonium bromide to address this issue. This modification technique significantly improves hole extraction, leading to an impressive open-circuit voltage of 1.14 V and a power conversion efficiency of 15.8% for inorganic perovskite CsPbI3 with P3HT as a dopant-free hole-transport layer. This breakthrough can pave the way for developing more efficient and sustainable solar cells.

过氧化物太阳能电池的高效运作在很大程度上取决于过氧化物卤化物材料与空穴传输层聚(3-己基噻吩)(P3HT)之间的相互作用。然而,高非辐射重组率往往会阻碍这种相互作用,导致太阳能电池性能低下。为解决这一问题,我们开发了一种利用名为正己基三甲基溴化铵(HTAB)的长链烷基卤化物分子修饰界面的技术。这种改性技术大大提高了空穴萃取率,使无机过氧化物 CsPbI3 的开路电压达到惊人的 1.14V,功率转换效率达到 15.8%,而 P3HT 则是无掺杂空穴传输层。这一突破为开发更高效、更可持续的太阳能电池铺平了道路。本文受版权保护。
{"title":"Harnessing Surface Dipole for CsPbI3 Perovskite Solar Cells with Poly(3-hexylthiophene)","authors":"Zafar Iqbal,&nbsp;Thomas W. Gries,&nbsp;Artem Musiienko,&nbsp;Antonio Abate","doi":"10.1002/solr.202400329","DOIUrl":"10.1002/solr.202400329","url":null,"abstract":"<p>The efficient functioning of perovskite solar cells largely depends on the interaction between perovskite halide materials and the hole-transport layer poly(3-hexylthiophene) (P3HT). However, a high rate of nonradiative recombination often hampers this interaction, leading to poor performance of the solar cells. We have developed a technique to modify the interface using a long-chain alkyl halide molecule called <i>n</i>-hexyl trimethylammonium bromide to address this issue. This modification technique significantly improves hole extraction, leading to an impressive open-circuit voltage of 1.14 V and a power conversion efficiency of 15.8% for inorganic perovskite CsPbI<sub>3</sub> with P3HT as a dopant-free hole-transport layer. This breakthrough can pave the way for developing more efficient and sustainable solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of Multijunction Absorbers and Catalysts for Efficient Solar-Driven Artificial Leaf Structures: A Physical and Materials Science Perspective 将多接面吸收器和催化剂集成到高效太阳能驱动的人工叶片结构中:物理和材料科学视角
IF 7.9 3区 工程技术 Q1 Engineering Pub Date : 2024-06-07 DOI: 10.1002/solr.202470113
Thomas Hannappel, Sahar Shekarabi, Wolfram Jaegermann, Erich Runge, Jan Philipp Hofmann, Roel van de Krol, Matthias M. May, Agnieszka Paszuk, Franziska Hess, Arno Bergmann, Andreas Bund, Christian Cierpka, Christian Dreßler, Fabio Dionigi, Dennis Friedrich, Marco Favaro, Stefan Krischok, Mario Kurniawan, Kathy Lüdge, Yong Lei, Beatriz Roldán Cuenya, Peter Schaaf, Rüdiger Schmidt-Grund, Wolf Gero Schmidt, Peter Strasser, Eva Unger, Manuel F. Vasquez Montoya, Dong Wang, Hongbin Zhang

Artificial Leaves

In this conceptual review on advanced device structures for artificial leaves, the authors delve into the details of suitable semiconductor tandem configurations. They explore key challenges in water splitting, promising designs, and innovative research areas such as advanced preparation, characterization, and theoretical modeling of multi-photoabsorbers, electrocatalysts, and dynamics of interfacial reactions. Additionally, case studies of several promising material compositions are presented. More in article number 2301047, Thomas Hannappel, Roel van de Krol, and co-workers.

人造叶 在这篇关于人造叶先进设备结构的概念性综述中,作者深入探讨了合适的半导体串联配置的细节。他们探讨了水分离的关键挑战、有前景的设计以及创新研究领域,如多光吸收器、电催化剂和界面反应动力学的先进制备、表征和理论建模。此外,还介绍了几种有前景的材料组成的案例研究。更多内容请参见文章编号 2301047,Thomas Hannappel、Roel van de Krol 及合作者。
{"title":"Integration of Multijunction Absorbers and Catalysts for Efficient Solar-Driven Artificial Leaf Structures: A Physical and Materials Science Perspective","authors":"Thomas Hannappel,&nbsp;Sahar Shekarabi,&nbsp;Wolfram Jaegermann,&nbsp;Erich Runge,&nbsp;Jan Philipp Hofmann,&nbsp;Roel van de Krol,&nbsp;Matthias M. May,&nbsp;Agnieszka Paszuk,&nbsp;Franziska Hess,&nbsp;Arno Bergmann,&nbsp;Andreas Bund,&nbsp;Christian Cierpka,&nbsp;Christian Dreßler,&nbsp;Fabio Dionigi,&nbsp;Dennis Friedrich,&nbsp;Marco Favaro,&nbsp;Stefan Krischok,&nbsp;Mario Kurniawan,&nbsp;Kathy Lüdge,&nbsp;Yong Lei,&nbsp;Beatriz Roldán Cuenya,&nbsp;Peter Schaaf,&nbsp;Rüdiger Schmidt-Grund,&nbsp;Wolf Gero Schmidt,&nbsp;Peter Strasser,&nbsp;Eva Unger,&nbsp;Manuel F. Vasquez Montoya,&nbsp;Dong Wang,&nbsp;Hongbin Zhang","doi":"10.1002/solr.202470113","DOIUrl":"https://doi.org/10.1002/solr.202470113","url":null,"abstract":"<p><b>Artificial Leaves</b>\u0000 </p><p>In this conceptual review on advanced device structures for artificial leaves, the authors delve into the details of suitable semiconductor tandem configurations. They explore key challenges in water splitting, promising designs, and innovative research areas such as advanced preparation, characterization, and theoretical modeling of multi-photoabsorbers, electrocatalysts, and dynamics of interfacial reactions. Additionally, case studies of several promising material compositions are presented. More in article number 2301047, Thomas Hannappel, Roel van de Krol, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202470113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental-Doped Catalysts for Photoelectrochemical CO2 Conversion to Solar Fuels 用于光电化学二氧化碳转化为太阳能燃料的元素掺杂催化剂
IF 7.9 3区 工程技术 Q1 Engineering Pub Date : 2024-06-07 DOI: 10.1002/solr.202470111
Chaitanya B. Hiragond, Jungmyung Kim, Hwapyong Kim, Dowon Bae, Su-Il In

CO2 Conversion

In article number 2400022, Dowon Bae, Su-Il In, and co-workers reviewed the photoelectrochemical (PEC) CO2 conversion into solar fuels such as CO, COOH, CH3OH, etc. using elemental doping to photoelectrode materials. The introduction of impurities into electrode materials induces defect states, facilitating band gap tuning, broadening light absorption spectra, enhancing charge separation efficiency, and improving CO2 adsorption capabilities. Hence, elemental doped photoelectrodes collectively contribute to the enhancement of optoelectronic properties and lead to improved catalytic activity of CO2 reduction in a PEC cell.

二氧化碳转化 在编号为 2400022 的文章中,Dowon Bae、Su-Il In 及合作者回顾了利用在光电电极材料中掺杂元素将二氧化碳转化为 CO、COOH、CH3OH 等太阳能燃料的光电化学 (PEC) 技术。在电极材料中引入杂质可诱导缺陷态,从而促进带隙调整、拓宽光吸收光谱、提高电荷分离效率并改善二氧化碳吸附能力。因此,掺杂元素的光电极共同促进了光电特性的增强,并提高了 PEC 电池中二氧化碳还原的催化活性。
{"title":"Elemental-Doped Catalysts for Photoelectrochemical CO2 Conversion to Solar Fuels","authors":"Chaitanya B. Hiragond,&nbsp;Jungmyung Kim,&nbsp;Hwapyong Kim,&nbsp;Dowon Bae,&nbsp;Su-Il In","doi":"10.1002/solr.202470111","DOIUrl":"https://doi.org/10.1002/solr.202470111","url":null,"abstract":"<p><b>CO<sub>2</sub> Conversion</b>\u0000 </p><p>In article number 2400022, Dowon Bae, Su-Il In, and co-workers reviewed the photoelectrochemical (PEC) CO<sub>2</sub> conversion into solar fuels such as CO, COOH, CH<sub>3</sub>OH, etc. using elemental doping to photoelectrode materials. The introduction of impurities into electrode materials induces defect states, facilitating band gap tuning, broadening light absorption spectra, enhancing charge separation efficiency, and improving CO<sub>2</sub> adsorption capabilities. Hence, elemental doped photoelectrodes collectively contribute to the enhancement of optoelectronic properties and lead to improved catalytic activity of CO<sub>2</sub> reduction in a PEC cell.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202470111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Ag–Si Contact Characteristics of Boron Emitters for n-Tunnel Oxide-Passivated Contact Solar Cells Metallized by Laser-Assisted Current Injection Treatment 研究通过激光辅助电流注入处理实现金属化的 n-TOPCon 太阳能电池硼发射器的银硅接触特性
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-05 DOI: 10.1002/solr.202400268
Yuan Fan, Shuai Zou, Yulian Zeng, Longfei Dai, Zipeng Wang, Zheng Lu, Hua Sun, Xinshan Zhou, Baochen Liao, Xiaodong Su

Laser-assisted current injection treatment, also known as laser-enhanced contact optimization (LECO), has great potential to reduce front contact resistance and metal-induced recombination of n-type tunnel oxide-passivated contact (n-TOPCon) solar cells, thereby improving the cell efficiency. Herein, the interfacial Ag–Si contact characteristics on boron-doped p+ emitters and the electrical properties of industrial n-TOPCon solar cells that feature a LECO treatment and a specific Ag paste are investigated and compared with those of n-TOPCon solar cells with a standard Ag/Al paste process. LECO causes some current-fired contacts that, when removed by sequential selective etching, leave bowl-shaped imprints on the emitter, indicating that isotropic alloying behavior occurs between Ag and Si at these local positions during LECO. Unlike the standard Ag/Al metallization process, the LECO process does not significantly damage the passivation layer or emitter. More interestingly, the n-TOPCon solar cells prepared with the specific Ag paste do not initially form an effective metal–semiconductor contact, with an average efficiency of only 0.14%, which increases to 25.65% after LECO treatment, even 0.2%abs higher than that of the reference counterparts with standard Ag/Al electrodes. Ultimately, a physical model of LECO-induced Ag–Si contact formation on boron emitters is proposed.

激光辅助电流注入处理,也称为激光增强接触优化(LECO),在降低 n 型隧道氧化物钝化接触(n-TOPCon)太阳能电池的前接触电阻和金属诱导重组,从而提高电池效率方面具有巨大潜力。在此,我们研究了掺硼 p+ 发射极上的银硅界面接触特性,以及采用 LECO 处理和特定银浆的工业 n-TOPCon 太阳能电池的电气特性,并与采用标准银/铝浆工艺的 n-TOPCon 太阳能电池的电气特性进行了比较。LECO 会导致一些电流烧结触点 (CFC),当通过顺序选择性蚀刻去除这些触点时,会在发射器上留下碗状印记,这表明在 LECO 过程中,银和硅在这些局部位置发生了各向同性的合金行为。与标准的银/铝金属化工艺不同,LECO 工艺不会对钝化层或发射极造成严重损害。更有趣的是,使用特定银浆制备的 n-TOPCon 太阳能电池最初并没有形成有效的金属-半导体接触,平均效率仅为 0.14%,经过 LECO 处理后,平均效率提高到 25.65%,甚至比使用标准银/铝电极的同类参考电池高出 0.2%abs。最终,我们提出了在硼发射极上形成 LECO 诱导的银硅接触的物理模型。本文受版权保护。
{"title":"Investigation of the Ag–Si Contact Characteristics of Boron Emitters for n-Tunnel Oxide-Passivated Contact Solar Cells Metallized by Laser-Assisted Current Injection Treatment","authors":"Yuan Fan,&nbsp;Shuai Zou,&nbsp;Yulian Zeng,&nbsp;Longfei Dai,&nbsp;Zipeng Wang,&nbsp;Zheng Lu,&nbsp;Hua Sun,&nbsp;Xinshan Zhou,&nbsp;Baochen Liao,&nbsp;Xiaodong Su","doi":"10.1002/solr.202400268","DOIUrl":"10.1002/solr.202400268","url":null,"abstract":"<p>Laser-assisted current injection treatment, also known as laser-enhanced contact optimization (LECO), has great potential to reduce front contact resistance and metal-induced recombination of n-type tunnel oxide-passivated contact (n-TOPCon) solar cells, thereby improving the cell efficiency. Herein, the interfacial Ag–Si contact characteristics on boron-doped p<sup>+</sup> emitters and the electrical properties of industrial n-TOPCon solar cells that feature a LECO treatment and a specific Ag paste are investigated and compared with those of n-TOPCon solar cells with a standard Ag/Al paste process. LECO causes some current-fired contacts that, when removed by sequential selective etching, leave bowl-shaped imprints on the emitter, indicating that isotropic alloying behavior occurs between Ag and Si at these local positions during LECO. Unlike the standard Ag/Al metallization process, the LECO process does not significantly damage the passivation layer or emitter. More interestingly, the n-TOPCon solar cells prepared with the specific Ag paste do not initially form an effective metal–semiconductor contact, with an average efficiency of only 0.14%, which increases to 25.65% after LECO treatment, even 0.2%<sub>abs</sub> higher than that of the reference counterparts with standard Ag/Al electrodes. Ultimately, a physical model of LECO-induced Ag–Si contact formation on boron emitters is proposed.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand-Triggered MXene Quantum Dots with Tunable Work Function as Anode and Cathode Interlayers for Organic Solar Cells 配体触发的具有可调功函数的 MXenes 量子点作为有机太阳能电池的阳极和阴极夹层
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-04 DOI: 10.1002/solr.202400270
Tao Li, Guoqiang Liu, Guoying Yao, Xiaohui Ma, Zhicai He, Yong Cao

The interfacial layers of organic optoelectronic devices generally suffer from the problems of difficulty in regulating the work function (WF) and low mobility, which are prone to mismatch of interfacial energy levels and loss of carrier transport energy. Herein, O-terminated and NH2-terminated Ti3C2Tx MXenes quantum dots (MQDs) are synthesized to develop efficient O-MQD hole transfer layer (HTL) and E-MQD electron transfer layer (ETL) for organic optoelectronic devices of organic solar cells (OSCs) and organic photodetectors (OPDs). It is found that the strong electronic coupling interaction between the surface terminations and matrices enables O-MQD and E-MQD with tunable WF and satisfactory conductivity. Consequently, in a binary D18:L8-BO system, the power conversion efficiencies of the OSC device based on O-MQD HTL and E-MQD ETL are 18.62% and 18.15%, respectively. Moreover, the OPDs with O-MQD HTL and E-MQD ETL exhibit higher shot-noise-limited detectivity (Dshot*) of 1.24 × 1013 and 1.10 × 1013 Jones, respectively, compared to the devices using classic interlayers. These findings provide some insights into the design of advanced dual-function interlayers for organic optoelectronic devices.

有机光电器件的界面层普遍存在功函数(WF)调节困难和迁移率低的问题,容易造成界面能级失配和载流子输运能量损失。本研究合成了 O 端和 NH2 端 Ti3C2TX MXenes 量子点,开发出高效的 O-MQD 空穴传输层(HTL)和 E-MQD 电子传输层(ETL),用于有机太阳能电池(OSC)和有机光电探测器(OPD)等有机光电器件。研究发现,表面端点和基质之间的强电子耦合相互作用使得 O-MQD 和 E-MQD 具有可调的 WF 和令人满意的导电性。因此,在二元 D18:L8-BO 系统中,基于 O-MQD HTL 和 E-MQD ETL 的 OSC 器件的功率转换效率(PCE)分别为 18.62% 和 18.15%。此外,与使用传统夹层的器件相比,使用 O-MQD HTL 和 E-MQD ETL 的 OPD 器件具有更高的射频噪声限检测率(Dshot*),分别为 1.24 × 1013 琼斯和 1.10 × 1013 琼斯。这些发现为设计用于有机光电器件的先进双功能中间膜提供了一些启示。本文受版权保护。
{"title":"Ligand-Triggered MXene Quantum Dots with Tunable Work Function as Anode and Cathode Interlayers for Organic Solar Cells","authors":"Tao Li,&nbsp;Guoqiang Liu,&nbsp;Guoying Yao,&nbsp;Xiaohui Ma,&nbsp;Zhicai He,&nbsp;Yong Cao","doi":"10.1002/solr.202400270","DOIUrl":"10.1002/solr.202400270","url":null,"abstract":"<p>The interfacial layers of organic optoelectronic devices generally suffer from the problems of difficulty in regulating the work function (WF) and low mobility, which are prone to mismatch of interfacial energy levels and loss of carrier transport energy. Herein, O-terminated and NH<sub>2</sub>-terminated Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXenes quantum dots (MQDs) are synthesized to develop efficient O-MQD hole transfer layer (HTL) and E-MQD electron transfer layer (ETL) for organic optoelectronic devices of organic solar cells (OSCs) and organic photodetectors (OPDs). It is found that the strong electronic coupling interaction between the surface terminations and matrices enables O-MQD and E-MQD with tunable WF and satisfactory conductivity. Consequently, in a binary D18:L8-BO system, the power conversion efficiencies of the OSC device based on O-MQD HTL and E-MQD ETL are 18.62% and 18.15%, respectively. Moreover, the OPDs with O-MQD HTL and E-MQD ETL exhibit higher shot-noise-limited detectivity (<i>D</i><sub>shot</sub>*) of 1.24 × 10<sup>13</sup> and 1.10 × 10<sup>13</sup> Jones, respectively, compared to the devices using classic interlayers. These findings provide some insights into the design of advanced dual-function interlayers for organic optoelectronic devices.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141388098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable Fabrication Methods of Large-Area (n-i-p) Perovskite Solar Panels 大面积(n-i-p)过氧化物太阳能电池板的可扩展制造方法
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-04 DOI: 10.1002/solr.202400235
Manas Ranjan Samantaray, Zhe Wang, Dingqin Hu, Mingjian Yuan, Haisheng Song, Fang-Fang Li, Guohua Jia, Li Ji, Xingli Zou, Hsin-Hui Shen, Bangzi Xi, Yanqing Tian, Xue-Qing Xu, Duu-Jong Lee, Hsien-Yi Hsu

Organometal halide perovskite photovoltaic (PV) cells have achieved power conversion efficiencies (PCEs) comparable to the leading crystalline silicon (c-Si) PV technology. However, despite their exceptional performance, these perovskite solar cells (PSCs) face technological challenges such as large-area fabrication complexities and outdoor stability concerns. These challenges need to be addressed to pave the way for the commercialization of PSCs. The key to commercializing PSCs lies in developing stable, large-area solar modules that offer both high efficiency and reliability. Overcoming the hurdles of large-area module design and fabrication is a crucial step, and researchers are exploring innovative solutions to tackle these challenges. This review article primarily focuses on the development of large-area PSCs, recent advancements in this field, and the obstacles related to scaling up this technology. It delves into the techniques used to fabricate perovskite films, with a special emphasis on large-area and large-scale PSC manufacturing methods. Moreover, the review highlights stability concerns that perovskite solar modules (PSMs) face and reports on recent progress in addressing these issues. The article concludes by summarizing potential future research directions aimed at realizing the full commercial potential of this innovative and promising solar cell technology.

有机金属卤化物过氧化物光伏(PV)电池的功率转换效率(PCE)可与领先的晶体硅(c-Si)光伏技术相媲美。然而,尽管性能出众,这些过氧化物晶体太阳能电池(PSC)仍面临着技术挑战,例如大面积制造的复杂性和户外稳定性问题。这些挑战亟待解决,以便为光电池的商业化铺平道路。实现 PSCs 商业化的关键在于开发稳定的、大面积的太阳能模块,这些模块应具有高效率和高可靠性。克服大面积模块设计和制造的障碍是关键的一步,研究人员正在探索创新的解决方案来应对这些挑战。这篇综述文章主要关注大面积聚光太阳能电池的发展、该领域的最新进展以及与扩大该技术规模相关的障碍。文章深入探讨了用于制造过氧化物薄膜的技术,并特别强调了大面积和大规模 PSC 的制造方法。此外,文章还强调了过氧化物太阳能模块(PSM)所面临的稳定性问题,并报告了在解决这些问题方面的最新进展。文章最后总结了未来潜在的研究方向,旨在充分发挥这一创新且前景广阔的太阳能电池技术的商业潜力。本文受版权保护,保留所有权利。
{"title":"Scalable Fabrication Methods of Large-Area (n-i-p) Perovskite Solar Panels","authors":"Manas Ranjan Samantaray,&nbsp;Zhe Wang,&nbsp;Dingqin Hu,&nbsp;Mingjian Yuan,&nbsp;Haisheng Song,&nbsp;Fang-Fang Li,&nbsp;Guohua Jia,&nbsp;Li Ji,&nbsp;Xingli Zou,&nbsp;Hsin-Hui Shen,&nbsp;Bangzi Xi,&nbsp;Yanqing Tian,&nbsp;Xue-Qing Xu,&nbsp;Duu-Jong Lee,&nbsp;Hsien-Yi Hsu","doi":"10.1002/solr.202400235","DOIUrl":"10.1002/solr.202400235","url":null,"abstract":"<p>Organometal halide perovskite photovoltaic (PV) cells have achieved power conversion efficiencies (PCEs) comparable to the leading crystalline silicon (c-Si) PV technology. However, despite their exceptional performance, these perovskite solar cells (PSCs) face technological challenges such as large-area fabrication complexities and outdoor stability concerns. These challenges need to be addressed to pave the way for the commercialization of PSCs. The key to commercializing PSCs lies in developing stable, large-area solar modules that offer both high efficiency and reliability. Overcoming the hurdles of large-area module design and fabrication is a crucial step, and researchers are exploring innovative solutions to tackle these challenges. This review article primarily focuses on the development of large-area PSCs, recent advancements in this field, and the obstacles related to scaling up this technology. It delves into the techniques used to fabricate perovskite films, with a special emphasis on large-area and large-scale PSC manufacturing methods. Moreover, the review highlights stability concerns that perovskite solar modules (PSMs) face and reports on recent progress in addressing these issues. The article concludes by summarizing potential future research directions aimed at realizing the full commercial potential of this innovative and promising solar cell technology.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141388174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Throughput Screening of Low-Bandgap Organic Semiconductors for Photovoltaic Applications: In the Search of Correlations 用于光伏应用的低带隙有机半导体的高通量筛选:寻找相关性
IF 6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-06-04 DOI: 10.1002/solr.202400213
Alfonsina Abat Amelenan Torimtubun, Matías J. Alonso-Navarro, Arianna Quesada-Ramírez, Xabier Rodríguez-Martínez, José L. Segura, Alejandro R. Goñi, Mariano Campoy-Quiles

Low-bandgap nonfullerene acceptors (NFAs) offer a unique potential for photovoltaic (PV) applications, such as transparent PV and agrivoltaics. Evaluating each new PV system to achieve the optimum thickness, microstructure, and device performance is, however, a complex multiparametric challenge with large time and resource requirements. Herein, the PV potential of low-bandgap donor and NFA materials by combining high-throughput screening and statistical methods is evaluated. The use of thickness gradients (20–600 nm) facilitates the fabrication of more than 2000 doctor-bladed devices from 24 different low-bandgap blend combinations. The corresponding power conversion efficiencies varies significantly, from 0.06% to 10.45% across materials and thicknesses. The self-consistency of the large dataset allows to perform a parameter sensitivity study as well as parameter correlation analysis. These reveal that the choice of materials and energy alignment-related features (i.e., electron affinity offset, ionization energy offset, bandgap, and energy loss) has the largest influence on final device performance, while processing conditions appear less important for the final efficiencies. Our study demonstrates that high-throughput experimentation is a perfect match for correlation analyses in order to gain a statistically meaningful understanding of these systems, potentially accelerating the discovery of new materials.

低带隙非富勒烯受体(NFA)为光伏(PV)应用(如透明光伏和农用光伏)提供了独特的潜力。然而,评估每个新的光伏系统以实现最佳厚度、微观结构和器件性能是一项复杂的多参数挑战,需要大量的时间和资源。在这项工作中,我们结合高通量筛选和统计方法,评估了低带隙供体和 NFA 材料的光伏潜力。利用厚度梯度(20-600 nm),我们用 24 种不同的低带隙混合材料组合制作了 2000 多个刮刀式器件。不同材料和厚度的相应功率转换效率差异很大,从 0.06% 到 10.45%。由于大型数据集具有自洽性,因此可以进行参数敏感性研究和参数相关性分析。这些结果表明,材料的选择和能量配准相关特征(即电子亲和力偏移、电离能偏移、带隙和能量损失)对最终器件性能的影响最大,而加工条件对最终效率的影响似乎较小。我们的研究表明,高通量实验与相关分析是完美匹配的,可以从统计学角度获得对这些系统的理解,从而加速新材料的发现。本文受版权保护,保留所有权利。
{"title":"High-Throughput Screening of Low-Bandgap Organic Semiconductors for Photovoltaic Applications: In the Search of Correlations","authors":"Alfonsina Abat Amelenan Torimtubun,&nbsp;Matías J. Alonso-Navarro,&nbsp;Arianna Quesada-Ramírez,&nbsp;Xabier Rodríguez-Martínez,&nbsp;José L. Segura,&nbsp;Alejandro R. Goñi,&nbsp;Mariano Campoy-Quiles","doi":"10.1002/solr.202400213","DOIUrl":"10.1002/solr.202400213","url":null,"abstract":"<p>Low-bandgap nonfullerene acceptors (NFAs) offer a unique potential for photovoltaic (PV) applications, such as transparent PV and agrivoltaics. Evaluating each new PV system to achieve the optimum thickness, microstructure, and device performance is, however, a complex multiparametric challenge with large time and resource requirements. Herein, the PV potential of low-bandgap donor and NFA materials by combining high-throughput screening and statistical methods is evaluated. The use of thickness gradients (20–600 nm) facilitates the fabrication of more than 2000 doctor-bladed devices from 24 different low-bandgap blend combinations. The corresponding power conversion efficiencies varies significantly, from 0.06% to 10.45% across materials and thicknesses. The self-consistency of the large dataset allows to perform a parameter sensitivity study as well as parameter correlation analysis. These reveal that the choice of materials and energy alignment-related features (i.e., electron affinity offset, ionization energy offset, bandgap, and energy loss) has the largest influence on final device performance, while processing conditions appear less important for the final efficiencies. Our study demonstrates that high-throughput experimentation is a perfect match for correlation analyses in order to gain a statistically meaningful understanding of these systems, potentially accelerating the discovery of new materials.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solar RRL
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1