Jialiang Chen, Lulu Zhang, Lang Song, Mai Ye, Lin Wang, Bin Fan, Bin Li, Zetao Yang, Rongzhou Jin, Pu Jia
Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental damage through analyzing changes in the soil bacterial communities across slag, sewage sludge, and non-contaminated areas. The results indicate that the diversity of soil bacteria decreases with an increase in the degree of pollution. The illegal dumping of slag resulted in an increase in the relative abundance of Firmicutes and a decrease in the relative abundance of Acidobacteriota. Additionally, illegal dumping of sewage sludge resulted in an increase in the relative abundance of Proteobacteria and a decrease in the relative abundance of Acidobacteriota. The contents of Ni and Be in slag and Cu, Pb, and Cd in sewage sludge were key factors affecting bacterial community composition. The results reveal the effects of heavy metal pollution on the soil bacterial community structure and its environmental driving factors, thus expanding understanding in the context of management of the environmental damage caused by illegal dumping, as well as providing a perspective on the changes in the soil bacterial community, allowing for environmental damage confirmation.
{"title":"Effects of Illegal Solid Waste Dumping on the Structure of Soil Bacterial Communities: A Case Study in China.","authors":"Jialiang Chen, Lulu Zhang, Lang Song, Mai Ye, Lin Wang, Bin Fan, Bin Li, Zetao Yang, Rongzhou Jin, Pu Jia","doi":"10.3390/toxics13010020","DOIUrl":"10.3390/toxics13010020","url":null,"abstract":"<p><p>Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental damage through analyzing changes in the soil bacterial communities across slag, sewage sludge, and non-contaminated areas. The results indicate that the diversity of soil bacteria decreases with an increase in the degree of pollution. The illegal dumping of slag resulted in an increase in the relative abundance of <i>Firmicutes</i> and a decrease in the relative abundance of <i>Acidobacteriota</i>. Additionally, illegal dumping of sewage sludge resulted in an increase in the relative abundance of <i>Proteobacteria</i> and a decrease in the relative abundance of <i>Acidobacteriota</i>. The contents of Ni and Be in slag and Cu, Pb, and Cd in sewage sludge were key factors affecting bacterial community composition. The results reveal the effects of heavy metal pollution on the soil bacterial community structure and its environmental driving factors, thus expanding understanding in the context of management of the environmental damage caused by illegal dumping, as well as providing a perspective on the changes in the soil bacterial community, allowing for environmental damage confirmation.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Fraissinet, Emanuele Mancini, Chiara Funiati, Caterina Martino, Giuseppe Egidio De Benedetto, Chiara Roberta Girelli, Francesco Paolo Fanizzi, Genuario Belmonte, Stefano Piraino
The various forms of anthropogenic pollution are regarded as a serious threat to marine coastal areas. The overproduction and mismanagement of petroleum derivatives, such as tar and plastics, have resulted in a significant correlation between these two pollutants. The aggregation of tar, microplastics (MPs), and natural materials can create plastitar blocks, which are common in coastal areas. These raise concern about the undeniable negative impact on the marine ecosystem and the associated biota, and serve as a recognizable and understandable indication of environmental decline. Here, the composition of the 11 plastitar blocks collected on the Ionian side of the Apulia region (Italy) was characterized both in tar and plastics using nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy, respectively. Of the 250 particles extracted from the tar, 208 were identified as plastics, predominantly Polyethylene. The majority of these were in the form of pellets (90%), with fragments accounting for 5% and films and filaments representing the remaining 5%. This study provides new data that can be used to enhance the understanding of the distribution and baseline information about this novel form of pollution in Italian waters.
{"title":"New Plastitar Record for the Mediterranean Sea: Characterization of Plastics and Tar from the Salento Peninsula (Ionian Sea).","authors":"Silvia Fraissinet, Emanuele Mancini, Chiara Funiati, Caterina Martino, Giuseppe Egidio De Benedetto, Chiara Roberta Girelli, Francesco Paolo Fanizzi, Genuario Belmonte, Stefano Piraino","doi":"10.3390/toxics13010013","DOIUrl":"10.3390/toxics13010013","url":null,"abstract":"<p><p>The various forms of anthropogenic pollution are regarded as a serious threat to marine coastal areas. The overproduction and mismanagement of petroleum derivatives, such as tar and plastics, have resulted in a significant correlation between these two pollutants. The aggregation of tar, microplastics (MPs), and natural materials can create plastitar blocks, which are common in coastal areas. These raise concern about the undeniable negative impact on the marine ecosystem and the associated biota, and serve as a recognizable and understandable indication of environmental decline. Here, the composition of the 11 plastitar blocks collected on the Ionian side of the Apulia region (Italy) was characterized both in tar and plastics using nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy, respectively. Of the 250 particles extracted from the tar, 208 were identified as plastics, predominantly Polyethylene. The majority of these were in the form of pellets (90%), with fragments accounting for 5% and films and filaments representing the remaining 5%. This study provides new data that can be used to enhance the understanding of the distribution and baseline information about this novel form of pollution in Italian waters.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility. Subsequently, we performed mediation analysis to explore the potential mediating effect of obesity on infertility in association with anion exposure. Increased concentrations of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73, 95% CI: 0.55-0.96; OR = 0.59, 95% CI: 0.40-0.87). Perchlorate was negatively associated with infertility (OR = 0.68, 95% CI: 0.51-0.91), and obesity was a mediator in association between perchlorate and infertility. These findings suggest that women of reproductive age may be protected from obesity and infertility by exposure to perchlorate and nitrate, with obesity acting as a moderating factor in the observed association. This study provides a valuable understanding of the complex links between environmental contaminants, obesity, and reproductive health, and identifies potential strategies to reduce the risk of infertility and improve women's health.
{"title":"Associations of Urinary Perchlorate, Nitrate, and Thiocyanate with Female Infertility and Mediation of Obesity: Insights from NHANES 2013-2018.","authors":"Lan Zhang, Yuhe Peng, Yue Song, Yu Zhang, Qi Qin, Mengya Ying, Yiyun Bi, Ping Yin","doi":"10.3390/toxics13010015","DOIUrl":"10.3390/toxics13010015","url":null,"abstract":"<p><p>Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility. Subsequently, we performed mediation analysis to explore the potential mediating effect of obesity on infertility in association with anion exposure. Increased concentrations of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73, 95% CI: 0.55-0.96; OR = 0.59, 95% CI: 0.40-0.87). Perchlorate was negatively associated with infertility (OR = 0.68, 95% CI: 0.51-0.91), and obesity was a mediator in association between perchlorate and infertility. These findings suggest that women of reproductive age may be protected from obesity and infertility by exposure to perchlorate and nitrate, with obesity acting as a moderating factor in the observed association. This study provides a valuable understanding of the complex links between environmental contaminants, obesity, and reproductive health, and identifies potential strategies to reduce the risk of infertility and improve women's health.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Zhuang, Xiaowu Xiang, Jin Hu, Jing Xiong, Teng Zhang, Lei Zhou, Guoping Jiang, Min Zhang, Zhenghua Liu, Huaqun Yin, Ling Xia, Ibrahim Ahmed Ibrahim Mahmoud, Delong Meng
The development of the non-ferrous metal industry is generating increasingly large quantities of wastewater containing heavy metals (e.g., Sb). The precipitation of heavy metals by microorganisms involves complex mechanisms that require further investigation to optimize bioremediation technologies. In this study, we employed a sulfate-reducing bacteria (SRB) strain Desulfovibrio desulfuricans CSU_dl to treat the antimony (Sb)-containing wastewater; the behavior of Sb and mechanisms underlying precipitation were investigated by characterizing the precipitates. The results showed that the abiotic factors constraining SRB bacterial growth greatly affect Sb forms and precipitation. For instance, Sb precipitation maximumly occurred at pH 6 and 7, or C:N ratio of 10:1 and 40:3 for Sb(III) and Sb(V), respectively, resulting in a maximum Sb removal rate of 94%. Interestingly, we found that substantial antimonate and antimonite were adsorbed on the SRB cell surface, indicating that cell surface is a critical reaction site of Sb transformation and precipitation. Sb was adsorbed to the cell surface by C-C and C=O groups, and was further precipitated by forming Sb2S3 and Sb2S5 or was coprecipitated with the P-containing group. Partial Sb(V) reduction was also observed on the SRB cell surface. These results provided a deep insight into the Sb bio-transformation and were an advancement with respect to understanding bioremediation of Sb-contaminated wastewater.
{"title":"Behavior and Mechanisms of Antimony Precipitation from Wastewater by Sulfate-Reducing Bacteria <i>Desulfovibrio desulfuricans</i>.","authors":"Fan Zhuang, Xiaowu Xiang, Jin Hu, Jing Xiong, Teng Zhang, Lei Zhou, Guoping Jiang, Min Zhang, Zhenghua Liu, Huaqun Yin, Ling Xia, Ibrahim Ahmed Ibrahim Mahmoud, Delong Meng","doi":"10.3390/toxics13010017","DOIUrl":"10.3390/toxics13010017","url":null,"abstract":"<p><p>The development of the non-ferrous metal industry is generating increasingly large quantities of wastewater containing heavy metals (e.g., Sb). The precipitation of heavy metals by microorganisms involves complex mechanisms that require further investigation to optimize bioremediation technologies. In this study, we employed a sulfate-reducing bacteria (SRB) strain <i>Desulfovibrio desulfuricans</i> CSU_dl to treat the antimony (Sb)-containing wastewater; the behavior of Sb and mechanisms underlying precipitation were investigated by characterizing the precipitates. The results showed that the abiotic factors constraining SRB bacterial growth greatly affect Sb forms and precipitation. For instance, Sb precipitation maximumly occurred at pH 6 and 7, or C:N ratio of 10:1 and 40:3 for Sb(III) and Sb(V), respectively, resulting in a maximum Sb removal rate of 94%. Interestingly, we found that substantial antimonate and antimonite were adsorbed on the SRB cell surface, indicating that cell surface is a critical reaction site of Sb transformation and precipitation. Sb was adsorbed to the cell surface by C-C and C=O groups, and was further precipitated by forming Sb<sub>2</sub>S<sub>3</sub> and Sb<sub>2</sub>S<sub>5</sub> or was coprecipitated with the P-containing group. Partial Sb(V) reduction was also observed on the SRB cell surface. These results provided a deep insight into the Sb bio-transformation and were an advancement with respect to understanding bioremediation of Sb-contaminated wastewater.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tahreer M Al-Raddadi, Lateefa A Al-Khateeb, Mohammad W Sadaka, Saleh O Bahaffi
This study investigated the elemental composition of Boerhavia elegans, addressing the gap in comprehensive trace element profiling of this medicinal plant. The research aimed to determine the distribution of macronutrients, micronutrients, and beneficial and potentially toxic elements across different plant parts (seeds, leaves, stems, and roots). Using ICP-OES analysis, two digestion methods were employed to capture both complex and labile elements. The study revealed distinct elemental distribution patterns, with iron and nickel concentrating in stems, manganese and zinc in leaves, and copper in roots. Magnesium emerged as the most abundant macronutrient, particularly in leaves. Importantly, all detected toxic elements (arsenic, chromium, lead, and cadmium) were below WHO safety limits. These findings provide crucial insights into the nutritional and safety profile of B. elegans, potentially informing its use in traditional medicine and highlighting its potential as a source of essential elements.
{"title":"Trace Element Speciation and Nutrient Distribution in <i>Boerhavia elegans</i>: Evaluation and Toxic Metal Concentration Across Plant Tissues.","authors":"Tahreer M Al-Raddadi, Lateefa A Al-Khateeb, Mohammad W Sadaka, Saleh O Bahaffi","doi":"10.3390/toxics13010014","DOIUrl":"10.3390/toxics13010014","url":null,"abstract":"<p><p>This study investigated the elemental composition of <i>Boerhavia elegans</i>, addressing the gap in comprehensive trace element profiling of this medicinal plant. The research aimed to determine the distribution of macronutrients, micronutrients, and beneficial and potentially toxic elements across different plant parts (seeds, leaves, stems, and roots). Using ICP-OES analysis, two digestion methods were employed to capture both complex and labile elements. The study revealed distinct elemental distribution patterns, with iron and nickel concentrating in stems, manganese and zinc in leaves, and copper in roots. Magnesium emerged as the most abundant macronutrient, particularly in leaves. Importantly, all detected toxic elements (arsenic, chromium, lead, and cadmium) were below WHO safety limits. These findings provide crucial insights into the nutritional and safety profile of <i>B. elegans</i>, potentially informing its use in traditional medicine and highlighting its potential as a source of essential elements.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organophosphorus pesticides (OPs) have become one of the most widely used pesticides in Chinese agriculture; however, methods to identify potential restrictions on OPs molecules are lacking. Therefore, this study retrieved the OPs restriction list and constructed eight multi-class, multi-category machine learning models for OPs restrictions. Among these, the random forest (RF) model demonstrated excellent predictive performance, as it was successfully validated and applied. Potential environmental transformation products of OPs were obtained using EAWAG-BBD software, while toxicity indicators for the parent OPs and their transformation products were predicted with ADMETlab 3.0 software. This study found that unrestricted OPs, such as phorate, parathion, and chlorpyrifos, exhibited a high probability of toxicity. Additionally, the environmental transformation products of OPs posed similar comprehensive toxicity risks as the parent compounds. A special attention list for OPs was created based on the toxicity risks of unrestricted parent OPs and their transformation products, using standard deviation classification. Phorate and parathion were identified as OPs requiring special attention. This paper aims to provide an effective method for identifying the potential restriction levels of OPs and to propose an evaluation system that comprehensively considers the health risk, thereby supporting the improvement and optimization of management and usage strategies for OPs.
{"title":"Organophosphorus Pesticides Management Strategies: Prohibition and Restriction Multi-Category Multi-Class Models, Environmental Transformation Risks, and Special Attention List.","authors":"Yingwei Wang, Lu Wang, Yufei Li","doi":"10.3390/toxics13010016","DOIUrl":"10.3390/toxics13010016","url":null,"abstract":"<p><p>Organophosphorus pesticides (OPs) have become one of the most widely used pesticides in Chinese agriculture; however, methods to identify potential restrictions on OPs molecules are lacking. Therefore, this study retrieved the OPs restriction list and constructed eight multi-class, multi-category machine learning models for OPs restrictions. Among these, the random forest (RF) model demonstrated excellent predictive performance, as it was successfully validated and applied. Potential environmental transformation products of OPs were obtained using EAWAG-BBD software, while toxicity indicators for the parent OPs and their transformation products were predicted with ADMETlab 3.0 software. This study found that unrestricted OPs, such as phorate, parathion, and chlorpyrifos, exhibited a high probability of toxicity. Additionally, the environmental transformation products of OPs posed similar comprehensive toxicity risks as the parent compounds. A special attention list for OPs was created based on the toxicity risks of unrestricted parent OPs and their transformation products, using standard deviation classification. Phorate and parathion were identified as OPs requiring special attention. This paper aims to provide an effective method for identifying the potential restriction levels of OPs and to propose an evaluation system that comprehensively considers the health risk, thereby supporting the improvement and optimization of management and usage strategies for OPs.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on Eisenia fetida (Savigny, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis. Results showed that 100 nm NPs were internalized into the cells, causing cytotoxicity. NPs were observed to inhibit cell viability by increasing reactive oxygen species, decreasing the levels of antioxidants (e.g., superoxide dismutase, catalase, and glutathione), and inducing lipid peroxidation and DNA oxidation. Additionally, assays on neutral red retention time, lysozyme activity, and Ca2⁺ levels demonstrated that NPs resulted in a loss of lysosomal membrane stability and a reduction in immune resistance. The depolarization of the mitochondrial membrane potential and the results of the apoptosis assays confirmed that the NPs induced the onset of early apoptosis. The difficulty of the NP in causing cell death by disrupting the plasma membrane was demonstrated by the results of the lactate dehydrogenase release assays in relation to cell necrosis. This research provides cellular-level insights into the ecological risks of NP exposure on soil fauna.
{"title":"Polystyrene Nanoplastics Elicit Multiple Responses in Immune Cells of the <i>Eisenia fetida</i> (<i>Savigny</i>, 1826).","authors":"Huijian Shi, Yaoyue Wang, Xiangxiang Li, Xiaoyang Wang, Yuntao Qi, Shaoyang Hu, Rutao Liu","doi":"10.3390/toxics13010018","DOIUrl":"10.3390/toxics13010018","url":null,"abstract":"<p><p>The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on <i>Eisenia fetida</i> (<i>Savigny</i>, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis. Results showed that 100 nm NPs were internalized into the cells, causing cytotoxicity. NPs were observed to inhibit cell viability by increasing reactive oxygen species, decreasing the levels of antioxidants (e.g., superoxide dismutase, catalase, and glutathione), and inducing lipid peroxidation and DNA oxidation. Additionally, assays on neutral red retention time, lysozyme activity, and Ca<sup>2</sup>⁺ levels demonstrated that NPs resulted in a loss of lysosomal membrane stability and a reduction in immune resistance. The depolarization of the mitochondrial membrane potential and the results of the apoptosis assays confirmed that the NPs induced the onset of early apoptosis. The difficulty of the NP in causing cell death by disrupting the plasma membrane was demonstrated by the results of the lactate dehydrogenase release assays in relation to cell necrosis. This research provides cellular-level insights into the ecological risks of NP exposure on soil fauna.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arianna Sgariboldi, Elena Posté, Nicola Chirico, Alessandro Sangion, Marco Evangelista, Cristiana Morosini, Andrea Re, Vincenzo Torretta, Ester Papa
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants (ECs), whose presence in the environment is of increasing concern due to their widespread use and possible detrimental effects on wildlife and humans. These chemicals may present multiple hazardous properties such as environmental persistence, toxicity, high mobility, and the potential for bioaccumulation. In this study, extended bibliographic research was conducted to characterize the removal efficiency (RE) of PPCPs in wastewater treatment plants (WWTPs) considering different technologies. Measured values of RE were collected from the literature or calculated for 251 compounds. The molecular structure of the 245 PPCPs were used as the input to generate predictions of multiple properties using several QSAR tools, such as the OECD Toolbox, OPERA, EPI Suite™, and QSAR-ME Profiler. These predictions were compared to regulatory thresholds to identify hazardous chemicals and to screen persistent, mobile and toxic (PMT) or persistent, bioaccumulative and toxic (PBT) substances. Finally, chemicals were prioritized by combining values of RE and QSAR predictions for multiple properties. A total of 16 out of the 245 molecules were prioritized as the most hazardous compounds to the aquatic environment and, among these, six were associated with potential risk due to their exposure concentrations reported in the literature.
{"title":"Global Assessment of Emerging Contaminant Removal in Wastewater Treatment Plants: <i>In Silico</i> Hazard Screening and Risk Evaluation.","authors":"Arianna Sgariboldi, Elena Posté, Nicola Chirico, Alessandro Sangion, Marco Evangelista, Cristiana Morosini, Andrea Re, Vincenzo Torretta, Ester Papa","doi":"10.3390/toxics13010006","DOIUrl":"10.3390/toxics13010006","url":null,"abstract":"<p><p>Pharmaceuticals and personal care products (PPCPs) are emerging contaminants (ECs), whose presence in the environment is of increasing concern due to their widespread use and possible detrimental effects on wildlife and humans. These chemicals may present multiple hazardous properties such as environmental persistence, toxicity, high mobility, and the potential for bioaccumulation. In this study, extended bibliographic research was conducted to characterize the removal efficiency (RE) of PPCPs in wastewater treatment plants (WWTPs) considering different technologies. Measured values of RE were collected from the literature or calculated for 251 compounds. The molecular structure of the 245 PPCPs were used as the input to generate predictions of multiple properties using several QSAR tools, such as the OECD Toolbox, OPERA, EPI Suite™, and QSAR-ME Profiler. These predictions were compared to regulatory thresholds to identify hazardous chemicals and to screen persistent, mobile and toxic (PMT) or persistent, bioaccumulative and toxic (PBT) substances. Finally, chemicals were prioritized by combining values of RE and QSAR predictions for multiple properties. A total of 16 out of the 245 molecules were prioritized as the most hazardous compounds to the aquatic environment and, among these, six were associated with potential risk due to their exposure concentrations reported in the literature.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Alexiev, Ebony Stretch, Kristin D Kasschau, Lindsay B Wilson, Lisa Truong, Robyn L Tanguay, Thomas J Sharpton
Developmental exposure to benzo[a]pyrene (BaP), a ubiquitous environmental pollutant, has been linked to various toxic effects, including multigenerational behavioral impairment. While the specific mechanisms driving BaP neurotoxicity are not fully understood, recent work highlights two important determinants of developmental BaP neurotoxicity: (1) the aryl hydrocarbon receptor (AHR), which induces host metabolism of BaP, and (2) the gut microbiome, which may interact with BaP to affect its metabolism, or be perturbed by BaP to disrupt the gut-brain axis. We utilized the zebrafish model to explore the role of AHR, the gut microbiome, and their interaction, on BaP-induced neurotoxicity. We tested (1) how developmental BaP exposure and AHR2 perturbation in zebrafish link to adult behavior, (2) how these variables associate with the structure and function of the adult zebrafish gut metagenome, and (3) whether these associations are multigenerational. Our findings reveal a reticulated axis of association between BaP exposure, developmental AHR2 expression, the zebrafish gut metagenome, and behavior. Results indicate that AHR2 is a key modulator of how BaP elicits neurotoxicity and microbiome dysbiosis. Additionally, this axis of association manifests generationally. These findings demonstrate the importance of studying pollutant-microbiome interactions and elucidate the role of specific host genes in neurotoxicity and dysbiosis.
{"title":"Clearing the Air on Pollutant Disruptions of the Gut-Brain Axis: Developmental Exposure to Benzo[a]pyrene Disturbs Zebrafish Behavior and the Gut Microbiome in Adults and Subsequent Generations.","authors":"Alexandra Alexiev, Ebony Stretch, Kristin D Kasschau, Lindsay B Wilson, Lisa Truong, Robyn L Tanguay, Thomas J Sharpton","doi":"10.3390/toxics13010010","DOIUrl":"10.3390/toxics13010010","url":null,"abstract":"<p><p>Developmental exposure to benzo[a]pyrene (BaP), a ubiquitous environmental pollutant, has been linked to various toxic effects, including multigenerational behavioral impairment. While the specific mechanisms driving BaP neurotoxicity are not fully understood, recent work highlights two important determinants of developmental BaP neurotoxicity: (1) the aryl hydrocarbon receptor (AHR), which induces host metabolism of BaP, and (2) the gut microbiome, which may interact with BaP to affect its metabolism, or be perturbed by BaP to disrupt the gut-brain axis. We utilized the zebrafish model to explore the role of AHR, the gut microbiome, and their interaction, on BaP-induced neurotoxicity. We tested (1) how developmental BaP exposure and AHR2 perturbation in zebrafish link to adult behavior, (2) how these variables associate with the structure and function of the adult zebrafish gut metagenome, and (3) whether these associations are multigenerational. Our findings reveal a reticulated axis of association between BaP exposure, developmental AHR2 expression, the zebrafish gut metagenome, and behavior. Results indicate that AHR2 is a key modulator of how BaP elicits neurotoxicity and microbiome dysbiosis. Additionally, this axis of association manifests generationally. These findings demonstrate the importance of studying pollutant-microbiome interactions and elucidate the role of specific host genes in neurotoxicity and dysbiosis.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Qu, Weiyuan Cao, Kun Dong, Dunqiu Wang, Yi Yao
This study analyzed three years of data (2021-2024) from three wastewater treatment plants (WWTPs), namely D, X, and T, in the main urban area of Handan, a typical city in the southern Hebei region, and investigated the influent characteristics and impact of temperature on these wastewater treatment facilities. With 90% assurance, the overall influent conditions of the three WWTPs in this region were normal. However, Plant T operated more effectively with slightly lower BOD5/CODCr (B/C), organic carbon/total phosphorus (C/TP), and organic carbon/total nitrogen (C/TN) ratios in the influent. Plant D consistently met the Level A standard, Plant X essentially reached the Level A standard, while Plant T attained the Level 2 standard prior to its upgrade. Following the upgrade, Plant T also steadily met the Level A standard. The effluent from all plants was relatively stable, primarily influenced by the influent characteristics and slightly influenced by temperature, but without having a noticeable impact on the effluent quality.
{"title":"Water Quality Characteristics and Seasonal Changes in Wastewater Treatment in the Southern Hebei Region by Branch.","authors":"Chao Qu, Weiyuan Cao, Kun Dong, Dunqiu Wang, Yi Yao","doi":"10.3390/toxics13010008","DOIUrl":"10.3390/toxics13010008","url":null,"abstract":"<p><p>This study analyzed three years of data (2021-2024) from three wastewater treatment plants (WWTPs), namely D, X, and T, in the main urban area of Handan, a typical city in the southern Hebei region, and investigated the influent characteristics and impact of temperature on these wastewater treatment facilities. With 90% assurance, the overall influent conditions of the three WWTPs in this region were normal. However, Plant T operated more effectively with slightly lower BOD<sub>5</sub>/COD<sub>Cr</sub> (B/C), organic carbon/total phosphorus (C/TP), and organic carbon/total nitrogen (C/TN) ratios in the influent. Plant D consistently met the Level A standard, Plant X essentially reached the Level A standard, while Plant T attained the Level 2 standard prior to its upgrade. Following the upgrade, Plant T also steadily met the Level A standard. The effluent from all plants was relatively stable, primarily influenced by the influent characteristics and slightly influenced by temperature, but without having a noticeable impact on the effluent quality.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}