Pub Date : 2024-11-01Epub Date: 2024-05-14DOI: 10.1016/j.tim.2024.04.011
Caroline Lin Lin Chua, Raika Francesca Morales, Po Ying Chia, Tsin Wen Yeo, Andrew Teo
Dengue is a mosquito-borne viral disease which causes significant morbidity and mortality each year. Previous research has proposed several mechanisms of pathogenicity that mainly involve the dengue virus and host humoral immunity. However, innate immune cells, such as neutrophils, may also play an important role in dengue, albeit a much less defined role. In this review, we discuss the emerging roles of neutrophils in dengue and their involvement in pathologies associated with severe dengue. We also describe the potential use of several neutrophil proteins as biomarkers for severe dengue. These studies suggest that neutrophils are important players in dengue, and a better understanding of neutrophil-dengue biology is urgently needed.
{"title":"Neutrophils - an understudied bystander in dengue?","authors":"Caroline Lin Lin Chua, Raika Francesca Morales, Po Ying Chia, Tsin Wen Yeo, Andrew Teo","doi":"10.1016/j.tim.2024.04.011","DOIUrl":"10.1016/j.tim.2024.04.011","url":null,"abstract":"<p><p>Dengue is a mosquito-borne viral disease which causes significant morbidity and mortality each year. Previous research has proposed several mechanisms of pathogenicity that mainly involve the dengue virus and host humoral immunity. However, innate immune cells, such as neutrophils, may also play an important role in dengue, albeit a much less defined role. In this review, we discuss the emerging roles of neutrophils in dengue and their involvement in pathologies associated with severe dengue. We also describe the potential use of several neutrophil proteins as biomarkers for severe dengue. These studies suggest that neutrophils are important players in dengue, and a better understanding of neutrophil-dengue biology is urgently needed.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.tim.2024.09.010
Alexander D Williams, Vivian W Leung, Julian W Tang, Nishimura Hidekazu, Nobuhiro Suzuki, Andrew C Clarke, David A Pearce, Tommy Tsan-Yuk Lam
In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.
{"title":"Ancient environmental microbiomes and the cryosphere.","authors":"Alexander D Williams, Vivian W Leung, Julian W Tang, Nishimura Hidekazu, Nobuhiro Suzuki, Andrew C Clarke, David A Pearce, Tommy Tsan-Yuk Lam","doi":"10.1016/j.tim.2024.09.010","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.010","url":null,"abstract":"<p><p>In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.tim.2024.10.003
Gordon D Brown, Pablo R Murcia, Andrew P Waters, Jose Penades, Alberto Muñoz
Mechanistic understanding of the impact of coinfections is a critical knowledge gap. A workshop on coinfections highlighted key aspects required to advance this field, including identifying the coinfection priorities, creating research platforms for this type of research, promoting cross-expertise collaborations, and securing funding to support cross-kingdom pathogen research.
{"title":"Tackling coinfections.","authors":"Gordon D Brown, Pablo R Murcia, Andrew P Waters, Jose Penades, Alberto Muñoz","doi":"10.1016/j.tim.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.tim.2024.10.003","url":null,"abstract":"<p><p>Mechanistic understanding of the impact of coinfections is a critical knowledge gap. A workshop on coinfections highlighted key aspects required to advance this field, including identifying the coinfection priorities, creating research platforms for this type of research, promoting cross-expertise collaborations, and securing funding to support cross-kingdom pathogen research.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.tim.2024.10.002
Gyanesh Shukla, Gaurav Sharma
Garcia et al. recently identified a novel myxobacterial family, Pendulisporaceae, encompassing four strains with novel biosynthetic gene clusters. This study underscores the value of exploring underrepresented microbial taxa for novel natural products, highlighting the potential of the family Pendulisporaceae as a source of new antimicrobial and therapeutic agents.
{"title":"A unique bacterial family strikes again!","authors":"Gyanesh Shukla, Gaurav Sharma","doi":"10.1016/j.tim.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.tim.2024.10.002","url":null,"abstract":"<p><p>Garcia et al. recently identified a novel myxobacterial family, Pendulisporaceae, encompassing four strains with novel biosynthetic gene clusters. This study underscores the value of exploring underrepresented microbial taxa for novel natural products, highlighting the potential of the family Pendulisporaceae as a source of new antimicrobial and therapeutic agents.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.tim.2024.09.009
Prabhat K Talukdar, Saeed Banawas, Mahfuzur R Sarker
{"title":"Clostridium perfringens.","authors":"Prabhat K Talukdar, Saeed Banawas, Mahfuzur R Sarker","doi":"10.1016/j.tim.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.009","url":null,"abstract":"","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.tim.2024.09.006
David Mayo-Muñoz, Huijuan Li, Mario Rodríguez Mestre, Rafael Pinilla-Redondo
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
{"title":"The role of noncoding RNAs in bacterial immunity.","authors":"David Mayo-Muñoz, Huijuan Li, Mario Rodríguez Mestre, Rafael Pinilla-Redondo","doi":"10.1016/j.tim.2024.09.006","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.006","url":null,"abstract":"<p><p>The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.tim.2024.09.011
Jacobo de la Cuesta-Zuluaga, Patrick Müller, Lisa Maier
The human gut microbiome, a community of microbes that plays a crucial role in our wellbeing, is highly adaptable but also vulnerable to drug treatments. This vulnerability can have serious consequences for the host, for example, increasing susceptibility to infections, immune, metabolic, and cognitive disorders. However, the microbiome's adaptability also provides opportunities to prevent, protect, or even reverse drug-induced damage. Recently, several innovative approaches have emerged aimed at minimizing the collateral damage of drugs on the microbiome. Here, we outline these approaches, discuss their applicability in different treatment scenarios, highlight current challenges, and suggest avenues that may lead to an effective protection of the microbiome.
{"title":"Balancing act: counteracting adverse drug effects on the microbiome.","authors":"Jacobo de la Cuesta-Zuluaga, Patrick Müller, Lisa Maier","doi":"10.1016/j.tim.2024.09.011","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.011","url":null,"abstract":"<p><p>The human gut microbiome, a community of microbes that plays a crucial role in our wellbeing, is highly adaptable but also vulnerable to drug treatments. This vulnerability can have serious consequences for the host, for example, increasing susceptibility to infections, immune, metabolic, and cognitive disorders. However, the microbiome's adaptability also provides opportunities to prevent, protect, or even reverse drug-induced damage. Recently, several innovative approaches have emerged aimed at minimizing the collateral damage of drugs on the microbiome. Here, we outline these approaches, discuss their applicability in different treatment scenarios, highlight current challenges, and suggest avenues that may lead to an effective protection of the microbiome.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.tim.2024.09.012
James P J Hall
Plasmids are vehicles for horizontal gene transfer between cells, but they also exchange genes with associated chromosomes in a process termed 'intracellular mobility'. I discuss a recent article by Kadibalban et al. mapping such plasmid-chromosomal sequence similarities across diverse bacteria.
{"title":"Loading and unloading plasmid cargoes.","authors":"James P J Hall","doi":"10.1016/j.tim.2024.09.012","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.012","url":null,"abstract":"<p><p>Plasmids are vehicles for horizontal gene transfer between cells, but they also exchange genes with associated chromosomes in a process termed 'intracellular mobility'. I discuss a recent article by Kadibalban et al. mapping such plasmid-chromosomal sequence similarities across diverse bacteria.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.tim.2024.09.007
Maryam Mapar, Thomas Rydzak, Josefien W Hommes, Bas G J Surewaard, Ian A Lewis
Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.
{"title":"Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants.","authors":"Maryam Mapar, Thomas Rydzak, Josefien W Hommes, Bas G J Surewaard, Ian A Lewis","doi":"10.1016/j.tim.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.tim.2024.09.007","url":null,"abstract":"<p><p>Small colony variants (SCVs) of Staphylococcus aureus are a relatively rare but clinically significant growth morphotype. Infections with SCVs are frequently difficult to treat, inherently antibiotic-resistant, and can lead to persistent infections. Despite a long history of research, the molecular underpinnings of this morphotype and their impact on the clinical trajectory of infections remain unclear. However, a growing body of literature indicates that SCVs are caused by a diverse range of molecular factors. These recent findings suggest that SCVs should be thought of as an ensemble collection of loosely related phenotypes, and not as a single phenomenon. This review describes the diverse mechanisms currently known to contribute to SCVs and proposes an ensemble model for conceptualizing this morphotype.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-20DOI: 10.1016/j.tim.2024.07.006
Brett M Barney
{"title":"Azotobacter vinelandii.","authors":"Brett M Barney","doi":"10.1016/j.tim.2024.07.006","DOIUrl":"10.1016/j.tim.2024.07.006","url":null,"abstract":"","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}