首页 > 最新文献

Trends in Microbiology最新文献

英文 中文
Tackling the plastisphere: the single-cell Raman spectroscopy framework. 解决质球问题:单细胞拉曼光谱框架。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-31 DOI: 10.1016/j.tim.2024.08.005
Qing-Lin Chen, Kai Yang, Qian Xiang, Li Cui, Yong-Guan Zhu

Conventional bulk molecular approaches, often limited by their destructive nature and low spatial resolution, face challenges when probing the intricate dynamics of the plastisphere. Here, we outline a framework employing Raman spectroscopy combined with stable isotope profiling (SIP) to interrogate the physiological function of the plastisphere microbiome and track its evolutionary trajectories.

传统的大分子方法往往受限于其破坏性和低空间分辨率,在探测质球复杂的动态时面临挑战。在这里,我们概述了一个采用拉曼光谱与稳定同位素剖析(SIP)相结合的框架,以探究质球微生物组的生理功能并追踪其进化轨迹。
{"title":"Tackling the plastisphere: the single-cell Raman spectroscopy framework.","authors":"Qing-Lin Chen, Kai Yang, Qian Xiang, Li Cui, Yong-Guan Zhu","doi":"10.1016/j.tim.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.005","url":null,"abstract":"<p><p>Conventional bulk molecular approaches, often limited by their destructive nature and low spatial resolution, face challenges when probing the intricate dynamics of the plastisphere. Here, we outline a framework employing Raman spectroscopy combined with stable isotope profiling (SIP) to interrogate the physiological function of the plastisphere microbiome and track its evolutionary trajectories.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacillus lipopeptides as key players in rhizosphere chemical ecology. 芽孢杆菌脂肽是根圈化学生态学中的关键角色。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-29 DOI: 10.1016/j.tim.2024.08.001
Guillaume Balleux, Monica Höfte, Anthony Arguelles-Arias, Magali Deleu, Marc Ongena

Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.

微生物天然产物因其治疗潜力而被广泛开发。了解驱动其产生的基本进化和适应力仍然是生物学的一个基本问题。两亲环脂肽(CLPs)是细菌特化代谢产物的一个重要类别,具有很强的抗菌活性,特别是对植物病原体。因此,人们认为这些化合物是生活在土壤或根圈的细菌在竞争激烈的自然环境中作为微生物武器使用的。在此,我们对这种还原论观点提出质疑,并提出证据证明芽孢杆菌的 CLPs 是生态相互作用的重要化学媒介。它们帮助芽孢杆菌与其他(微)生物进行交流、竞争、抵御天敌或合作并建立互惠关系。其他菌属如假单胞菌中也有类似的例子。这种更广阔的视角强调了进一步研究 CLPs 在塑造关键根瘤菌物种适应策略中的作用的必要性。
{"title":"Bacillus lipopeptides as key players in rhizosphere chemical ecology.","authors":"Guillaume Balleux, Monica Höfte, Anthony Arguelles-Arias, Magali Deleu, Marc Ongena","doi":"10.1016/j.tim.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.001","url":null,"abstract":"<p><p>Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toll-like receptor 4 - a multifunctional virus recognition receptor. Toll 样受体 4--一种多功能病毒识别受体。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1016/j.tim.2024.07.001
Elina Gerber-Tichet, Fabien P Blanchet, Karim Majzoub, Eric J Kremer

Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.

自从果蝇的 Toll 受体及其哺乳动物的 Toll 样受体(TLRs)被首次描述以来,许多基础研究和应用研究都在探索它们作为病原体相关分子模式(PAMPs)传感器的关键作用。在人类的十种 TLRs 中,TLR4 尤以其检测革兰氏阴性细菌细胞壁成分脂多糖(LPS)的能力而闻名。除了其典型功能外,TLR4 还是一种多功能病毒传感器。本综述介绍了发现 TLR4 的背景,以及这一知识如何为通过遗传、生化、结构和免疫学方法研究 TLR4 在抗病毒反应中的各种作用奠定了基础。这些进展加深了人们对 TLR4 分子功能的理解,TLR4 能够协调专业抗原递呈细胞(APCs)的多节点控制,从而启动适当的、受调控的抗病毒免疫反应。
{"title":"Toll-like receptor 4 - a multifunctional virus recognition receptor.","authors":"Elina Gerber-Tichet, Fabien P Blanchet, Karim Majzoub, Eric J Kremer","doi":"10.1016/j.tim.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.001","url":null,"abstract":"<p><p>Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment. 用于加强生态评估的微生物、全生物体和生命之树 eDNA/eRNA。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 DOI: 10.1016/j.tim.2024.07.003
Lauren S J Cook, Andrew G Briscoe, Vera G Fonseca, Jens Boenigk, Guy Woodward, David Bass

Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.

微生物环境 DNA 和 RNA(统称为 "ENA")来源于环境样本中多种多样的微生物。这些 "ENA "信号在很大程度上代表了完整的生物体,是对来自大型生物体片段或残余的信号的有力补充。因此,将微生物数据整合到生态系统评估和生物指数的工具箱中,有可能改变我们使用enera数据了解生物多样性动态和生态系统功能的方式,并为下一代环境监测提供信息。将全生物体和生命之树方法纳入ENA分析,可以进一步全面了解微生物与其他生物之间的生态相互作用,为我们进一步了解并最终操纵与环境管理、保护、野生动物健康和食品生产相关的生态系统特性铺平道路。
{"title":"Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment.","authors":"Lauren S J Cook, Andrew G Briscoe, Vera G Fonseca, Jens Boenigk, Guy Woodward, David Bass","doi":"10.1016/j.tim.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.003","url":null,"abstract":"<p><p>Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature sensing and virulence regulation in pathogenic bacteria. 致病细菌的温度感应和毒力调节。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 DOI: 10.1016/j.tim.2024.07.009
Davide Roncarati, Andrea Vannini, Vincenzo Scarlato

Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.

致病细菌可以检测到各种环境信号,包括温度变化。突然和显著的温度变化是触发保护性热休克反应的危险信号,而微小的温度波动则通常向病原体发出信号,表明它已从一个环境转移到另一个环境,例如在感染过程中进入宿主体内的特定生态位。病原体利用后一种温度波动来协调关键毒力因子的表达。在这里,我们阐明了温度在调控细菌病原体毒力因子表达方面的关键作用。此外,我们还概述了病原体用来检测温度波动的分子机制,重点研究了利用蛋白质和核酸作为感应装置的系统。我们还讨论了气候变化对人类致病性疾病的潜在影响和风险程度。
{"title":"Temperature sensing and virulence regulation in pathogenic bacteria.","authors":"Davide Roncarati, Andrea Vannini, Vincenzo Scarlato","doi":"10.1016/j.tim.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.009","url":null,"abstract":"<p><p>Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会和内容
IF 15.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-06 DOI: 10.1016/s0966-842x(24)00183-5
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s0966-842x(24)00183-5","DOIUrl":"https://doi.org/10.1016/s0966-842x(24)00183-5","url":null,"abstract":"No Abstract","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅和版权信息
IF 15.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-06 DOI: 10.1016/s0966-842x(24)00186-0
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s0966-842x(24)00186-0","DOIUrl":"https://doi.org/10.1016/s0966-842x(24)00186-0","url":null,"abstract":"No Abstract","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current advances on Vip3 highlight the promising potential of bacterial insecticidal proteins. 目前在 Vip3 方面取得的进展凸显了细菌杀虫蛋白的巨大潜力。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-06-19 DOI: 10.1016/j.tim.2024.06.001
Kun Jiang, Xiang Gao

Biological control, based on microbial insecticidal proteins, has become an important strategy for sustainable pest management. This forum discusses recent advancements and research strategies of the bacterial insecticidal protein vegetative insecticidal protein 3 (Vip3), aiming to provide valuable insights for future investigations on Vip3 and other insecticidal proteins.

基于微生物杀虫蛋白的生物防治已成为可持续害虫管理的重要策略。本论坛讨论了细菌杀虫蛋白无性系杀虫蛋白3(Vip3)的最新进展和研究策略,旨在为今后研究Vip3和其他杀虫蛋白提供有价值的见解。
{"title":"Current advances on Vip3 highlight the promising potential of bacterial insecticidal proteins.","authors":"Kun Jiang, Xiang Gao","doi":"10.1016/j.tim.2024.06.001","DOIUrl":"10.1016/j.tim.2024.06.001","url":null,"abstract":"<p><p>Biological control, based on microbial insecticidal proteins, has become an important strategy for sustainable pest management. This forum discusses recent advancements and research strategies of the bacterial insecticidal protein vegetative insecticidal protein 3 (Vip3), aiming to provide valuable insights for future investigations on Vip3 and other insecticidal proteins.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of microbial gene expression: the key to understanding our gut microbiome 微生物基因表达调控:了解肠道微生物群的关键
IF 15.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1016/j.tim.2024.07.005

During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.

在过去的二十年里,肠道微生物组研究证实了肠道微生物群及其代谢物对宿主健康的重大影响。然而,人们对肠道环境中微生物代谢物产生的分子机制仍然研究不足,因此对其了解甚少。在此,我们提出,研究领域需要加强对肠道微生物基因调控的了解,这种调控对饮食成分和肠道环境条件具有响应性,对于我们通过针对肠道微生物组的干预措施有效促进宿主健康和预防疾病的能力至关重要。
{"title":"Regulation of microbial gene expression: the key to understanding our gut microbiome","authors":"","doi":"10.1016/j.tim.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.005","url":null,"abstract":"<p>During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":15.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HIV-1-induced translocation of CPSF6 to biomolecular condensates. HIV-1 诱导的 CPSF6 向生物分子凝聚体的转运。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-23 DOI: 10.1016/j.tim.2024.01.001
Katarzyna Bialas, Felipe Diaz-Griffero

Cleavage and polyadenylation specificity factor subunit 6 (CPSF6, also known as CFIm68) is a 68 kDa component of the mammalian cleavage factor I (CFIm) complex that modulates mRNA alternative polyadenylation (APA) and determines 3' untranslated region (UTR) length, an important gene expression control mechanism. CPSF6 directly interacts with the HIV-1 core during infection, suggesting involvement in HIV-1 replication. Here, we review the contributions of CPSF6 to every stage of the HIV-1 replication cycle. Recently, several groups described the ability of HIV-1 infection to induce CPSF6 translocation to nuclear speckles, which are biomolecular condensates. We discuss the implications for CPSF6 localization in condensates and the potential role of condensate-localized CPSF6 in the ability of HIV-1 to control the protein expression pattern of the cell.

裂解和多腺苷酸化特异性因子亚基 6(CPSF6,又称 CFIm68)是哺乳动物裂解因子 I(CFIm)复合物的一个 68 kDa 组份,可调节 mRNA 替代多腺苷酸化(APA)并决定 3' 非翻译区(UTR)长度,这是一种重要的基因表达控制机制。CPSF6 在感染过程中与 HIV-1 核心直接相互作用,表明它参与了 HIV-1 的复制。在此,我们回顾了 CPSF6 对 HIV-1 复制周期各个阶段的贡献。最近,几个研究小组描述了 HIV-1 感染诱导 CPSF6 转位至核斑点(一种生物分子凝聚物)的能力。我们讨论了 CPSF6 在凝聚体中定位的意义,以及凝聚体定位的 CPSF6 在 HIV-1 控制细胞蛋白质表达模式的能力中的潜在作用。
{"title":"HIV-1-induced translocation of CPSF6 to biomolecular condensates.","authors":"Katarzyna Bialas, Felipe Diaz-Griffero","doi":"10.1016/j.tim.2024.01.001","DOIUrl":"10.1016/j.tim.2024.01.001","url":null,"abstract":"<p><p>Cleavage and polyadenylation specificity factor subunit 6 (CPSF6, also known as CFIm68) is a 68 kDa component of the mammalian cleavage factor I (CFIm) complex that modulates mRNA alternative polyadenylation (APA) and determines 3' untranslated region (UTR) length, an important gene expression control mechanism. CPSF6 directly interacts with the HIV-1 core during infection, suggesting involvement in HIV-1 replication. Here, we review the contributions of CPSF6 to every stage of the HIV-1 replication cycle. Recently, several groups described the ability of HIV-1 infection to induce CPSF6 translocation to nuclear speckles, which are biomolecular condensates. We discuss the implications for CPSF6 localization in condensates and the potential role of condensate-localized CPSF6 in the ability of HIV-1 to control the protein expression pattern of the cell.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1