首页 > 最新文献

Trends in Microbiology最新文献

英文 中文
Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. 理化压力下生境中噬菌体的适应策略和生态作用。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-03-02 DOI: 10.1016/j.tim.2024.02.002
Dan Huang, Rong Xia, Chengyi Chen, Jingqiu Liao, Linxing Chen, Dongsheng Wang, Pedro J J Alvarez, Pingfeng Yu

Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.

噬菌体(噬菌体)通过影响微生物群落的组成、基因交换、新陈代谢和环境适应,在生态系统功能中发挥着至关重要的作用。随着近年来测序技术和生物信息学的进步,我们对压力环境中噬菌体的生态学和进化的了解有了大幅扩展。在此,我们回顾了物理化学环境压力对噬菌体生理状态和群落动态的影响、噬菌体应对环境压力的适应策略以及压力环境中噬菌体-宿主相互作用的生态效应。具体来说,我们强调了噬菌体对微生物组的适应性进化和功能的贡献,并提出噬菌体及其宿主在应对环境压力时可以保持一种互利关系。此外,我们还讨论了噬菌体在压力环境中造成的生态后果,包括生物地球化学循环。总之,这篇综述加深了人们对压力环境中噬菌体生态学的理解,可以为基于噬菌体的策略提供信息,从而提高微生物组的性能以及自然和工程系统中生态系统的恢复力和抵抗力。
{"title":"Adaptive strategies and ecological roles of phages in habitats under physicochemical stress.","authors":"Dan Huang, Rong Xia, Chengyi Chen, Jingqiu Liao, Linxing Chen, Dongsheng Wang, Pedro J J Alvarez, Pingfeng Yu","doi":"10.1016/j.tim.2024.02.002","DOIUrl":"10.1016/j.tim.2024.02.002","url":null,"abstract":"<p><p>Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"902-916"},"PeriodicalIF":14.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori. 细菌中与癌症相关的 SNPs:幽门螺旋杆菌的启示。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-03-13 DOI: 10.1016/j.tim.2024.02.001
Bodo Linz, Heinrich Sticht, Nicole Tegtmeyer, Steffen Backert

Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.

已知人类染色体中的一些单核苷酸多态性(SNPs)易导致癌症。然而,在胃部病原体幽门螺旋杆菌中发现与癌症相关的单核苷酸多态性之前,人们对细菌病原体中与癌症相关的单核苷酸多态性一无所知。其中包括注射效应蛋白 CagA 的 EPIYA-B 磷酸化基序中的丙氨酸-苏氨酸多态性,它通过改变炎症反应和宿主细胞极性的丧失来影响癌症风险。丝氨酸蛋白酶 HtrA 中丝氨酸到亮氨酸的变化与上皮连接蛋白的蛋白水解裂解增强和宿主染色体中 DNA 双链断裂(DSB)的引入有关,这两者共同引发了恶性改变。此外,幽门螺杆菌全基因组关联研究(GWAS)还发现了其他几个可能与胃癌(GC)风险增加有关的 SNPs。在此,我们将讨论幽门螺杆菌 SNPs 的临床重要性、进化起源和功能优势。这些令人兴奋的新数据突显了细菌中与癌症相关的 SNPs,在未来的研究中应更详细地探讨这些 SNPs。
{"title":"Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori.","authors":"Bodo Linz, Heinrich Sticht, Nicole Tegtmeyer, Steffen Backert","doi":"10.1016/j.tim.2024.02.001","DOIUrl":"10.1016/j.tim.2024.02.001","url":null,"abstract":"<p><p>Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"847-857"},"PeriodicalIF":14.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery. 利用结核分枝杆菌中的 cAMP 信号来发现药物。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-02-14 DOI: 10.1016/j.tim.2024.01.008
Dipak Kathayat, Brian C VanderVen

Mycobacterium tuberculosis (Mtb) replicates within host macrophages by adapting to the stressful and nutritionally constrained environments in these cells. Exploiting these adaptations for drug discovery has revealed that perturbing cAMP signaling can restrict Mtb growth in macrophages. Specifically, compounds that agonize or stimulate the bacterial enzyme, Rv1625c/Cya, induce cAMP synthesis and this interferes with the ability of Mtb to metabolize cholesterol. In murine tuberculosis (TB) infection models, Rv1625c/Cya agonists contribute to reducing relapse and shortening combination treatments, highlighting the therapeutic potential for this class of compounds. More recently, cAMP signaling has been implicated in regulating fatty acid utilization by Mtb. Thus, a new model is beginning to emerge in which cAMP regulates the utilization of host lipids by Mtb during infection, and this could provide new targets for TB drug development. Here, we summarize the current understanding of cAMP signaling in Mtb with a focus on our understanding of how cAMP signaling impacts Mtb physiology during infection. We also discuss additional cAMP-related drug targets in Mtb and other bacterial pathogens that may have therapeutic potential.

结核分枝杆菌(Mtb)通过适应宿主巨噬细胞内的压力和营养限制环境而在这些细胞内复制。利用这些适应性进行药物发现发现,干扰 cAMP 信号可以限制 Mtb 在巨噬细胞中的生长。具体来说,激动或刺激细菌酶 Rv1625c/Cya 的化合物会诱导 cAMP 的合成,从而干扰 Mtb 代谢胆固醇的能力。在小鼠肺结核(TB)感染模型中,Rv1625c/Cya 激动剂有助于减少复发和缩短联合治疗时间,凸显了这类化合物的治疗潜力。最近,cAMP 信号被认为与 Mtb 对脂肪酸的利用有关。因此,一种新的模式开始出现,即 cAMP 调节 Mtb 在感染期间对宿主脂质的利用,这可能为结核病药物开发提供新的靶点。在此,我们总结了目前对 Mtb 中 cAMP 信号转导的理解,重点是我们对 cAMP 信号转导在感染期间如何影响 Mtb 生理机能的理解。我们还讨论了在 Mtb 和其他细菌病原体中可能具有治疗潜力的其他 cAMP 相关药物靶点。
{"title":"Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery.","authors":"Dipak Kathayat, Brian C VanderVen","doi":"10.1016/j.tim.2024.01.008","DOIUrl":"10.1016/j.tim.2024.01.008","url":null,"abstract":"<p><p>Mycobacterium tuberculosis (Mtb) replicates within host macrophages by adapting to the stressful and nutritionally constrained environments in these cells. Exploiting these adaptations for drug discovery has revealed that perturbing cAMP signaling can restrict Mtb growth in macrophages. Specifically, compounds that agonize or stimulate the bacterial enzyme, Rv1625c/Cya, induce cAMP synthesis and this interferes with the ability of Mtb to metabolize cholesterol. In murine tuberculosis (TB) infection models, Rv1625c/Cya agonists contribute to reducing relapse and shortening combination treatments, highlighting the therapeutic potential for this class of compounds. More recently, cAMP signaling has been implicated in regulating fatty acid utilization by Mtb. Thus, a new model is beginning to emerge in which cAMP regulates the utilization of host lipids by Mtb during infection, and this could provide new targets for TB drug development. Here, we summarize the current understanding of cAMP signaling in Mtb with a focus on our understanding of how cAMP signaling impacts Mtb physiology during infection. We also discuss additional cAMP-related drug targets in Mtb and other bacterial pathogens that may have therapeutic potential.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"874-883"},"PeriodicalIF":14.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking microbially driven methane formation in mangrove wetlands. 重新思考红树林湿地中微生物驱动的甲烷形成。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-06-18 DOI: 10.1016/j.tim.2024.06.002
Ruiwen Hu, Zhili He, Cheng Wang

Mangrove wetlands contribute to climate change mitigation through efficient carbon burial, yet microbial methanogenesis offsets these climate benefits. We review the diversity of methanogenic microorganisms in mangrove sediments, present the unrecognized role of bacteria on methanogenesis, and highlight the significance of distinguishing various methanogenic pathways to assess mangrove climate benefits.

红树林湿地通过有效的碳埋藏为减缓气候变化做出了贡献,然而微生物产甲烷却抵消了这些气候效益。我们回顾了红树林沉积物中产甲烷微生物的多样性,介绍了细菌在产甲烷过程中尚未被认识到的作用,并强调了区分各种产甲烷途径对评估红树林气候效益的重要意义。
{"title":"Rethinking microbially driven methane formation in mangrove wetlands.","authors":"Ruiwen Hu, Zhili He, Cheng Wang","doi":"10.1016/j.tim.2024.06.002","DOIUrl":"10.1016/j.tim.2024.06.002","url":null,"abstract":"<p><p>Mangrove wetlands contribute to climate change mitigation through efficient carbon burial, yet microbial methanogenesis offsets these climate benefits. We review the diversity of methanogenic microorganisms in mangrove sediments, present the unrecognized role of bacteria on methanogenesis, and highlight the significance of distinguishing various methanogenic pathways to assess mangrove climate benefits.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"832-835"},"PeriodicalIF":14.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling the plastisphere: the single-cell Raman spectroscopy framework. 解决质球问题:单细胞拉曼光谱框架。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-31 DOI: 10.1016/j.tim.2024.08.005
Qing-Lin Chen, Kai Yang, Qian Xiang, Li Cui, Yong-Guan Zhu

Conventional bulk molecular approaches, often limited by their destructive nature and low spatial resolution, face challenges when probing the intricate dynamics of the plastisphere. Here, we outline a framework employing Raman spectroscopy combined with stable isotope profiling (SIP) to interrogate the physiological function of the plastisphere microbiome and track its evolutionary trajectories.

传统的大分子方法往往受限于其破坏性和低空间分辨率,在探测质球复杂的动态时面临挑战。在这里,我们概述了一个采用拉曼光谱与稳定同位素剖析(SIP)相结合的框架,以探究质球微生物组的生理功能并追踪其进化轨迹。
{"title":"Tackling the plastisphere: the single-cell Raman spectroscopy framework.","authors":"Qing-Lin Chen, Kai Yang, Qian Xiang, Li Cui, Yong-Guan Zhu","doi":"10.1016/j.tim.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.005","url":null,"abstract":"<p><p>Conventional bulk molecular approaches, often limited by their destructive nature and low spatial resolution, face challenges when probing the intricate dynamics of the plastisphere. Here, we outline a framework employing Raman spectroscopy combined with stable isotope profiling (SIP) to interrogate the physiological function of the plastisphere microbiome and track its evolutionary trajectories.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacillus lipopeptides as key players in rhizosphere chemical ecology. 芽孢杆菌脂肽是根圈化学生态学中的关键角色。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-29 DOI: 10.1016/j.tim.2024.08.001
Guillaume Balleux, Monica Höfte, Anthony Arguelles-Arias, Magali Deleu, Marc Ongena

Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.

微生物天然产物因其治疗潜力而被广泛开发。了解驱动其产生的基本进化和适应力仍然是生物学的一个基本问题。两亲环脂肽(CLPs)是细菌特化代谢产物的一个重要类别,具有很强的抗菌活性,特别是对植物病原体。因此,人们认为这些化合物是生活在土壤或根圈的细菌在竞争激烈的自然环境中作为微生物武器使用的。在此,我们对这种还原论观点提出质疑,并提出证据证明芽孢杆菌的 CLPs 是生态相互作用的重要化学媒介。它们帮助芽孢杆菌与其他(微)生物进行交流、竞争、抵御天敌或合作并建立互惠关系。其他菌属如假单胞菌中也有类似的例子。这种更广阔的视角强调了进一步研究 CLPs 在塑造关键根瘤菌物种适应策略中的作用的必要性。
{"title":"Bacillus lipopeptides as key players in rhizosphere chemical ecology.","authors":"Guillaume Balleux, Monica Höfte, Anthony Arguelles-Arias, Magali Deleu, Marc Ongena","doi":"10.1016/j.tim.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.tim.2024.08.001","url":null,"abstract":"<p><p>Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toll-like receptor 4 - a multifunctional virus recognition receptor. Toll 样受体 4--一种多功能病毒识别受体。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1016/j.tim.2024.07.001
Elina Gerber-Tichet, Fabien P Blanchet, Karim Majzoub, Eric J Kremer

Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.

自从果蝇的 Toll 受体及其哺乳动物的 Toll 样受体(TLRs)被首次描述以来,许多基础研究和应用研究都在探索它们作为病原体相关分子模式(PAMPs)传感器的关键作用。在人类的十种 TLRs 中,TLR4 尤以其检测革兰氏阴性细菌细胞壁成分脂多糖(LPS)的能力而闻名。除了其典型功能外,TLR4 还是一种多功能病毒传感器。本综述介绍了发现 TLR4 的背景,以及这一知识如何为通过遗传、生化、结构和免疫学方法研究 TLR4 在抗病毒反应中的各种作用奠定了基础。这些进展加深了人们对 TLR4 分子功能的理解,TLR4 能够协调专业抗原递呈细胞(APCs)的多节点控制,从而启动适当的、受调控的抗病毒免疫反应。
{"title":"Toll-like receptor 4 - a multifunctional virus recognition receptor.","authors":"Elina Gerber-Tichet, Fabien P Blanchet, Karim Majzoub, Eric J Kremer","doi":"10.1016/j.tim.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.001","url":null,"abstract":"<p><p>Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment. 用于加强生态评估的微生物、全生物体和生命之树 eDNA/eRNA。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 DOI: 10.1016/j.tim.2024.07.003
Lauren S J Cook, Andrew G Briscoe, Vera G Fonseca, Jens Boenigk, Guy Woodward, David Bass

Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.

微生物环境 DNA 和 RNA(统称为 "ENA")来源于环境样本中多种多样的微生物。这些 "ENA "信号在很大程度上代表了完整的生物体,是对来自大型生物体片段或残余的信号的有力补充。因此,将微生物数据整合到生态系统评估和生物指数的工具箱中,有可能改变我们使用enera数据了解生物多样性动态和生态系统功能的方式,并为下一代环境监测提供信息。将全生物体和生命之树方法纳入ENA分析,可以进一步全面了解微生物与其他生物之间的生态相互作用,为我们进一步了解并最终操纵与环境管理、保护、野生动物健康和食品生产相关的生态系统特性铺平道路。
{"title":"Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment.","authors":"Lauren S J Cook, Andrew G Briscoe, Vera G Fonseca, Jens Boenigk, Guy Woodward, David Bass","doi":"10.1016/j.tim.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.003","url":null,"abstract":"<p><p>Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature sensing and virulence regulation in pathogenic bacteria. 致病细菌的温度感应和毒力调节。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 DOI: 10.1016/j.tim.2024.07.009
Davide Roncarati, Andrea Vannini, Vincenzo Scarlato

Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.

致病细菌可以检测到各种环境信号,包括温度变化。突然和显著的温度变化是触发保护性热休克反应的危险信号,而微小的温度波动则通常向病原体发出信号,表明它已从一个环境转移到另一个环境,例如在感染过程中进入宿主体内的特定生态位。病原体利用后一种温度波动来协调关键毒力因子的表达。在这里,我们阐明了温度在调控细菌病原体毒力因子表达方面的关键作用。此外,我们还概述了病原体用来检测温度波动的分子机制,重点研究了利用蛋白质和核酸作为感应装置的系统。我们还讨论了气候变化对人类致病性疾病的潜在影响和风险程度。
{"title":"Temperature sensing and virulence regulation in pathogenic bacteria.","authors":"Davide Roncarati, Andrea Vannini, Vincenzo Scarlato","doi":"10.1016/j.tim.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.tim.2024.07.009","url":null,"abstract":"<p><p>Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current advances on Vip3 highlight the promising potential of bacterial insecticidal proteins. 目前在 Vip3 方面取得的进展凸显了细菌杀虫蛋白的巨大潜力。
IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-06-19 DOI: 10.1016/j.tim.2024.06.001
Kun Jiang, Xiang Gao

Biological control, based on microbial insecticidal proteins, has become an important strategy for sustainable pest management. This forum discusses recent advancements and research strategies of the bacterial insecticidal protein vegetative insecticidal protein 3 (Vip3), aiming to provide valuable insights for future investigations on Vip3 and other insecticidal proteins.

基于微生物杀虫蛋白的生物防治已成为可持续害虫管理的重要策略。本论坛讨论了细菌杀虫蛋白无性系杀虫蛋白3(Vip3)的最新进展和研究策略,旨在为今后研究Vip3和其他杀虫蛋白提供有价值的见解。
{"title":"Current advances on Vip3 highlight the promising potential of bacterial insecticidal proteins.","authors":"Kun Jiang, Xiang Gao","doi":"10.1016/j.tim.2024.06.001","DOIUrl":"10.1016/j.tim.2024.06.001","url":null,"abstract":"<p><p>Biological control, based on microbial insecticidal proteins, has become an important strategy for sustainable pest management. This forum discusses recent advancements and research strategies of the bacterial insecticidal protein vegetative insecticidal protein 3 (Vip3), aiming to provide valuable insights for future investigations on Vip3 and other insecticidal proteins.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"732-735"},"PeriodicalIF":14.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1